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Abstract: In order to solve the problem that it is difficult for a single sensor to accurately characterize
the running state of rotating bearings under complex working conditions, this paper proposes a data-
level fusion method based on multi-source isomorphic sensors to monitor spindle bearings. First, new
vibration signals in the X,Y,Z direction were obtained through the process of decomposing, de-noise,
and reconstructing. Second, the PCA algorithm was used to select the time-domain and frequency-
domain features of the vibration signals, construct the feature matrix, and perform dimensionality
reduction in the feature matrix. Finally, the entropy weight method was introduced to obtain the
initial weights of the three directions as the inputs of the adaptive function. The chaotic particle swarm
optimization algorithm proposed in this paper helps particles jump out of the local optimum. Chaotic
mapping is used to initialize the velocity and position of the particles, which calculates globally
optimal weights in three directions. In order to extract bearing signal features more accurately and
efficiently, a DenseNet and Transformer (DAT) feature extraction model is proposed to deal with the
complex changes and noise interference of bearing signals. Through the open data set of Jiangnan
University and the data collected by our own experimental platform, the maximum accuracy of the
DAT model was verified to be 100%.

Keywords: multi-source; entropy weighting; chaotic particle swarm optimization algorithm; data-level
fusion; feature extraction

1. Introduction

Machine tools are important and necessary instruments in the equipment manufac-
turing sector. The spindle, which is the machine tool’s core component, determines its
precision and productivity. Bearing assembly precision and performance are critical because
they determine the spindle’s running condition and performance, which influences the
machine tool’s overall machining quality and effectiveness. [1–3]. To forecast the dynamic
performance of the bearing-rotor system, Ma S et al. [4] developed a dynamic model based
on SFBE. By describing SFBE-specific physical properties, this model provides real-time
coupling and the synchronous solution of bearing and rotor models. Fang B et al. [5] pro-
posed a generalized mathematical model of DR-ACBB under three different configurations
to study the variation rule of nonlinear stiffness. It resulted in the skewed running of bear-
ings in the service, which can very easily cause bearing failures. This is due to long-term
service in harsh environments such as variable loads, high temperatures, and impacts, as
well as under the influence of factors like manufacturing errors, assembly accuracy, and
human operation errors. Relying on mathematical models alone is limited and no longer
allows for the complete condition characterization of bearings. To ensure the safe operation
of machine tools and to boost production, the reliable and effective real-time condition
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monitoring of bearings is crucial [6]. Machine learning has developed into a very powerful
classification tool with the advancement of computer technology. Machine learning can
delve deeper into potentially advantageous information in data since computers can handle
enormous amounts of data [7,8]. Traditional shallow machine-learning techniques do have
some limitations. These techniques usually require a lot of prior knowledge, which makes
selecting and extracting features challenging [9,10].

End-to-end deep learning methodologies have been increasingly brought into the field
of fault diagnosis in recent years as a result of the impact of the artificial intelligence (AI)
wave. Deep learning techniques, as opposed to conventional approaches, offer fresh per-
spectives and opportunities for defect detection research by automatically learning feature
representations and eliminating inevitable ambiguities in the manual feature extraction
process [11]. One of these representative deep learning methods, the convolutional neural
network (CNN), is a subclass of the feed-forward neural network that includes convolutional
computation and has a deep structure [12]. This algorithm is capable of representational
learning and can categorize input data according to its hierarchical structure in a translation-
invariant manner. Janssens [13] suggested a three-layer CNN model for bearing defect
identification based on vibration signals. Prior to training the model and feeding data into
the network model, these data were discretely Fourier-converted. Gu [14] suggested that the
1-DCNN and LSTM two channels be fed raw vibration signals to fuse feature information
in both the temporal and spatial dimensions, thereby classifying the bearing problems.
Zhang et al. [15] proposed a method to monitor the uneven operating conditions of bearings
based on a two-channel fusion of the improved DenseNet network, which realizes the fusion
of features in the frequency domain and the time-frequency domain. This method addresses
the issue that traditional bearing fault diagnosis methods are insufficient to extract key
features under strong noise and variable loads. Aiming at the above references, the feature
extraction model in this article introduces DenseNet and Transformer modules to improve
this model’s ability to deal with complex working conditions.

The multi-sensor measurement and sensing system is a complex information process-
ing system that integrates target measurements, data processing, and information fusion. It
is widely used in the fields of industrial system monitoring [16], fault diagnosis [17], spatial
localization [18], and environmental observation [19]. Among them, at the data level, the
fusion of homologous and homomorphic multi-sensor sensing sequences is one of the key
elements of this system. By fusing data from multiple sensors, the accuracy and reliability of
information can be improved, and then more accurate measurement and sensing results can
be realized, which provides important support for achieving efficient data processing and
decision making [20]. In the field of intelligent manufacturing, data fusion technology effec-
tively improves people’s processing ability and utilization efficiency of industrial big data,
where multi-source data have the characteristics of comprehensively describing the target
alongside complementary data, and its fusion operation can improve the decision-making
credibility and anti-interference ability of the model, reduce the redundancy existing in
multi-source data, and reduce the waste of storage resources [21].

Data fusion methods of multi-source homogeneous sensors have been introduced to
comprehensively characterize the operating state of rolling bearings because it is challeng-
ing for a single sensor to accurately characterize the operating state of machine tool spindle
bearings under complex working conditions. Common fusion methods for homogeneous-
and homogeneous-type multi-sensor sensing sequences include the weighted averaging
method [22,23], Bayesian estimation [24], maximum likelihood estimation [25], Kalman
filtering [26], neural network [27] and fuzzy logic [28]. Among these, the weighted average
method is suitable for data layer fusion, but the distribution of weights has a significant
impact on the fusion effect [22]. Bayesian estimation, maximum likelihood estimation, and
other statistical methods require a priori knowledge of the target object. Kalman filtering
requires that the system model and statistical characteristics of noise are known, and it
cannot deal with the problem of adding new sensors. Neural network-based methods
require training and learning, and their applicability is affected by the number of input
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dimensions and the number of neurons and cannot handle input source variations. Fuzzy
C-mean clustering-based methods are computationally straightforward [28], do not require
a priori knowledge and model limitations, and can be applied online, but their results
depend on the precise estimation of the number of clusters. Neural network-based methods
require training and learning, and their applicability is affected by the number of input
dimensions and neurons and cannot handle input source variations.

