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Abstract: Water-lubricated bearings play a critical role in underwater propulsion systems but are often
prone to failure due to mechanical wear and vibration, especially under high loads and prolonged
friction. In response to this issue, our study introduces a novel approach: a dual network co-
crosslinking strategy utilizing hydrogenated nitrile butadiene rubber (HNBR). This strategy connects
the rubber network with the epoxy network through epoxidized Eucommia ulmoides gum. A
comprehensive analysis was conducted to assess the resulting composite’s damping, tribological,
and mechanical properties. The results show that the material has excellent mechanical, damping,
and tribological properties relative to pure HNBR, with a 65.9% increase in the damping temperature
domain, a 78.5% increase in tensile strength, a low coefficient of friction of 0.022, and a high resistance
to abrasion of 3.87 × 10−6 mm3/Nm. The successful synthesis of HNBR-based composites via the
dual network co-crosslinking strategy underscores their potential as a practical solution for improving
the reliability and prolonging the service life of water-lubricated bearings.

Keywords: co-crosslinking; friction behaviors; water lubrication; rubber

1. Introduction

As an important component of underwater propulsion systems, water-lubricated
bearings have attracted much attention in the mechanical field [1–3]. Compared with the
traditional oil lubrication method, water-lubricated bearings have many advantages, such
as safety, environmental protection, economy, and greenness, thus becoming an important
direction of underwater bearing research [4–7]. However, compared with oil-lubricated
bearings, water-lubricated bearings also have some disadvantages. For example, the poor
load carrying capacity and low adsorption capacity of water lead to poor boundary lubrica-
tion performance [8–10]. Therefore, it is necessary to further improve the performance of
water-lubricated bearings through technical improvement and design optimization, so as
to enhance the reliability and service life of water-lubricated bearings and promote their
application in non-underwater propulsion systems.

Rubber elastomers, as polymeric water lubrication materials, are effective in reducing
bearing friction and wear under water lubrication conditions and have a low coefficient of
friction [11–13]. In addition, the rubber material can absorb vibration and shock and reduce
the generation of noise and vibration [14]. Among them, hydrogenated nitrile butadiene
rubber (HNBR) is a product obtained by catalytic hydrogenation technology of nitrile
rubber, which has higher oxidative stability, abrasion resistance, and smaller permanent
compression deformation compared with traditional nitrile rubber [15,16].
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When HNBR is used alone as a water-lubricated bearing, it can experience elevated
temperatures under higher loads and conditions with reduced water availability or lim-
ited water film formation, which may lead to scorching and frictional failure [17]. For
this reason, researchers have conducted numerous studies on HNBR water lubrication
materials. Common ways to improve the friction performance include the addition of solid
lubricants [18,19], microcapsules [20,21], blending [22,23], and surface modification [24,25].
Compared with pure HNBR, polymer blending is also a way to improve the performance of
rubber materials. Chudzik et al. added modified epoxy diene resin to NBR and the addition
of 10% unmodified resin (ED-20) resulted in the most significant reduction in friction of
vulcanized NBR, with a reduction of 25% in friction [26]. Sang et al. grafted a silane
coupling agent functional layer on the surface of plasma-functionalized polyamide (PA 6),
the joining of PA 6 with hydrogenated nitrile butadiene rubber (HNBR) was achieved,
and the heat resistance of the material was improved [27]. Zhou et al. investigated the
effect of blending different fillers on the friction and wear properties, mechanical proper-
ties, and vulcanization properties of HNBR, and the UHMWPE/HNBR composites had
the best friction properties with low-speed water lubrication [3]. People are committed
to improving the performance of HNBR. Therefore, we believe that the introduction of
high-performance polymers with good physicochemical properties can prepare composites
with excellent performance.

Eucommia ulmoides gum (EUG) is a renewable natural rubber (NR) with excellent
dynamic mechanical properties in a wide range of high-performance rubber materials,
including tires, vibration-damping devices, and acoustic materials [28,29]. Epoxidized
Eucommia ulmoides gum (EEUG) prepared by simple epoxy functionalization is effective
in improving compatibility with polar ingredients. Wang et al. succeeded in improving
the adhesive properties at the styrene butadiene rubber (SBR)/silicon dioxide (SiO2) in-
terface with mechanical properties exceeding those of other compatibilizers using epoxy
dutasteride rubber as a compatibilizer [30]. Chen et al. developed an EEUG/epoxy (EP)
composite coating, where the introduction of EEUG increased the crosslinking density, giv-
ing the coating excellent tensile strength and corrosion resistance [31]. Wang et al. prepared
a tough biobased composite with a shape memory effect using a dynamic vulcanization
technique [32]. Therefore, EEUGs enriched with epoxy groups and double bonds can
effectively improve the compatibility of rubbers and polymers such as epoxy resins.

