Study on the Lubricating Characteristics of Graphene Lubricants
Abstract
:1. Introduction
2. Lubricant Preparation
3. Friction and Wear Experiment
3.1. Experimental Method
3.2. Experimental Conditions
4. Results and Discussion
4.1. Tribological Characteristics
4.2. Wear Properties
4.2.1. Surface Topography
4.2.2. The 3D Topography
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Huang, Y.; He, Y.; Shi, Y. Nanolubricant additives: A review. Friction 2021, 9, 891–917. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.; Hao, Q.; Lei, W. Tribological Properties of the Functionalized Graphene/Montmorillonite Nanosheets as a Lubricant Additive. Tribol. Lett. 2021, 69, 117. [Google Scholar] [CrossRef]
- Cyriac, F.; Yi, T.X.; Poornachary, S.K.; Chow, P.S. Boundary lubrication performance of polymeric and organic friction modifiers in the presence of an anti-wear additive. Tribol. Int. 2022, 165, 107256. [Google Scholar] [CrossRef]
- Yin, Y.; Lei, H.; Song, J.; Zhao, G.; Ding, Q. Molecular Dynamics Simulation on the Tribological Properties of Polytetrafluoroethylene Reinforced with Modified Graphene. Tribology 2022, 42, 598–608. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, C.; Hao, L.; Xu, H.; Dong, J. Tribology and Rheology of Polypropylene Grease with MoS2 and ZDDP Additives at Low Temperatures. Lubricants 2023, 11, 464. [Google Scholar] [CrossRef]
- Ali, M.K.A.; Hou, X. Exploring the lubrication mechanism of CeO2 nanoparticles dispersed in engine oil by bis(2-ethylhexyl) phosphate as a novel anti-wear additive. Tribol. Int. 2022, 165, 107321. [Google Scholar] [CrossRef]
- Ares, P.; Novoselov, K.S. Recent advances in graphene and other 2D materials. Nano Mater. Sci. 2022, 4, 3–9. [Google Scholar] [CrossRef]
- Li, Z.; Gao, C.; Zhao, H. Porous biomass-derived carbon modified by Cu, N co-doping and Cu nanoparticles as high-efficient electrocatalyst for oxygen reduction reaction and zinc-air battery. J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid-State Chem. Phys. 2022, 897, 163175. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Yin, Y.G.; Zhang, G.T.; Ding, S.G.; Chen, Q. Tribological Properties of FeS/Cu Copper-Based Self Lubricating Bearing Materials Prepared by Mechanical Alloying. Tribol. Trans. 2020, 63, 197–204. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, J.; Pan, P.; Liu, C.; Zeng, J.; Ou, Y.; Qi, X.; Liang, T. Porous N-doped Mo2C@C nanoparticles for high-performance hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 4641–4652. [Google Scholar] [CrossRef]
- Huai, W.J.; Zhang, C.H.; Wen, S.Z. Graphite-based solid lubricant for high-temperature lubrication. Friction 2021, 9, 1660–1672. [Google Scholar] [CrossRef]
- Jamel, R.S.; Al-Murad, M.A.; Alkhalidi, E.F. The efficacy of reinforcement of glass fibers and ZrO2 nanoparticles on the mechanical properties of autopolymerizing provisional restorations (PMMA). Saudi Dent. J. 2023, 35, 707–713. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, G.; Zheng, Z.; Yu, J.; Hu, C. Tribological properties of polyimide composites reinforced with fibers rubbing against Al2O3. Friction 2020, 9, 301–314. [Google Scholar] [CrossRef]
- Wang, F.J. Spherical-shaped CuS modified carbon nitride nanosheet for efficient capture of elemental mercury from flue gas at low temperature. J. Hazard. Mater. 2021, 415, 125692. [Google Scholar] [CrossRef]
- Qian, Y.T. Facile synthesis of sub-10 nm ZnS/ZnO nanoflakes for high-performance flexible triboelectric nanogenerators. Nano Energy 2021, 88, 106256. [Google Scholar] [CrossRef]