Su [29] proposed a homogeneous multi-sensor online fusion method based on im-
proved fuzzy clustering and the aforementioned analysis. This method uses a robust fuzzy
clustering method that introduces noise classes to analyze multiple sources of data simulta-
neously and does not depend on the number of clusters set in the traditional fuzzy clustering
fusion method. A multi-sensor data fusion approach based on an adaptive weighting al-
gorithm was proposed by Tang [30]. This method fuses signals from several sensors using
an adaptive weighting algorithm and then uses a Kalman filtering algorithm to decrease
noise in the output. In their algorithm, Cai et al. [31] combined measurement data prepro-
cessing with improved batch estimation adaptive and weighted data fusion, introducing
environmental factors and enhancing the batch estimation algorithm to determine the ideal
monitoring value of individual sensors, and realizing adaptive weighted data fusion in
accordance with the principle of optimal weight allocation. Zhu et al. [32] proposed a multi-
sensor data fusion algorithm based on wavelet noise reduction and adaptive weighting to
address the issues of large error, conflict, and redundancy in the multi-node data acquisition
of greenhouse environmental information. The proposed algorithm processed the collected
data through wavelet noise reduction to make it have good smoothness and stability and
fused multi-sensor data using the adaptive weighting algorithm. With the guidance of the
above literature, this article constructs a fusion algorithm based on weighted fusion, which
is based on the entropy weighting method and chaotic particle swarm search.

In conclusion, this paper proposes a data-level fusion method based on multi-source
isomorphic sensors to monitor the running state of rolling bearings and constructs a DAT
feature extraction model for the deep feature extraction of fused data to detect this bearing’s
service state. It is challenging for a single sensor to accurately characterize the service
state of machine tool spindle bearings under complex working conditions. In order to
improve the accuracy, reliability, coverage, time-domain continuity, and consistency of data,
as well as the fault tolerance and robustness of the system, a data-level fusion method with
multi-source isomorphic sensors is proposed to monitor the operational status of rolling
bearings. We created the DAT deep learning model (DenseNet and Transformer, DAT),
which introduces the serial combination of DenseNet and Transformer modules to enable
feature reuse and improve the model’s capacity for handling time-series data, enabling
more sophisticated feature extraction and transformation.

2. Relevant Theoretical Approaches
2.1. Wavelet Packet Denoising

Wavelet packet decomposition is substantially more effective than wavelet analysis’s
capacity to analyze signals since it decomposes both the high- and low-frequency portions
of the signal. As seen in Figure 1, the following is an illustration of a four-layer wavelet
packet decomposition, with a denoting the low-frequency portion and b denoting the
high-frequency portion [33].
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In wavelet packet decomposition, µ0 = ϕ(t), µ1 = ψ(t) where ϕ(t) and ψ(t) denote
the scale function and wavelet function, respectively, and {hn}n∈Z and {gn}n∈Z denotes
the low-pass and high-pass filters, respectively; a set of functions known as wavelet packets
can be defined by µ0, µ1, h, g at a fixed scale:

µ2n(t) =
√

2∑
k

hkµn(2t− k) (1)

µ2n+1(t) =
√

2∑
k

gkµn(2t− k) (2)

where µn, n = 0, 1, 2, . . . n. is called the wavelet packet and is determined by the orthogonal
scale function µ0 = ϕ(t).

A noisy signal is provided as follows:

s = x + n (3)

where s is the measured noise signal, x is the original signal, n is the noise, and the essence
of signal denoising is to estimate the original signal x based on the detected noise signals.
The corresponding wavelet packet threshold denoising steps are as follows.

y = W(s)
∼
y = D(y, λ)
∼
x = W

(∼
y
) (4)

where W and W denote the wavelet packet transform and its inverse, respectively, λ is the
threshold, and D is the signal thresholding denoising process.

SNR = 10lg

[
∑n x2(n)

∑n(x̂(n)− x(n))2

]
(5)

RMSE =

√
1
n∑n[x̂(n)− x(n)]2 (6)

In this formula, SNR represents the signal-to-noise ratio, which is the ratio of the
energy of the useful signal to the energy of noise; the larger the SNR is, the smaller the
noise mixed in the measured signal is. RMSE represents the root mean square error, which
is the root mean square error between the signal after reconstruction and the original signal,
and the smaller this value is, the better the de-noising effect is; x̂(n) is the signal with noise,
and x(n) is the original signal.

The original vibration signal can be decomposed to a maximum of 15 layers. After
comparing the signal-to-noise ratio and the root mean square error of the various layers,
the decomposition of the wavelet packet after four layers was selected. Too many layers
result in the loss of actual useful information, and too few layers are not able to play a role
in improving the signal-to-noise ratio.

2.2. Entropy Weighting Method

The entropy weight method is a multi-criteria decision analysis method that realizes
the comprehensive evaluation of each indicator by calculating the entropy value and weight
of the indicator. This method does not need to standardize the data and is suitable for
situations where each indicator has a different scale and a different direction. The core idea
of the entropy weighting method is that the smaller the entropy value of an indicator is, the
more informative it is, and the greater the impact on the comprehensive evaluation it has;
the weight of the indicator is calculated according to the proportion of the entropy value of
each indicator [34], and the features extracted in this paper are shown in Table 1.
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Table 1. Feature extraction.