In this study, we report the development of a novel dual network co-crosslinked system
that combines two networks, rubber and epoxy, by introducing epoxidized Eucommia
ulmoides gum as an intermediate. We investigated the frictional properties of the material
using a ring block friction and wear tester and revealed the mechanism of water lubrication
in the dual network co-crosslinked system. Our results demonstrate that the introduced
epoxy Eucommia ulmoides gum effectively links the separate crosslinking systems of
rubber and epoxy resin and significantly improves the damping and tribological properties
of the material. These findings suggest that our approach has potential applications in
tribology and other engineering fields.

2. Materials and Methods
2.1. Materials

Hydrogenated nitrile butadiene rubber, LANXESS 4369, Germany, has an acrylonitrile
content of 43% and a Menni viscosity (ML 1 + 4) of 97 at 100 ◦C. It was purchased from
Meifu New Material Co., Ltd., (Suzhou, China). Eucommia ulmoides gum (EUG) was
obtained from Beijing Huayan Shijia Quality Control Technology Co. (Beijing, China).
Haine epoxy resin was obtained from Wuhan Lanabai Pharmaceutical & Chemical Co.
(Wuhan, China) 4,4’-Methylene-bis(2-chloroaniline) (MOCA) was obtained from Anhui Xi-
anglong Chemical Co. (Anqing, China) Stearic acid, sulfur, zinc oxide, carbon black (N220),
tetramethylthiuram disulfide (TMTD), and 2-thiobenzothiazole (MBT) are all industrial
grade. All chemicals, unless otherwise stated, were used without further purification.
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2.2. Preparation
2.2.1. Preparation of Epoxidized Eucommia Ulmoides Gum

In the reaction vessel, 30 g of EUG was added to 600 mL of xylene with high-speed
stirring at 40 ◦C to completely dissolve the EUG. A mixture of H2O2 (13.6 g) and formic
acid (5.6 g) was added dropwise to the reaction vessel over a period of 2 h. The reaction
was continued for 3 h. At the end of the reaction, the product was precipitated by addition
of excess ethanol, then filtered, washed, and dried in a vacuum oven at 50 ◦C for 36 h to
give EEUG.

2.2.2. Preparation of HNBR/EEUG Composites

The preparation process of the material is shown in Figure 1. HNBR and rubber
additives such as zinc oxide, tetramethylthiuram disulfide (TMTD) 2-thiobenzothiazole
(MBT), etc. were added to the mixer and mixed well to obtain the rubber master batch.
The HNBR rubber master batch was chopped and added to a three-necked flask, and
tetrahydrofuran (THF) was added at 1:10, accompanied by stirring for 12 h to dissolve it
completely. EEUG was dissolved in a small amount of THF and subsequently added to the
HNBR gum solution along with sulfur and MOCA with stirring for 1 h. After sufficient
stirring, the solvent was placed on a far infrared graphite heating plate at 55 ◦C. Table 1
lists information on the components of the material. The obtained film was alternately
triangularly wrapped and rolled 6 times on an open mill. The film was vulcanized in a
plate vulcanizer at 150 ◦C and 10 MPa for 30 min. Finally, the samples were cured at 80 ◦C
for 3 h; 120 ◦C for 3 h; 150 ◦C for 5 h under gradient temperature increase. The mass ratios
of the prepared HNBR/EEUG composites, HNBR to EEUG, were 100:3, 100:5, 100:7, 100:9,
and 100:11.
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2.2.3. Preparation of Dual Network Co-Crosslinked Composites

The dual network co-crosslinked composites were prepared in a similar way to the
former preparation method, in which HER and HNBR were dissolved together in THF, and
based on the results of the later experiments, the composite of HNBR/EEUG 100:7 was
selected as the matrix, and the ratios of HNBR/HER/EEUG were 100:7:3, 100:7:5, 100:7:7,
and 100:7:9.

