Convergence of (Soft) Elastohydrodynamic Lubrication Simulations of Textured Slider Bearings
Abstract
:1. Introduction
2. Methods and Materials
2.1. Model Description
2.2. Simulations and Analysis
3. Results and Discussion
3.1. Mesh Convergence
3.2. Texture Geometry and Bearing Operating Conditions
3.3. Convergence Metric and Cavitation Model
3.4. Additional Considerations for Soft EHL Convergence
4. Conclusions
- Performing a comprehensive convergence study of both the lubricant film pressure and the bearing surface deformation calculations is crucial to achieving accurate and converged solutions of (soft) EHL simulations. A convergence study assists with the selection of the discretization/mesh size and convergence criterion for a chosen convergence metric to minimize the computational cost of the simulations. The accuracy of (soft) EHL simulations of textured bearing surfaces increases with an increasing number of nodes and decreasing convergence criterion because a small spacing between nodes and a sufficient number of successive iterations are required to accurately resolve the gradients and reduce the error in both finite difference and finite element simulations of the lubricant film pressure and the bearing surface deformation, respectively. Additionally, the computational cost of the simulations increases with an increasing number of nodes and decreasing convergence criterion because more successive iterations are required to achieve convergence.
- Specific to (soft) EHL simulations of textured bearing surfaces, we determine that the number of nodes per unit cell, required to achieve convergence of the lubricant film pressure, increases with an increasing texture aspect ratio and increasing flow factor. This is because the lubricant film pressure increases with an increasing texture aspect ratio and increasing flow factor, which requires a finer grid and, thus, more nodes per unit cell to accurately resolve the pressure gradients.
- The choice of cavitation algorithm affects the convergence of the lubricant film pressure simulations. Specifically, the half-Sommerfeld cavitation algorithm requires the most nodes per unit cell and smallest convergence criterion, increasing the number of successive iterations by an order of magnitude compared to the Reynolds and JFO cavitation algorithms. The JFO cavitation algorithm requires fewer nodes per unit cell, yet it still requires more successive iterations for convergence than the Reynolds cavitation algorithm because of the additional complexity of simultaneously solving the lubricant film pressure and the fractional film content.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Appl. Energy 2017, 191, 568–581. [Google Scholar] [CrossRef] [Green Version]
- Kotzalas, M.N.; Doll, G.L. Tribological advancements for reliable wind turbine performance. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 2010, 368, 4829–4850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, R.; Elmallah, R.D.K.; Cherian, J.J.; Kurtz, S.M.; Mont, M.A. Polyethylene wear in knee arthroplasty. J. Knee Surg. 2015, 28, 370–375. [Google Scholar] [CrossRef]
- Borjali, A.; Monson, K.; Raeymaekers, B. Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methods. Tribol. Int. 2019, 133, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Hamrock, B.J.; Schmid, B.J.; Jacobson, B.O. Fundamentals of Fluid Film Lubrication; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Mate, C.M.; Carpick, R.W. Tribology on the Small Scale: A Modern Textbook on Friction, Lubrication, and Wear; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Dowson, D. Elastohydrodynamic and micro-elastohydrodynamic lubrication. Wear 1995, 190, 125–138. [Google Scholar] [CrossRef]
- Allen, Q.; Raeymaekers, B. Surface texturing of prosthetic hip implant bearing surfaces: A review. J. Tribol. 2021, 143, 040801. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, P.; Stupkiewicz, S. Friction in lubricated soft-on-hard, hard-on-soft and soft-on-soft sliding contacts. Tribol. Int. 2019, 129, 246–256. [Google Scholar] [CrossRef]