Feature Classification Feature Extraction

Time domain features

Maximum value, minimum value, peak-to-peak value, average
value, absolute average value, root mean square, variance,

standard deviation, steepness, skewness, peak factor, waveform
factor, pulse factor, margin factor

Frequency domain features Mean frequency, mean square frequency, root mean square
frequency, frequency variance, frequency standard deviation

By extracting the time-domain and frequency-domain features of the original signal,
the matrix can be defined X =

{
Xij
}

, where i is the number of sensors, i = 1, 2, . . . , n; j
is the number of feature indicators, j = 1, 2, . . . , m; and then the feature matrix can be
expressed as:

X =


X11 X12 . . . X1m
X21 X22 . . . X2m

...
...

. . .
...

Xn1 Xn2 . . . Xnm

 (7)

The weight of the j-th feature indicator under the i-th sensor is as follows:

Pij =
Xij

∑N
i=1 xij

(8)

The entropy value under the i-th sensor can be calculated as shown below:

Hi = −
1

ln N ∑N
i=1 Pijln Pij (9)

where Pij ln Pij is considered to be 0 if Pij = 0.
The weight of the i-th sensor can be calculated as follows:

Wi =
1− Hi

n−∑n
i=1 Hi

(10)

2.3. Principle of the PCA Downscaling Algorithm

PCA (Principal Component Analysis) is a commonly used data dimensionality re-
duction method, which can reduce high-dimensional data into a low-dimensional space
while trying to retain the information of the data [35]. The PCA dimensionality reduction
algorithm flow of this paper is shown in Figure 2.

2.4. Chaos Mapping

The basic idea of the chaotic optimization algorithm is to map chaotic variables from
a chaotic space to a solution space and then search for this using the characteristics of
chaotic variables with traversability, randomness, and regularity. The chaotic optimization
algorithm has the characteristics of not appearing sensitive to the initial value, it is easy to
jump out of the local minima, and has a fast search speed, high computational accuracy, and
global asymptotic convergence. Chaotic sequences commonly used in the field of group
intelligence mainly include Logistic mapping, PWLCM mapping, Singer mapping, Sine
mapping, etc., and in this method, Logistic mapping was chosen to optimize the particle
swarm algorithm [36].

Logistic mapping is implemented as follows:

zk+1 = µzk(1− zk) (11)

where z0 /∈ {0, 0.25, 0.5, 0.75, 1.0}, µ ∈ [0, 4].
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2.5. Particle Swarm Optimization Algorithm

Weighted data fusion refers to the statistical analysis of multi-sensor data in different
times and spaces and then using relevant mathematical methods or practical experience
to assign different weights to different sensing data and obtain data fusion values. This
includes the weighted average method, Kalman filter, and artificial neural network method.
Weighted data fusion aims to obtain a better representation of the features of multi-source
data. Weighted data fusion is the fusion of sensor data according to a certain weight,
which sets the sensor observation value at ai, i = 1, 2, . . . , n, where each sensor weighting
coefficient is set to wai , i = 1, 2, . . . , n to obtain fused data:

Y = ∑n
i=1 wai ai (12)

In order to implement the distribution of adaptive weight coefficients among sensor
observations, the particle swarm optimization technique and the entropy weight method
were introduced in this research. The chaotic mapping algorithm is used to optimize the
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particle swarm algorithm because it helps particles jump out of the local optimum and
speeds up convergence, which addresses the issue that the particle swarm optimization
algorithm is prone to premature convergence to the local optimum and slow convergence
at later stages of iteration. This particle’s fundamental formula for updating its position
and velocity is:

Xi = (xi1, xi2, . . . , xiD), i = 1, 2, . . . , N (13)

Vi = (vi1, vi2, . . . , viD), i = 1, 2, . . . , N (14)

vij(t + 1) = wvij(t) + c1r1(t)
[
pij(t)− xij(t)

]
+ c2r2(t)

[
pgi(t)− xij(t)

]
(15)

xij(t + 1) = xij(t) + vij(t + 1) (16)

where i = 1, 2, . . . , N denotes the number of particle swarms; j denotes the dimension, Pij
denotes the j-th dimension of the individual extreme value of the ith particle; Pgj denotes
the j-th dimension of the global optimal solution; t denotes the number of iterations of the
particle swarms; w is the inertia factor, which is generally taken as the value of 0.5–0.8, and
denotes the strength of the algorithm’s global optimization seeking ability; and c1, c2 is the
learning factor, which is generally taken as the value of 0–4.

2.6. Comparison of Fusion Effect
2.6.1. Improved Chaotic Particle Swarm Optimization Algorithm

Mainly in the particle swarm optimization algorithm, chaotic mapping and the entropy
weighting method are introduced to achieve the adaptive weighted fusion of vibration
signals in the X, Y, and Z directions so that fused signals can characterize more features, the
specific process of which is shown in Figure 3.

The specific implementation steps of the improved chaotic particle swarm optimization
algorithm are as follows: (where the observation of the sensor is defined as ai, i = 1, 2, . . . , n.
The weighting coefficient of the sensor is also set to wai , i = 1, 2, . . . , n.)

(1) Obtaining the original vibration signals: load the original vibration signals in the X, Y,
and Z directions to obtain three vectors of length N.

(2) Wavelet packet denoising: 4-layer wavelet packet denoising is performed on the
loaded signal to obtain the reconstructed signal in the x, y, and z directions.
ai, i = 1, 2, . . . , n.

(3) Divide the samples: each vector is randomly divided into 200 samples of length
1024 to obtain 600 samples, which are then stored in a 600 × 1024 matrix.

(4) Entropy weighting method to extract time domain and frequency domain features: for
each sample, 14 time domain features and 5 frequency domain features are calculated
to obtain a 19-dimensional feature vector. For all 600 samples, a 600 × 19 feature
matrix is formed.