2.3. Tribological Tests

Friction and wear tests were carried out under water lubrication conditions using the
MRH-3 ring wear tester produced by Era Test Metals Inc. and schematically shown in
Figure 2. The friction partner was a tin-bronze ring (ZCuSn10Zn2) with the composition
shown in Table 2. The surface of the specimen ring was ultrasonically cleaned in ethanol by
grinding the specimen ring surface with 800 mesh metallographic sandpaper until smooth.
At room temperature, the experimental speed was set at 140 revolutions per minute (rpm),
the test force was 132 N, and the test drops were added with water on the surface of the
friction subsurface. The acceleration rate of all the test drops was 9 mL/min, and the water
was refilled at the end of each test. The stable friction value during the last 30 min of the
experiment was taken as the average friction coefficient. The surface of the block material
was wiped with anhydrous ethanol before and after friction and dried at 60 ◦C for 2 h. The
specific wear rate (Ws, mm3/Nm) was calculated by the following relation:

WS = VS/F ∗ 2πR ∗ n ∗ nt ∗ t (mm3/Nm) (1)

where Vs (mm3) represents the wear volume of each friction rubber block and is given in
the following equation. R denotes the outer diameter of the tin bronze ring, and F, n, and t
represent the normal load (N), rotational speed (rpm), and test time (min), respectively.

VS =
D2

8
t
[

2 sin−1 b
D

− sin
(

2 sin−1 b
D

)] (
mm3

)
(2)

where D (mm) is the outer diameter of the tin bronze ring and b (mm) and t (mm) are the
average width of the abrasion mark and the width of the rubber block, respectively. To
ensure the reliability of the experimental data, the average of three measurements is taken
as the experimental data.
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Table 2. Chemical composition of ZCuSn10Zn2.

Ingredient Cu Sn Zn Pb Ni Fe Mn Sb S

Concentration (phr) 83.65 10 2 1.5 2 0.25 0.2 0.3 0.1

2.4. Characterizations
1H NMR spectra were recorded at 25 ◦C on a nuclear magnetic resonance spectrometer

(Bruker AVIII 400 MHz, USA). EUG and EEUG were dissolved in CDCl3 and transferred to
NMR tubes for subsequent determinations. Samples were analyzed using Fourier transform
infrared spectroscopy (FT-IR, Bruker S V70). The mechanical properties of the materials
were characterised by an AD-X (5000 N) universal testing machine (Shimadzu, Japan)
and at least three samples were tested at a tensile speed of 500 mm/minute to obtain the
average value. In order to clearly observe the micro-morphology of the material and to
analyse its phase behaviour, we characterised the surface of the material using a Multimode
8 atomic force microscope (AFM) (Bruker, USA). The friction surface morphology of the
material was observed by SEM, and the friction surface was sprayed with gold to increase
the electrical conductivity of the material surface before testing. The contact angle (CA) of
water on the surface of the material was measured on a DECCA-100 optical contact angle
meter (DECCA Precision Instruments Co., Ltd., Shenzhen, China) using the sessile drop
method. To obtain a more accurate value, the CA was measured randomly at three different
positions on the friction surface of the sample, and then the arithmetic mean was obtained.
The damping properties of the materials were characterized by DMA with the following
parameters: the mode was tensile mode, the fixed frequency was 10 Hz, the temperature
range was from −60 ◦C to 60 ◦C, and the temperature increase rate was 5 ◦C/min.

3. Results and Discussions
3.1. EEUG Characterization

Eucommia ulmoides gum, which is mainly composed of trans-isoprene, is poorly
compatible with polar hydrogenated nitrile rubber because of its high degree of crystallinity
and non-polar nature, and epoxy functionalization has become a simple and effective way
to improve its compatibility. The successful epoxidation of dulcimer rubber is proved by the
FT-IR spectra shown in Figure 3a, which shows that the peak of C=C telescopic vibration at
1665 cm−1 decreases after epoxide functionalization [33], the symmetric and asymmetric
vibrational absorption peaks of C-O-C are enhanced at 1263 cm−1 and 870 cm−1, 1665 cm−1

is C=C telescopic vibration, which decreases the peak after epoxidation, and the C-O-C
symmetric and asymmetric telescopic vibrational peaks are observed at 1264 cm−1 and
870 cm−1 [34]. In Figure 3b, the signals at 1.61, 1.98–2.09, and 5.13 ppm are attributed to
CH3, CH2, and alkene protons, respectively, in the trans-1,4 structure. The peak at 1.29 ppm
is attributed to the methyl peak of the epoxide group. The peak at 2.71 ppm is due to the
proton resonance of C-O-C, which suggests that some of the double bonds on the EUG
chain were successfully epoxidized [35]. Epoxidized Eucommia ulmoides gum has both
C=C and epoxy bonds, which can be crosslinked by both MOCA and S at the same time,
providing conditions for HNBR to “connect” with HER.