- Zhang, H.; Hua, M.; Dong, G.N.; Zhang, D.Y.; Chin, K.S. A mixed lubrication model for studying tribological behaviors of surface texturing. Tribol. Int. 2016, 93, 583–592. [Google Scholar] [CrossRef]
- Allen, Q.; Raeymaekers, B. Maximizing the lubricant film thickness between a rigid microtextured and a smooth deformable surface in relative motion, using a soft elasto-hydrodynamic lubrication model. J. Tribol. 2020, 142, 071802. [Google Scholar] [CrossRef]
- Allen, Q.; Raeymaekers, B. The effect of texture floor profile on the lubricant film thickness in a textured hard-on-soft bearing with relevance to prosthetic hip implants. J. Tribol. 2021, 143, 021801. [Google Scholar] [CrossRef]
- Allen, Q.; Raeymaekers, B. Soft EHL simulations of lubricant film thickness in textured hard-on-soft bearings considering different cavitation models, in the context of prosthetic hip implants. Tribol. Lett. 2021, 69, 118. [Google Scholar] [CrossRef]
- Ma, C.; Sun, J.; Wang, Y.; Yu, B.; Yu, Q.; Tu, Q. On the optimum dimple depth-over-diameter ratio for textured surfaces. Adv. Mech. Eng. 2017, 9, 1687814017720085. [Google Scholar] [CrossRef]
- Gong, J.; Jin, Y.; Liu, Z.; Jiang, H.; Xiao, M. Study on influencing factors of lubrication performance of water-lubricated micro-groove bearing. Tribol. Int. 2019, 129, 390–397. [Google Scholar] [CrossRef]
- Shinkarenko, A.; Kligerman, Y.; Etsion, I. The effect of elastomer surface texturing in soft elasto-hydrodynamic lubrication. Tribol. Lett. 2009, 36, 95–103. [Google Scholar] [CrossRef]
- Qiu, Y.; Khonsari, M.M. On the prediction of cavitation in dimples using a mass-conservative algorithm. J. Tribol. 2009, 131, 041702. [Google Scholar] [CrossRef]
- Ausas, R.; Ragot, P.; Leiva, J.; Jai, M.; Bayada, G.; Buscaglia, G.C. The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J. Tribol. 2007, 129, 868–875. [Google Scholar] [CrossRef]
- de Vicente, J.; Stokes, J.R.; Spikes, H.A. The frictional properties of Newtonian fluids in rolling—Sliding soft-EHL contact. Tribol. Lett. 2005, 20, 273–286. [Google Scholar] [CrossRef]
- Su, B.; Huang, L.; Huang, W.; Wang, X. The load carrying capacity of textured sliding bearings with elastic deformation. Tribol. Int. 2017, 109, 86–96. [Google Scholar] [CrossRef]
- Hooke, C.J.; O’Donoghue, J.P. Elastohydrodynamic lubrication of soft highly deformed contacts. J. Mech. Eng. Sci. 1972, 14, 34–48. [Google Scholar] [CrossRef]
- Jones, M.B.; Fulford, G.R.; Please, C.P.; McElwain, D.L.S.; Collins, M.J. Elastohydrodynamics of the eyelid wiper. Bull. Math. Biol. 2008, 70, 323–343. [Google Scholar] [CrossRef]
- Arnold, D.N. Stability, consistency, and convergence of numerical discretizations. In Encyclopedia of Applied and Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1358–1364. [Google Scholar] [CrossRef]
- Qiu, M.; Raeymaekers, B. The load-carrying capacity and friction coefficient of incompressible textured parallel slider bearings with surface roughness inside the texture features. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 547–556. [Google Scholar] [CrossRef]
- Qiu, M.; Minson, B.R.; Raeymaekers, B. The effect of texture shape on the friction coefficient and stiffness of gas-lubricated parallel slider bearings. Tribol. Int. 2013, 67, 278–288. [Google Scholar] [CrossRef]
- Venner, C.H.; Lubrecht, A.A. Multilevel Methods in Lubrication; Dowson, D., Ed.; Elsevier: New York, NY, USA, 2000; ISBN 0 444 5053 2. [Google Scholar]
- Qiu, M.; Delic, A.; Raeymaekers, B. The effect of texture shape on the load-carrying capacity of gas-lubricated parallel slider bearings. Tribol. Lett. 2012, 48, 315–327. [Google Scholar] [CrossRef]
- Manser, B.; Belaidi, I.; Hamrani, A.; Khelladi, S.; Bakir, F. Texture shape effects on hydrodynamic journal bearing performances using mass-conserving numerical approach. Tribol. Mater. Surf. Interfaces 2020, 14, 33–50. [Google Scholar] [CrossRef]
- Zhang, H.; Hua, M.; Dong, G.Z.; Zhang, D.Y.; Chen, W.J.; Dong, G.N. Optimization of texture shape based on Genetic Algorithm under unidirectional sliding. Tribol. Int. 2017, 115, 222–232. [Google Scholar] [CrossRef]
- Shen, C.; Khonsari, M.M. Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding. Tribol. Int. 2015, 82, 1–11. [Google Scholar] [CrossRef]