(5) The obtained feature matrix is downscaled using the PCA downscaling algorithm,
and the first three principal components are selected according to the contribution
rate, constituting a brand new feature matrix of 600 × 3. This matrix is normalized,
and the weight of the feature matrix is calculated using the entropy weight method.

(6) Chaotic particle swarm optimization algorithm: the initial positions and velocities
of the particles are optimized using the Logistic chaotic mapping search algorithm,
and the fusion weights are iteratively updated using Shannon’s direct as the fitness
function. According to the optimization results, the optimal fusion weights of the
vibration signals in three directions are obtained, wai , i = 1, 2, . . . , n. The number
of particles is set to 20, the maximum number of iterations for the particle swarm
optimization algorithm is set to 50, and the number of iterations of the chaotic mapping
is set to 30.
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(7) Data fusion: according to the optimal weights, the vibration signals in the three
directions are weighted and fused, and the fused data are obtained and saved as a
new data set, which is biased and calculated afterward.

Q = wa1a1 + wa2a2 + · · ·wanan (17)

where Q is the fused vibration signal.
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2.6.2. Comparison of Algorithm Fusion Effects

The particle swarm optimization algorithm is primarily used for the adaptive weighted
fusion of vibration sensor data in the X, Y, and Z directions to assign the weight coefficients
in three directions; therefore, the fused data can more thoroughly and better characterize the
effective features of bearings in different states. The comprehensive indexes are primarily
established for the analysis of the data-level fusion effects of the following four schemes:

Scheme I: particle swarm optimization (PSO)
Scheme II: particle swarm optimization + entropy weight method (CPSO-EWM)
Scheme III: Chaos mapping + particle swarm optimization (CPSO)
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Scheme IV: Chaos mapping + particle swarm optimization + entropy weight method
(CPSO-EWM)

The establishment of comprehensive indexes: comprehensive indexes are established
based on the characteristics of three indexes: signal-to-noise ratio (SNR), root mean square
error (RMSE), and correlation coefficient (Corrcoef).

CI = ∑3
n=1

(
SNR

RMSE
+ Corrcoe f

)
, n = [x, y, z] (18)

Table 2 shows that the fused dataset produced by the improved chaotic particle swarm
search technique has a superior fusion effect, a greater correlation with the original signal,
and a superior fusion of useful aspects for the vibration signals in the X, Y, and Z directions.

Table 2. Comparison of data fusion effects for four schemes.

PSO PSO-EWM CPSO CPSO-EWM

CI 9.3194 13.9624 11.5777 18.0705

Except for the above comparison on particle swarm algorithms, Table 3 shows that
there are some other similar population intelligence optimization algorithms, such as Ant
Colony Optimization (ACO), the Artificial Fish Swarm Algorithm (AFSA), and Fish School
Search (FSS). The adaptive weighted fusion of isomorphic signals can be achieved by these
population intelligence optimization algorithms.

Table 3. Comparison of the effectiveness of common adaptive optimization algorithms.

PSO PSO-EWM CPSO CPSO-EWM

CI 9.3194 13.9624 11.5777 18.0705

From Table 3, it can be analyzed that the CPSO-EWM algorithm proposed in this
paper has some advantages over the other three optimization algorithms. Among them,
the fusion effect of ACO and AFSA is close to that of AFSA, and both AFSA and FSS are
optimization algorithms based on the behavior of fish populations, though clearly, the
fusion effect of AFSA is slightly better.

2.7. Deep Learning Related Modules Introduction
2.7.1. DenseNet Module

DenseNet is a densely connected convolutional neural network whose main purpose
is to solve the problems of gradient vanishing and feature repetition during deep network
training. The main function of the DenseNet module is to extract effective feature infor-
mation from input data, and after each convolutional layer, its output is spliced with the
output of previous convolutional layers to form a dense connection.

The DenseNet module contains several dense blocks, where each dense block consists
of several convolutional layers and pooling layers. In each dense block, all the convolutional
layers accept the outputs of all previous convolutional layers and are used as inputs, thus
enhancing feature multiplexing and information transfer.

By multiplexing these features, the DenseNet network presents a new structure that
not only slows the occurrence of gradient vanishing but also has fewer parameters and is
coupled via cross-channel formulas like:

xl = Hl([x0,x1, . . . , xl−1]) (19)

where x0 and xl denote inputs to the network and the outputs of layer l, respectively, xl−1 is
the input to layer l − 1 of the network, and Hl(·) is the nonlinear transformation operation
that acts on layer l.
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2.7.2. Transformer Module

The transformer is a neural network model based on the self-attention mechanism for
processing sequence data. It mainly consists of two parts: the encoder and the decoder.
The Transformer module contains a multi-head self-attention layer, a feed-forward neural
network layer, and a residual connection. In signal processing tasks, the Transformer
module can be used to extract the important features of elements in the sequence, thus
improving the performance of the model. The specific module structure involved is
as follows.

(1) Position Encoding: with the introduction of positional encoding, the Transformer
model, in order to obtain better parallel computing power, is added to the embedding
vector (embedding) of an element as an overall vector by encoding the position of the
element in the sequence. Positional coding uses the following functions:

PE(pos,2i) = sin
(

pos/10, 0002i/d_model
)

(20)

PE(pos,2i+1) = cos
(

pos/10, 0002i/d_model
)

(21)

where P is the position matrix whose parameters can be updated with the model
training process, P ∈ Rn×d.

(2) Multi-head attention: the multi-head attention mechanism used inside the encoder
and decoder structures in the Transformer model is obtained by extending the dimen-
sions based on the Scaled Dot-product Attention mechanism.

Scaled Dot-product Attention is a kind of self-attention mechanism, i.e., its own
vectors, including Q(query), K(key), and V(value), participate in the computation, and its
specific computation is as follows:

SA(Q, K, V) = So f tmax(A)·V = So f tmax
(

Q·KT
√

d

)
·V (22)

where d is the number of dimensions; SA(·) is the self-attention computation operation; A
is the self-attention matrix, A ∈ Rn×n, and n is the sequence length.