3.2. Mechanical Properties of Composite Materials

Mechanical properties have an important impact on the application of materials,
and the introduction of EEUG and HER into HNBR will inevitably cause changes in its
mechanical properties. For this purpose, tensile measurements were performed, and the
results obtained are shown in Figure 4. The tensile strength and elongation at break of the
composites increased from 278.52% and 20.41 MPa to 598.4% and 29.4 MPa, respectively,
with the addition of EEUG. For rubber composites with different additions of EEUG, the
elongation at break and tensile strength increased with the increase in EEUG content. This
indicates that the addition of EEUG improves the mechanical properties of pure HNBR.
This is due to the good compatibility between EEUG and HNBR, and the incorporation of
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EEUG as a physical crosslinking point increases the entanglement between molecular chain
segments. With the addition of HER, a dual network co-crosslinking system was formed
under the dual crosslinking of sulfur and MOCA. The maximum tensile strength of the
material is 36.17 MPa, which is 78.5% higher than that of pure HNBR. This is attributed to
the incorporation of HER to form a second network, and in the double crosslinking system,
the chain segments of the polymers are chemically crosslinked and physically entangled,
resulting in the formation of a denser structure. The hardness of the material increases at
the macroscopic level.
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3.3. Damping Analysis of Composites

Bearings under water lubrication conditions experience significant vibration, which is
not conducive to the actual service life of the material. Therefore, studying the damping
properties of composite materials for bearings in vibration damping is of great significance.
The damping properties of polymers are closely related to the internal friction generated by
the relative slip of the polymer molecular chains [36]. Figure 5 shows the variation of energy
storage modulus (E’) and loss factor (Tanδ) with temperature for different formulations
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of HNBR at 10 Hz, and Table 3 shows the material effect damping temperature domain.
The polymer effect damping temperature range is defined as the temperature range where
Tanδ exceeds 0.3. With the addition of soft EEUG, the energy storage modulus of the
material decreases and is lower than that of the HNBR, but the effective damping range
becomes wider. Having the largest energy storage modulus when HNBR/EEUG is 100:7,
there is only a single peak in Tanδ for all the samples, which indicates that epoxidation
gives good compatibility between dulcimer rubber and HNBR. With the addition of HER,
the energy storage modulus gradually increases, while the loss factor is shifted to the
high-temperature direction, and the maximum damping temperature domain is increased
by 65.9% compared with that of pure HNBR. This phenomenon may be due to two reasons:
one is that the EEUG acts as a “bridge” between HNBR and HER, and the two, through
chemical crosslinking to connect the polymer after crosslinking, further reduce the polymer
molecular chain of the internal rotation and lead to a further increase in the molecular
chain of the internal friction, ultimately accelerating the internal energy dissipation of the
polymer, which improves the damping performance of the material; second, it is caused
by the greater rigidity brought by the HER five-membered nitrogen heterocycles, so the
increase in the HER content leads to the enhancement of the interaction force between the
two, which restricts the movement of the molecular chains (chain segments) in the free
volume and leads to the increase in Tg. The high-HER component leads to the electrostatic
repulsive force between the polar groups exceeding the attractive force, resulting in an
increase in the intermolecular distance between the molecular chains and a decrease in the
glass transition temperature.
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3.4. Tribological Properties of Composites
3.4.1. Tribological Properties of HNBR/EEUG