- Soetaredjo, F.E.; Santoso, S.P.; Waworuntu, G.; Darsono, F.L. Cellulose Nanocrystal (CNC) Capsules from Oil Palm Empty Fruit Bunches (OPEFB). Biointerface Res. Appl. Chem. 2022, 12, 2013–2021. [Google Scholar] [CrossRef]
- Liu, J.P.; Zhang, H.R.; Yan, Q.L. Anti-sintering behavior and combustion process of aluminum nano particles coated with PTFE:A molecular dynamics study. Def. Technol. 2023, 24, 46–57. [Google Scholar] [CrossRef]
- Su, Y.; Li, Y.F.; Gong, S.G.; Song, Y.H.; Li, B.; Wu, X.L.; Zhang, J.P.; Liu, D.T.; Shao, C.L.; Sun, H.Z. Graphene wrapped TiO2@MoSe2 nano-microspheres with sandwich structure for high-performance sodium-ion hybrid capacitor. Appl. Surf. Sci. J. Devoted Prop. Interfaces Relat. Synth. Behav. Mater. 2023, 610, 155494. [Google Scholar] [CrossRef]
- Wang, G.; Liu, X.B.; Zhu, G.X.; Zhu, Y.; Liu, Y.F.; Zhang, L.; Wang, J.L. Tribological study of Ti3SiC2/Cu5Si/TiC reinforced Co-based coatings on SUS304 steel by laser cladding. Surf. Coat. Technol. 2022, 432, 128064. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M.; Mo, Y.; Bai, P.; Wei, Q.; Jin, L.; You, S.; Wang, M.; Li, L.; Chen, X.; et al. Synergistic lubricating effect of graphene/ionic liquid composite material used as an additive. Friction 2021, 9, 1568–1579. [Google Scholar] [CrossRef]
- Kaleli, E.H.; Demirtas, S. Experimental investigation of the effect of tribological performance of reduced graphene oxide additive added into engine oil on gasoline engine wear. Lubr. Sci. 2023, 35, 118–143. [Google Scholar] [CrossRef]
- Sun, S.; Ru, G.; Qi, W.; Liu, W. Molecular dynamics study of the robust superlubricity in penta-graphene van der Waals layered structures. Tribol. Int. 2023, 177, 107988. [Google Scholar] [CrossRef]
- Zhang, Y.; Tai, X.; Zhou, J.; Zhai, T.; Xu, L.; Diao, C.; Xie, X.; Hou, C.; Sun, X.; Zhang, X.; et al. Enhanced high-temperature thermal conductivity of the reduced graphene oxide@SiO2 composites synthesised by liquid phase deposition. Ceram. Int. 2022, 48, 8481–8488. [Google Scholar] [CrossRef]
- Wang, H.; Bai, Q.; Chen, S.; Dou, Y.; Guo, W. Nanoscale mechanism of suppression of friction and wear of the diamond substrate by graphene. Mater. Today Commun. 2022, 33, 104894. [Google Scholar] [CrossRef]
- Chen, G.Y.; Zhao, J.; He, Y.Y.; Luo, J.B. Synthesis and Structure Control of Graphene Lubricant Additives. Tribology 2021, 41, 758–772. [Google Scholar] [CrossRef]
- Saufi, M.A.; Mamat, H. Comparison of dispersion techniques of graphene nanoparticles in polyester oil. Mater. Today Proc. 2022, 66, 2747–2751. [Google Scholar] [CrossRef]
- Sarath, P.S.; Reghunath, R.; Thomas, S.; Haponiuk, J.T.; George, S.C. An investigation on the tribological and mechanical properties of silicone rubber/graphite composites. J. Compos. Mater. 2021, 55, 002199832110316. [Google Scholar] [CrossRef]
- Ci, X.; Zhao, W.; Luo, J.; Wu, Y.; Ge, T.; Xue, Q.; Gao, X.; Fang, Z. How the fluorographene replaced graphene as nanoadditive for improving tribological performances of GTL-8 based lubricant oil. Tribology 2021, 9, 488–501. [Google Scholar] [CrossRef]