- Etsion, I. State of the Art in Laser Surface Texturing. J. Tribol. 2005, 127, 248–253. [Google Scholar] [CrossRef]
- Cunha, A.; Elie, A.-M.; Plawinski, L.; Serro, A.P.; Botelho Do Rego, A.M.; Almeida, A.; Urdaci, M.C.; Durrieu, M.-C.; Vilar, R. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Chyr, A.; Qiu, M.; Speltz, J.W.; Jacobsen, R.L.; Sanders, A.P.; Raeymaekers, B. A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints. Wear 2014, 315, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Borjali, A.; Langhorn, J.; Monson, K.; Raeymaekers, B. Using a patterned microtexture to reduce polyethylene wear in metal-on-polyethylene prosthetic bearing couples. Wear 2017, 392, 77–83. [Google Scholar] [CrossRef]
- Langhorn, J.; Borjali, A.; Hippensteel, E.; Nelson, W.; Raeymaekers, B. Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: Multi-directional wear and corrosion measurements. Tribol. Int. 2018, 124, 178–183. [Google Scholar] [CrossRef]
- Hori, Y. Hydrodynamic Lubrication; Springer-Verlag: Tokyo, Japan, 2006. [Google Scholar]
- Liu, H.; Xu, H.; Ellison, P.J.; Jin, Z. Application of computational fluid dynamics and fluid-structure interaction method to the lubrication study of a rotor-bearing system. Tribol. Lett. 2010, 38, 325–336. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Wang, H.; Ma, T.; Hu, Y. Numerical analysis on the factors affecting the hydrodynamic performance for the parallel surfaces with microtextures. J. Tribol. 2014, 136, 021702. [Google Scholar] [CrossRef]
- Elrod, H.G. A cavitation algorithm. J. Lubr. Technol. 1981, 103, 350–354. [Google Scholar] [CrossRef]
- Shinkarenko, A.; Kligerman, Y.; Etsion, I. The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol. Int. 2009, 42, 284–292. [Google Scholar] [CrossRef]
- Fesanghary, M.; Khonsari, M.M. A modification of the switch function in the Elrod cavitation algorithm. J. Tribol. 2011, 133, 024501. [Google Scholar] [CrossRef]
- Woloszynski, T.; Podsiadlo, P.; Stachowiak, G.W. Efficient solution to the cavitation problem in hydrodynamic lubrication. Tribol. Lett. 2015, 58, 18. [Google Scholar] [CrossRef]
- Biboulet, N.; Lubrecht, A.A. Efficient solver implementation for reynolds equation with mass-conserving cavitation. Tribol. Int. 2018, 118, 295–300. [Google Scholar] [CrossRef]
Cavitation Model | Cross-Section View of Lubricant Film Pressure | Cavitation Boundary Conditions |
---|---|---|
None | N/A | |
HS [37] | P = Pcav | |
RE [11] | P = Pcav, dP/dX = 0 | |
JFO [38] | P = Pcav, dP/dX = 0, mass conservation |
Parameter | Minimum | Maximum | Nominal |
---|---|---|---|
Bearing separation, δ | - | - | 0.045 |
Texture density, Sp | - | - | 0.20 |
Aspect ratio, ε | 0.01 | 0.09 | 0.05 |
Flow factor, λ | 0.06 | 0.30 | 0.30 |
Number of nodes, N | 101 | 601 | 301 |
Number of elements, Ne | 4 | 36 | 20 |
Convergence criterion, α | 10−5 | 10−1 | 10−3 |
Convergence Criterion | a | b | c | R2 |
---|---|---|---|---|
10−1 | −0.017 | 12.636 | 913.5 | 0.860 |
10−2 | 0.050 | 37.120 | −549.5 | 1.000 |
10−3 | 0.170 | 54.476 | 4667.4 | 0.998 |
10−4 | 0.182 | 373.550 | −23,084.0 | 0.999 |
10−5 | 0.988 | 377.260 | −23,885.0 | 1.000 |
Cavitation Model | Number of Nodes per Unit Cell, N | Convergence Criterion | Number of Successive Iterations |
---|---|---|---|
RE | 301 | 10−3 | 28,473 |
HS | 401 | 10−4 | 240,686 |
JFO | 201 | 10−3 | 39,292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, Q.; Raeymaekers, B. Convergence of (Soft) Elastohydrodynamic Lubrication Simulations of Textured Slider Bearings. Lubricants 2023, 11, 92. https://doi.org/10.3390/lubricants11030092
Allen Q, Raeymaekers B. Convergence of (Soft) Elastohydrodynamic Lubrication Simulations of Textured Slider Bearings. Lubricants. 2023; 11(3):92. https://doi.org/10.3390/lubricants11030092
Chicago/Turabian StyleAllen, Quentin, and Bart Raeymaekers. 2023. "Convergence of (Soft) Elastohydrodynamic Lubrication Simulations of Textured Slider Bearings" Lubricants 11, no. 3: 92. https://doi.org/10.3390/lubricants11030092
APA StyleAllen, Q., & Raeymaekers, B. (2023). Convergence of (Soft) Elastohydrodynamic Lubrication Simulations of Textured Slider Bearings. Lubricants, 11(3), 92. https://doi.org/10.3390/lubricants11030092