The tribological properties of composites have a decisive influence on their service
conditions. By investigating the frictional properties of HNBR and EUG at different
ratios, the frictional wear curves of HNBR/EEUG composites at different ratios under
water lubrication conditions are shown in Figure 6. From Figure 6a, it can be seen that
the friction curves showed very different trends after the addition of EEUG. The HNBR
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showed an increasing and then decreasing trend at the beginning of the friction, while
the friction coefficients all showed a rapid decrease after the addition of EEUG, and then
they all leveled off. In the early stages of friction, pure HNBR experiences a boundary
lubrication state due to the growth of the transfer film and an increase in the friction vice
contact area. This leads to an initial rise followed by a subsequent decrease in the friction
coefficient. HNBR/EEUG composites show a different behavior during the initial stages
of sliding, where the formation of a water film leads to a rapid decrease in the surface
friction coefficient from boundary lubrication to mixed lubrication [37]. With water film
stabilization, the friction coefficient of the decline gradually slows down and eventually
stabilizes. With the increase in EEUG content, the friction coefficient appeared to decrease
and then increase. At 7%, the material’s coefficient of friction reached a minimum of 0.047,
and it is exciting that the friction coefficient with the addition of EEUG is less than that of
the pure HNBR. It can be concluded that the addition of EEUG is of great significance in
improving the tribological properties of HNBR. The reduction in the friction coefficient
is mainly attributed to the plasticizing and softening effect of EEUG on HNBR, which
makes the contact area between the friction pair increase, and the larger friction surface
makes the water film have a larger carrying capacity [38]. As shown in Figure 6b, the
wear rate increases gradually with the addition of EEUG. The reduction in hardness makes
the material more likely to adhere to the pair of surfaces under shear, which reduces the
load-bearing capacity of the water film rupture, increases the coefficient of friction, and
makes it more susceptible to wear [39].

Table 3. Damping properties of different composites.

HNBR/EEUG Tanδmax
∆T

(Tanδ > 0.3)
HNBR/EEUG

/HER Tanδmax
∆T

(Tanδ > 0.3)

100:0 0.65 16.42 100:7 0.55 26.82
100:3 0.51 22.07 100:7:3 0.52 28.45
100:5 0.53 24.95 100:7:5 0.54 30.80
100:7 0.55 26.82 100:7:7 0.52 29.85
100:9 0.58 23.87 100:7:9 0.48 27.24

100:11 0.60 24.08 - - -
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To study the microscopic wear of the friction material, a scanning electron microscope
was used to observe the friction surface. As shown in Figure 7a, the pure HNBR friction sur-
face has stripping and microcracks along the friction direction, which is mainly dominated
by adhesive wear. As shown in Figure 7b–f, after the addition of EEUG, the friction surface
shows plow furrows, which are mainly dominated by abrasive wear, which is caused by
the microcutting of the polymer by the hard tin bronze surface. With the addition of EEUG,
the modulus of the material gradually decreases, which reduces the abrasion resistance of
HNBR and aggravates the abrasion of the material under strong shear force.
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The results show that the incorporation of EEUG effectively improves the friction prop-
erties under water lubrication conditions, and the coefficient of friction of the composites
decreases by nearly two thirds relative to that of pure HNBR at an EEUG content of 7%, but
the incorporation of EEUG reduces the wear resistance of pure HNBR. Therefore, we pro-
pose a dual network co-crosslinking system based on the addition of HNBR/EEUG 100:7
with the addition of polar HER and expect these dual network co-crosslinked composites
to have excellent tribological properties.

3.4.2. Frictional Properties of Dual Network Co-Crosslinked Composites

The curves of the friction coefficients of different dual network co-crosslinked systems
as a function of test time and the effect of HER content on the average friction coefficients
and wear rates are shown in Figure 8. Figure 8a shows images of the friction coefficient
with time for dual network co-crosslinked systems with different HER contents. In the early
stage of friction, with the addition of HER content, the friction time is gradually shortened,
and the fluctuation of the friction coefficient decreases due to the better damping property
of the material. The friction coefficient decreases rapidly and stabilizes, which is attributed
to the uniform multiphase structure of the matrix material, and the friction coefficient
decreases to 0.022. With the addition of HER to form a double network co-crosslinking
system, the hardness and modulus of the material gradually increased, greatly improving
the wear resistance of the material. The coefficient of friction is reduced, and at the same
time, there is a better improvement in the wear resistance, and the wear rate is reduced
to 3.87 × 10−6 mm3/Nm. There is a significant reduction in the coefficient of friction and
wear rate of the dual network co-crosslinked composites in Figure 8 relative to Figure 6.
The enhanced friction performance is mainly attributed to the following two aspects. First,
the synergistic effect of HER incorporation into the gradually formed dual network enables
the water lubrication process from boundary lubrication to mixing lubrication to progress
quickly, resulting in smaller fluctuations in the material friction coefficient. Second, the
gradual formation of the second network leads to a gradual increase in the modulus and
hardness of the composite material, smaller plastic deformation makes the material more
resistant to shear, and the boundary lubrication performance of the material gradually
increases, making the material more wear resistant.