The multi-head attention mechanism extends the scaling dot product attention algo-
rithm to multiple dimensions; that is, for the multi-head, after calculating the scaling dot
product attention used for multiple information, each result is spliced. The calculation
process is as follows:

SMHA
(
Q, K, V

)
= concat(H1, H2, . . . , Hh)·W (23)

Hi = SA(Qi, Ki, Vi), i = 1, 2, . . . , h (24)

where, Q, K, V is the Qi, Ki, Vi splicing composition, respectively; W is the linear transfor-
mation matrix, W ∈ Rd×d; and concat(·) is the splicing operation.

(3) Residual Connection: the Transformer uses residual connection to enhance the flow of
information to improve performance and optimize the training process in combination
with the layer normalization operation as follows:

Rc = LN [X + SMHA(x)] (25)

where Rc(·) is the residual join operation; LN(·) is the layer normalization operation;
X is the input sequence; and SMHA(·) is the use of multiple attention mechanisms.
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(4) Data enter a fully connected network made up of two linear transformation layers
and one nonlinear activation layer after being output from the multi-attention layer.
The activation function in this network uses a linear rectification function.

NetFFN = W2· f (W1·X) (26)

where NetFFN(·) is the feedforward network; W1, W2 is the parameter of each of the 2
linear layers; and f (·) is the nonlinear activation function.

(5) Max-pooling: the Transformer module’s encoder ends with the introduction of the
pooling layer downsampling function. The pooling procedure, in which the pooling
layer adopts the maximum pooling can lower the size of the feature vectors and the
danger of overfitting.

ya = max
(
rn×n

a u(n, n)
)

(27)

where ya is the output feature of region a; rn×n
a represents the α− th region of size

n× n; and u(n, n) represents the window function of size n× n.

2.7.3. Introduction to the DAT feature extraction model

The DAT deep learning model (DenseNet and Transformer, DAT) is a tandem com-
bination of DenseNet and Transformer modules, which can realize more complex feature
extraction and transformation; this structure is shown in Figure 4. The deep feature extrac-
tion model uses a tandem combination of DenseNet and Transformer for one-dimensional
signal feature extraction and has the following roles and advantages:

(1) Increase feature extraction’s effectiveness: the Transformer, on the one hand, uses
the self-attention mechanism, which is able to better capture key information in the
sequence and improve the accuracy and efficiency of feature extraction. DenseNet, on
the other hand, has the characteristic of dense connection, which can more fully utilize
low-level features for classification and improve the efficiency of feature extraction.

(2) Increase the model’s capacity for generalization: Transformer and DenseNet both
possess excellent feature extraction and generalization capabilities, enabling them
to deal with complicated changes and noise interference in the bearing signal and
increase the model’s capacity for generalization.

(3) Make the most of the bearing vibration signal’s time series properties. The bearing
signal is a type of time series signal and contains a few time series features. Both
DenseNet and Transformer can fully utilize time series features to extract more thor-
ough and precise feature representations, resulting in better classification of the signal.
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In conclusion, the feature extraction of bearing one-dimensional signals using DenseNet
and Transformer in tandem can significantly increase the model’s classification accuracy, gener-
alizability, and interpretability, making it ideal for challenging signal classification applications.

Figure 4 depicts the overall structure of the DAT-based fault detection model, which is
composed of a feature learner and a deep learning classifier and is implemented as follows:
(1) preprocessing and the sample expansion of sensor measurement data is performed (see
Section 2.3); (2) Fourier variation is used to transform the preprocessed one-dimensional
vectors into a spectrum of 1433 before being input into the DAT model; (3) in the learning
feature, two deep feature extraction processes are used. the convolutional layer, pooling
layer, dense block (DenseBlock), transition layer, etc., make up the main components of the
DenseNet dense connected network (deep feature extraction module 1), and the multi-head
self-attention layer, feed-forward neural network layer, residual connection, and other
model structures make up the main components of the Transformer module (deep feature
extraction module 2). (4) The extracted features are input into the feature classifier (the
fully connected network layer and residual connection) and other model structures; Table 4
displays the unique DAT diagnostic model parameters.

Table 4. DAT network parameters.

Model Name
1D-DAT

Structure Type Convolution Kernel

Input layer 1D FFT spectrum —
Convolution layer Conv 1× 7

Pooling layer Max-pooling 1× 3

Adaptive Features
Extraction Module 1

Dense block− 1 :
{

BN− Relu−Conv
BN− Relu−Conv

}
× 1

{
1× 1
1× 3

}
× 1

Transition layer-1:BN-Relu-Conv-Pooling
{

1× 1
1× 2

}
× 1

. . . . . . . . . . . .
Transition layer-2:BN-Relu-Conv-Pooling

{
1× 1
1× 2

}
× 1

Dense block− 3 :
{

BN− Relu−Conv
BN− Relu−Conv

}
× 1

{
1× 1
1× 3

}
× 1

Adaptive Features
Extraction Module 2

Position code×1 —
Encoder×1 —
Encoder×1

Max-pooling ×1

Fully connected layer FC —
Output layer SoftMax —

3. Model Setup and Training
3.1. Condition Monitoring Model Introduction

A data-level fusion method is proposed in this paper based on multi-source isomorphic
sensors to monitor the operational status of rolling bearings, as shown in Figure 5. This
procedure includes the decomposition of wavelet packets, denoising, the reconstruction of
the vibration signal, feature extraction in the time and frequency domains, and dimension
reduction using the PCA algorithm. The chaotic particle swarm algorithm is used with the
entropy weighting method to produce the initial weights and global optimal weights. Last
but not least, the Transformer module is shown in order to build the DAT feature extraction
model and enhance the precision and effectiveness of feature extraction. This technique
can successfully handle the requirement for tracking the operational status of machine tool
spindle bearings under challenging operating conditions.
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3.2. Data Pre-Processing