- Lau, G.A.; Neves, G.O.; Salvaro, D.B.; Binder, C.; Klein, A.N.; de Mello, J.D. Stability and Tribological Performance of Nanostructured 2D Turbostratic Graphite and Functionalised Graphene as Low-Viscosity Oil Additives. Lubricants 2023, 11, 155. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Zhang, W.; Zhao, Z.; Fan, X. Functionalized Graphene from Electrochemical Exfoliation of Graphite toward Improving Lubrication Function of Base Oil. Lubricants 2023, 11, 166. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Zhang, Y.; Liu, S.; Bai, Y. Effect of different preparation processes on tribological properties of graphene. Nanomater. Nanotechnol. 2020, 10, 184798042094665. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, G.; Zhang, Y.; Gao, C.; Ma, J.; Zhang, S.; Zhang, P. Facile method preparation of oil-soluble tungsten disulfide nanosheets and their tribological properties over a wide temperature range. Tribol. Int. 2019, 135, 287–295. [Google Scholar] [CrossRef]
- Han, Z.; Gan, C.; Li, X.; Feng, P.; Ma, X.; Fan, X.; Zhu, M. Electrochemical preparation of modified-graphene additive towards lubrication requirement. Tribol. Int. 2021, 161, 107057. [Google Scholar] [CrossRef]
Factors | Values |
---|---|
Load/N | 392 |
Rotating speed/rpm | 1200 |
Temperature/°C | 25, 100, 150, 200 |
Concentration/wt% | 0, 0.030, 0.035, 0.040, 0.050 |
Temperature (°C) | Concentrations (wt%) | Test 1 | Test 2 | Test 3 | ||
---|---|---|---|---|---|---|
25 | 0 | 0.08007 | 0.09248 | 0.08931 | 0.08729 | 0.00645 |
0.03 | 0.06319 | 0.07008 | 0.06858 | 0.06728 | 0.00362 | |
0.035 | 0.05263 | 0.05061 | 0.05187 | 0.05170 | 0.00102 | |
0.04 | 0.05561 | 0.05431 | 0.05477 | 0.05490 | 0.00066 | |
0.05 | 0.05910 | 0.05613 | 0.05749 | 0.05757 | 0.00149 | |
100 | 0 | 0.09601 | 0.09411 | 0.10243 | 0.09752 | 0.00436 |
0.03 | 0.07248 | 0.07818 | 0.0749 | 0.07519 | 0.00286 | |
0.035 | 0.05495 | 0.05530 | 0.05565 | 0.05530 | 0.00035 | |
0.04 | 0.05742 | 0.06222 | 0.06424 | 0.06129 | 0.00350 | |
0.05 | 0.06405 | 0.06537 | 0.06595 | 0.06512 | 0.00097 | |
150 | 0 | 0.09721 | 0.10414 | 0.10555 | 0.10230 | 0.00446 |
0.03 | 0.07827 | 0.08466 | 0.08112 | 0.08135 | 0.00320 | |
0.035 | 0.06726 | 0.06852 | 0.06918 | 0.06832 | 0.00098 | |
0.04 | 0.06810 | 0.07198 | 0.07089 | 0.07032 | 0.00200 | |
0.05 | 0.06909 | 0.06781 | 0.06781 | 0.06824 | 0.00074 | |
200 | 0 | 0.10927 | 0.11823 | 0.10941 | 0.11230 | 0.00513 |
0.03 | 0.08701 | 0.08598 | 0.08841 | 0.08713 | 0.00122 | |
0.035 | 0.07164 | 0.07364 | 0.07213 | 0.07247 | 0.00104 | |
0.04 | 0.07537 | 0.07453 | 0.07249 | 0.07413 | 0.00148 | |
0.05 | 0.07653 | 0.07766 | 0.07615 | 0.07678 | 0.00079 |
Concentration/wt% | Temperature (°C) | |||
---|---|---|---|---|
25 | 100 | 150 | 200 | |
0 | 835.22 | 1024.92 | 1050.06 | 1483.91 |
0.030 | 705.65 | 947.54 | 1109.02 | 1159.07 |
0.035 | 414.50 | 988.30 | 1094.76 | 1338.59 |
0.040 | 467.75 | 977.10 | 1131.56 | 1369.45 |
0.050 | 595.66 | 870.73 | 1114.49 | 1282.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Ma, B.; Xiong, C.; Liu, Y.; Zhao, Q. Study on the Lubricating Characteristics of Graphene Lubricants. Lubricants 2023, 11, 506. https://doi.org/10.3390/lubricants11120506
Dong Y, Ma B, Xiong C, Liu Y, Zhao Q. Study on the Lubricating Characteristics of Graphene Lubricants. Lubricants. 2023; 11(12):506. https://doi.org/10.3390/lubricants11120506
Chicago/Turabian StyleDong, Yi, Biao Ma, Cenbo Xiong, Yong Liu, and Qin Zhao. 2023. "Study on the Lubricating Characteristics of Graphene Lubricants" Lubricants 11, no. 12: 506. https://doi.org/10.3390/lubricants11120506
APA StyleDong, Y., Ma, B., Xiong, C., Liu, Y., & Zhao, Q. (2023). Study on the Lubricating Characteristics of Graphene Lubricants. Lubricants, 11(12), 506. https://doi.org/10.3390/lubricants11120506