Figure 9 shows SEM images of the friction surfaces of the dual network co-crosslinked
composites at different mass ratios. As shown in Figure 9b–d, a small number of grooves
gradually disappeared after the formation of the dual network co-crosslinking system, and
the friction surface became flatter, mainly dominated by slight plastic deformation. The flat
friction surface makes the water film stronger and more complete, which is more conducive
to the separation of the water film from the friction subsurface, while the material friction
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surface produces only a small amount of wear debris [40]. As Figure 9c shows, the friction
surface is flat with only a small amount of abrasive debris, which is mainly dominated by
slight abrasive wear [41]. All the above results indicate that the dual network co-crosslinked
composites possess a low coefficient of friction and wear rate.
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3.5. Microscopic Morphology Analysis

The phase morphology of the friction surface was examined using AFM in tap mode.
The surface roughness and surface properties of the composite material are critical for the
friction properties of the material. The AFM image is 256 × 256 pixels with a scanning
range of 5 µm × 5 µm. The AFM image of the material is shown in Figure 10. From
the comparison of the AFM morphology of the friction surface after friction with the
phase image, Figure 10(a1–c1) show that in the material surface images, the material rms
roughness Rq is 9.85 nm, 8.01 nm, and 7.92 nm in order, and the roughness decreases
in order, which corresponds to the friction coefficient of the material [42]. The smoother
surface may be an important factor in the formation of a stable water film during the
friction process, avoiding large protrusions that can pierce the water film and weaken the
lubrication effect. The low roughness reduces the mutual resistance between the friction
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partners and thus improves the boundary lubrication, resulting in a material with a lower
coefficient of friction and wear rate [43]. The corresponding phase diagrams show that the
latter has changed considerably from pure HNBR, as shown in Figure 10(a2–c2), where
agglomeration of carbon black particles is unavoidable in pure HNBR, and the addition
of EEUG improves the compatibility of carbon black. No obvious phase separation was
observed in the phase diagrams of the latter two, which proves that the components of the
prepared materials have good compatibility.
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3.6. Water Contact Angle

The water contact angle was tested on the friction surface of the samples. As shown in
Figure 11, the water contact angle decreases sequentially, and the water contact angle of
the dual network co-crosslinked system decreases by 22.8◦ with respect to the pure HNBR.
The hydrophilicity of the material improves due to the introduction of both EEUG and
HER with hydrophilic groups [44]. The hydrophilic surface facilitates the formation of a
water film during friction, which can better separate the friction partners, thus reducing
the coefficient of friction and wear rate.
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3.7. Long-Term Wear Test

To understand the wear resistance of rubber matrix composites co-crosslinked with
dual networks, long-term friction and wear experiments were carried out, and the experi-
mental conditions were set at a 132 N load and 140 rpm, and the experimental time was
12 h. As shown in Figure 12a, the double network co-crosslinked rubber matrix composites
have smoother surfaces and lower friction coefficients under prolonged friction, and the
SEM friction surface images are shown in Figure 12b–d. HNBR-7-5 has the smoothest and
flattest friction surface, which is direct proof of the material’s good abrasion resistance.
Overall, HNBR-7-5 still has good tribological properties after the long-term wear test.
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Figure 12. Comparison of friction curves for different samples over 12 h (a) and the after-wear surface
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4. Conclusions

In this paper, a dual network co-crosslinked rubber matrix composite is developed.
By using epoxidized Eucommia ulmoides gum as a “bridge” between HNBR and HER,
the two are chemically crosslinked. Then, the mechanical properties, damping properties,
friction properties under water lubrication conditions, and microscopic morphology of the
composites were systematically investigated. Atomic force microscopy results show that
the dual network co-crosslinked composites have a uniform phase morphology, friction
properties, and damping properties and a flatter friction surface. The frictional properties
of the dual network co-crosslinked composites were significantly improved with the for-
mation of dual networks, the friction coefficients of COF and Ws were reduced to 0.022,
and the wear rate was reduced to 3.87 × 10−6 mm3/Nm in HNBR/EEUG/HER 100:7:5.
The effective damping temperature domain of the composites is increased by 87.6% com-
pared with that of pure HNBR. New ideas and practices are provided for the design of
composites with good water lubrication and vibration-damping properties in the field of
underwater propulsion.
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