Experimental dataset S1: Open-source data on rolling bearing faults were published
by Jiangnan University’s experimental platform to evaluate and study the model for
identifying rolling bearing faults. The experimental rolling bearing fault diagnosis system
for wind turbines at Jiangnan University is depicted in Figure 6. Rolling bearing vibration
signals were collected at speeds of 600, 800, and 1000 rpm with a constant rotational speed
of 1 krpm, a sampling frequency of 50 kHz, and a sampling time of 10s [37]. Bearing failure
was man-made through the wire cutting technology, respectively, in the bearing inner ring,
outer ring, rolling body, and the processing of 0.3 * 0.05 mm (width * depth) tiny wounds,
as can be seen from the waveform diagram. The data of various states are difficult to
distinguish directly from this waveform diagram.
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Each set of experiments involved three different fault conditions (rolling body damage,
inner ring damage, and outer ring damage) as well as one type of normal condition. Table 5
for the speed of 600 r/min in the experimental dataset describes the type of fault conditions,
as shown in Figure 7, for the experiments according to fan speed.

Table 5. Experiment 1 (600 r/min) data set.

Experimental Conditions Training Set: Validation Set: Test Set Labels

Inner ring failure 280:80:40 IF
Outer ring failure 280:80:40 OF

Ball Failure 280:80:40 BF
Normal 280:80:40 Normal
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Numerous high-frequency and low-frequency components with varying sensitivity
levels can be found in the time domain of the vibration signal, which is used to diagnose
bearing defects. In order to analyze the time-domain signals more effectively, it is necessary
to convert them into frequency-domain signals. As depicted in Figure 8, four bearing
signals—BF, IF, OF, and normal—under a rotation speed of 600 r/min were taken for
spectrum analysis, and 1024 data points were taken as a sample for FFT transformation. It
can be found that the normal state of the bearing, the fault of the rolling element, the fault
of the inner ring, and the fault of the outer ring have obvious differences in the amplitude
of the whole stage of the spectrum, which can effectively identify the frequency component
of the signal and provide useful information for the application of signal feature extraction,
classification, and diagnosis.

Experimental dataset S2: To further investigate the monitoring function of this method
during the double-bearing operation, an unbalanced bearing load test rig was developed,
as shown in Figure 9. A non-balanced bearing load test platform was designed and
manufactured, and the monitoring function of this technology was investigated during the
bearing operation. The test platform, as illustrated in Figure 9, consists of a motor, precision
spindle, roll bearing, and acceleration sensor with a maximum speed of 10,000 r/min. A
flexible coupling connects the mechanical spindle to the electric spindle, and the motor
action is regulated by a servo control system. The hardware consists of a motorized spindle,
a rotational accuracy test device, a data collector, a computer, and other components.

The platform employed four NSK 7014C angular contact ball bearings, with the
positions of F1, F2, and F3 evenly spaced at 120◦. Preloads of different sizes were set to
determine the operating conditions of bearings, including light (C2), medium (C4), and
heavy (C6) loads. The bearings were mounted back-to-back, and the fixed speed of the test
platform was set at 4000 r/min with a sampling frequency of 8192 Hz. The parameters of
the bearings are shown in Table 6.
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The purpose of building the test platform was to distinguish the working condition
of bearings under an unbalanced operation so as to detect the bearing failures caused by
wrong assembly or processing in real-time. Due to the limited conditions of the laboratory,
the current test platform can only be used to verify the effectiveness and accuracy of the
condition monitoring method and cannot simulate the corresponding bearing fault state
under different loads.

3.2.1. Data Normalization

Normalized preprocessing is a commonly used data processing method. These data
are mapped to a specific interval by applying a linear transformation to the data and
commonly mapping the data to the interval [0, 1]. If sample data are supposed to be
X = {x1, x2, ..., xn}, the normalized transformation formula is as follows:

yi =
xi −min{xj}

max{xj} −min{xj}
(28)

where yi is the result of normalization, xi is the i− th sample data, max
{

xj
}

is the maximum
value of the sample data, and min

{
xj
}

is the minimum value of the sample data.

3.2.2. Overlapping Sampling

In the realm of data-driven deep learning, having enough big training samples is
essential to increase model accuracy and significantly lower overfitting. As illustrated in
Figure 10, we used overlapping sampling with a moving sliding window to increase the
number of training samples, which can better capture changes and patterns in time series
data. This method can avoid the problem of signal loss caused by equidistant sampling
and sampling, thus improving the training effect and generalization ability of the model.
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Table 6. Parameters of NSK 7014C angular contact ball bearings.

Inner Ring
Diameter/mm

Outer Ring
Diameter/mm Thickness/mm Dynamic

Load/KN Static Load/mm

70 100 20 47 43

In order to avoid the loss of detailed features, overlap sampling is used to extend the
original data samples. By adjusting the parameters such as offset, data length, expansion
multiplier, and the number of samples, the detection of the model performance under
different numbers of samples can be achieved. This can be achieved by flexibly adjusting
the sampling parameters so as to optimize the training and prediction ability of the model.
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3.3. DAT Model Hyperparameter Settings

The AdamP backpropagation algorithm proposed by ByeonghoHeo et al. [38] was
selected as the optimization method, which improved the performance of small-batch
training, reduced the risk of overfitting, and delayed the attenuation of effective step size,
thus training the model at a barrier-free speed, retaining many advantages of the Adam
algorithm, such as adaptive learning rate adjustment and momentum term.

The rolling bearing service condition monitoring model based on DAT is based on
features that diagnose working conditions, with data under different working conditions
mainly classified and recognized. The Cross-entropy loss function was chosen as the base
function, and some improvements were made.

The Cross-entropy loss function is formulated as follows:

loss = −∑θ
p(θ)log q(θ) (29)

where θ denotes the learning parameter; p(θ) and q(θ) are the correct probability and
prediction probability of the label.

The K-L scatter of p(θ) and q(θ) is as follows:

KLD = ∑θ
p(θ)log

p(θ)
q(θ)

(30)

When calculating Cross-entropy loss using KL scatter, it is often necessary to transform
the true labels into probability distributions. The traditional approach is to use one-hot
coding, where only one element is 1, and the rest are 0, indicating the category to which
the true label belongs. However, this approach may lead to the overconfidence or over-
sensitivity of the model in the presence of noise and uncertainty.

In order to reduce the impact of label noise and uncertainty in the model, this paper
uses smoothed target labeling. By smoothing the target labels, we can better adapt to
complex data distributions and noise situations and, thus, obtain a more accurate loss
function of Ce.

Figure 11 shows that the iteration effect of the experiment is significantly improved
when using Ce_loss compared to the iteration curve of the model under Cross-entropy
loss. The accuracy of the training set of this paper’s method reached 99% after 10 iterations,
while the accuracy of Cross-entropy loss reached 99% after 85 iterations. The experiment at
600 r/min under the S1 dataset was chosen for analysis. The experimental results demon-
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strate that the strategy suggested in this research can significantly enhance the model’s
training performance while shortening the training period. Through the experimental
analysis, the parameters of the model were set, as shown in Table 7.

Figure 11. Model iteration curves under 600 r/min experiment with different loss functions.

Table 7. Model parameters (experimental data set S1).

Parameter Category Parameter Setting

Optimizer AdamP
Loss function Ce_loss

Number of iterations 100
Initial learning rate 0.001

Smoothing 0.1
Batch Size 64

3.4. Model Training

Each group of tests was repeated five times to assess the accuracy and stability of
the proposed model for rolling bearing failure diagnosis with the average accuracy and
greatest accuracy of the experiments provided in Table 8. On the rolling bearing fault data
collected by Jiangnan University’s rolling bearing fault diagnostic platform, fault diagnosis
was performed using the deep learning framework PyTorch (see Table 5 for details).

Table 8. Fault diagnosis results of rolling bearing based on DAT model.

Data Sets Experimental
Setup

Number of
Iterations

Training
Time/s Average Acc/% Maximum

Acc/%

Jiangnan
University

600 r/min 100 57 99.375% 99.756%
800 r/min 100 62 99.583% 99.625%
1000 r/min 100 58 99.285% 99.423%

As shown in Figure 12, the DAT model’s greatest accuracy on the validation set at
600 r/min was 99.8%, and after five iterations, training accuracy was 90%. The model was
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more stable throughout the training process, and there was no abrupt change in accuracy,
which suggests that this model has a strong ability to generalize, is highly robust, is able to
capture data in real patterns, and is not easily disturbed by noise and outliers. This can be
seen by analyzing the iteration curves in the Figure below.
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Figure 13 shows the confusion matrix of the model under the rolling bearing fault
diagnosis platform of Jiangnan University, which was used to evaluate the performance of
the classification model and helped us gain a more comprehensive understanding of the
classification effect of the model in different categories.

Figure 13 shows that the DAT model achieves the highest accuracy of 99.5% in five
experiments on the experimental dataset of 600 r/min at Jiangnan University. By analyzing
the confusion matrix, it was found that 2% of the IF600 (Inner ring failure) were incorrectly
predicted as BF600 (Ball failure), 2% of the Normal600 (Normal) were incorrectly predicted
as IF600 (Inner ring failure), and the rest were correctly classified.

Under the same experimental conditions, the proposed DAT fault diagnosis model
was compared with Transformer, DenseNet-LSTM, CNN-LSTM, DenseNet, and other
models in the comparison experiments. For the experimental data of rolling bearing faults
in Jiangnan University, the average accuracy comparison results of the above different
models are shown in Figure 14.

On the basis of DenseNet, the DAT model introduces the Transformer module, in
which the Transformer employs the self-attention mechanism, which can better capture
key information in the sequence, improve the accuracy and efficiency of feature extraction,
and make the DAT model have a better fault diagnosis effect. Table 9 shows that the
average accuracy of the DAT model on the experimental data of Jiangnan University’s
rolling bearing defects is higher than that of the other four models. DenseNet-LSTM adds
the LATM layer to the DenseNet network, whereas the DAT model adds the Transformer
module to the DenseNet network where both models have higher diagnostic accuracy, but
the DAT model has a slightly higher diagnostic accuracy. In terms of learning features,
the DAT model is slightly inferior to the DenseNet-LSTM model, implying that the self-
attention mechanism is superior to LSTM, which is suited for temporal signal prediction.

In summary, it can be seen that the DAT fault diagnosis model has higher fault
diagnosis accuracy and better stability than Transformer, DenseNet-LSTM, CNN-LSTM,
DenseNet and other models.
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Table 9. Average accuracy of DAT model and its comparison model under 5 experiments.

Experiments DAT Transformer DenseNet-LSTM CNN-LSTM DenseNet

600 r/min 99.275% 97.725% 96.768% 75.833% 93.333%
800 r/min 99.583% 98.583% 97.525% 70.512% 85.233%

1000 r/min 99.158% 98.375% 97.245% 72.012% 95.076%

4. Fusion Data Testing

The experimental data set S2 was measured using the non-uniform load operation
fault simulation test platform. The data of the light load (C2), medium load (C4), and heavy
load (C6) under the positions of F1, F2, and F3 were collected, and the experimental data
sets were divided as shown in Table 10. Bearing vibration data can be classified into nine
types. The experiment was divided into three groups, each of which included 840 samples
in the training set, 240 samples in the test set, and 120 samples in the verification set.

Table 10. Experimental data set (experimental data set S2).

Experimental Setup Signal Type Training Set Validation Set Test Set

Experiment 1
(F1 position)

F1(C2) = 400 N 840 240 120
F1(C4) = 800 N 840 240 120

F1(C6) = 1200 N 840 240 120

Experiment 2
(F2 position)

F2(C2) = 400 N 840 240 120
F2(C4) = 800 N 840 240 120

F2(C6) = 1200 N 840 240 120

Experiment 3
(F3 position)

F3(C2) = 400 N 840 240 120
F3(C4) = 800 N 840 240 120

F3(C6) = 1200 N 840 240 120

In the time domain, by converting the signal to the frequency domain, we could
decompose this signal into components of different frequencies and analyze the amplitude
of each frequency component. In Figure 15, we selected the bearing signal under the C2
operating condition at the F2 position for spectral analysis. The 1024 data points were taken
as a sample, and FFT (Fast Fourier Transform) was transformed to obtain the corresponding
spectrogram. From the spectrograms, it can be observed that the spectrograms of all four
sets of vibration data had the maximum amplitude variation at 3044 Hz. This reflects
the major frequency components of the signal in the frequency domain. In isomorphic
data fusion, the low-frequency component often represents low-frequency noise or a slow
vibration, which is usually as small as possible. By analyzing the spectrogram, it can be
seen that the fused signal had a smaller low-frequency component amplitude at 3044 Hz,
indicating that the fusion effect of the isomorphic data fusion method proposed in this
paper is clearer.

The experiment’s input sample length was set to 1 × 1024, its Fourier transform
was run to choose a 1 × 433 spectrum as the model’s input, the batch size was 64, the
number of training iterations was 100, the learning rate was 0.05, and Adam was chosen as
the optimizer.

As can be seen from Figure 16, the accuracy curve of the fused signal is relatively
stable, reaching 94% after 10 iterations, and the accuracy of the model is stable at 99.34%
after 50 iterations. The local zoom-in graph shows that the iterative process of the fused
signal is more stable, indicating that the fused signal has more effective features.

According to Table 11, it can be seen that the accuracy of the fused data for the fault
identification on the DAT model is slightly higher than that of using a single-direction
vibration signal, and the accuracy of the fused data is more stable compared to the unisex
signal. In order to judge the classification performance of the training results intuitively,
a confusion matrix was used to present them visually, as shown in Figure 17, where the
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horizontal and vertical axes labels represent the three working conditions of light load (C2),
medium load (C4) and heavy load (C6).
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Table 11. Results of control experiments (50 iterations and average accuracy over 5 experiments).

Experimental
Setup

Fusion Data X-Direction
Average/Acc%

Y-Direction
Average/Acc%

Z-Direction
Average/Acc%Avg/Acc% Max/Acc%

F1 position 99.76% 100% 99.15% 98.56% 97.72%
F2 position 99.82% 100% 98.66% 97.66% 99.17%
F3 position 99.92% 100% 98.52% 99.23% 99.40%

For visualization, the high-dimensional features collected from the DAT model’s input
layer and final hidden layer were mapped into three-dimensional feature vectors. Figure 16
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depicts the visualization results of the features with the best accuracy in five experiments,
where the numerical point reflects the fault diagnosis efficiency of the algorithm utilized
in this study. Figure 18 shows that among X, Y, Z, and the fusion signal, the fusion signal
had the best fault classification impact, showing that the DAT model’s classification effect
was superior.
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Figure 18. Visualization of input and output layer features for the first set of experiments. (a) X
direction (Max-99.72%). (b) Y direction (Max-99.72%). (c) Z direction (Max-99.58%). (d) Fusion signal
(Max-100%).

Figures 17 and 18 show that in five tests from the first set of experimental datasets
of S2 obtained from the bearing non-uniform load test platform, the DAT model similarly
attained a minimum accuracy of more than 99%. In total, 1% of the samples from F1-C2
(low load) in X-direction tests were wrongly projected as F1-C4 (medium load), according
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to the confusion matrix and the output feature downscaling visualization plot, while
the remaining samples were correctly classified. Combining information from various
isomorphic acceleration sensors can boost redundancy and boost the accuracy of defect
finding. Data from other sensors are still available in the event of a sensor failure or
abnormality, maintaining the stability of the system and the accuracy of fault identification.
By examining the fused signals’ X, Y, and Z directions as well as the classification outcomes,
it was discovered that the fused signals’ highest degree of classification accuracy is 100%,
their original features are more distinct from one another, and there was no classification
abnormality when compared to the other three signal groups.

5. Conclusions

A data-level fusion method based on multi-source isomorphic sensors is proposed
in this paper to monitor the working condition of rolling bearings. The vibration data in
the X, Y, and Z directions of raw data were fused firstly using a chaotic particle swarm
optimization algorithm. Then, a DAT feature extraction model was built to extract the
deep features of the fused signals. Finally, the overall iterative performance of the model
was improved using the AdamP optimization algorithm and the improved Ce_loss loss
function, reaching the following conclusion.

• The data-level fusion method of multi-source homogeneous sensors is proposed by
fusing data from different sensors. Information of multiple dimensions can be ob-
tained, which makes the perception of the target object or the environment more
comprehensive and accurate and enhances time-domain continuity alongside the con-
sistency of data, which can be enhanced as well as the fault tolerance and robustness
of the system.

• A DAT deep feature extraction model can be constructed to monitor the working condi-
tion of spindle bearings, which can recognize the bearing faults and unbalanced loads.

• Through the AdamP optimization algorithm and the improved Ce_loss loss function,
the iterative performance of the proposed model can be drastically improved, and the
steady state can be reached faster.

• This study validates the fusion performance of isomorphic signals and the diagnos-
tic performance of the model. In the future, we plan to apply the DAT model to
other components of the spindle system and migrate it to other fields for validation.
This could expand the applicability of the model and increase its value in practical
engineering applications.
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