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Abstract: Friction in sheet-metal-forming processes not only affects the values of the force parameters
of the process but also determines the quality of the surface of the drawpieces. This paper presents an
approach to reducing the coefficient of friction by directly applying pressurized oil to the contact zone.
For this purpose, a special test stand was built to carry out the strip draw test, commonly used to
model the phenomenon of friction in the deep-drawing process. This test consisted of pulling a strip
between flat countersamples made of 145Cr6 cold-work tool steel covered with an abrasion-resistant
Mtec (AlTiN) coating. During the pilot tests, various contact pressures, lubricants with different
viscosities, and different lubricant pressures were used. The influence of friction conditions on the
surface roughness of the samples and the relationship between the friction conditions and the value
of the coefficient of friction were determined. The supply of the lubricant under pressure into the
contact zone has a beneficial effect on reducing friction. The coefficient of friction decreases with
increasing lubricant pressure for contact pressures of 2–6 MPa. For a contact pressure of 8 MPa, the
lubricant pressure is the least favorable for reducing the coefficient of friction. At higher lubricant
pressures (12 and 18 bar), the lubrication efficiency depends on the viscosity of the lubricant and
decreases with increasing contact pressure.

Keywords: deep drawing; lubrication; metal forming; coefficient of friction

1. Introduction

Sheet metal forming (SMF) is the basic method for processing sheet metal and thin-
walled load-bearing components in the automotive industry [1]. To ensure the appropriate
surface of the products, it is necessary to provide appropriate friction conditions, and the
lower the friction, the better the surface finish of deep-drawn components [2]. Knowledge
of the mechanisms that occur in friction and lubrication processes also allows for the
construction of tools that wear to a minimum extent during operation and are characterized
by reliability and durability [3]. The work efficiency of stamping tools and the surface
quality of products primarily depend on the operational properties of the surface layer
of the tool, in particular, its resistance to thermal, tribological, and fatigue wear [4,5].
Knowledge of the mechanisms of friction and wear is the foundation for understanding
the problem of selecting the right material and forming the technology for the production
of a specific component [6].

During the plastic forming of metallic sheets, the summits of the asperities, under the
influence of pressure forces, are plastically deformed until the resulting contact surface is
sufficient to transfer the load [7]. Shearing and elastic–plastic deformation of the surface
asperities occur during sheet metal forming, which increases the real contact area [8]. The
sliding velocity [9,10], contact pressure [11], surface texture [12,13], tool roughness [2], as
well as lubrication conditions [14,15] affect the change of surface roughness of sheet metal
in the deep-drawing process. Therefore, surface roughness is not constant during SMF.
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During the SMF processes, there are zones of material that differ in terms of sliding
velocity, contact pressures, and lubrication conditions. The strip drawing test (SDT) consists
of drawing the strip specimen clamped between countersamples with a rounded [16,17] or
flat working surface [18].

The most effective way to reduce the impact of friction on the course of the SMF
operations is lubrication [19]. The most important properties of the lubricant from the point
of view of its use in plastic-forming processes are the viscosity and boundary lubrication
effect [20]. During the deformation process, the lubricant reduces the contact pressures
and coefficient of friction (COF) [21,22]. In the literature, there are many studies on the
efficiency of lubricants of various origins (refined, petroleum-derived, synthetic, natural)
and of various consistencies (solid, liquid, emulsions) and viscosities [23,24].

The combination of modern coatings (nanostructured, nanolayered, nanocomposite,
etc.) with the design of self-lubricating tools containing microchannels and pockets con-
stituting a reservoir of lubricants is a very promising and effective way to increase the
efficiency of lubrication under high-pressure conditions [25]. Among the many shapes of
texturing depressions, for example, crossed and parallel channels [26], triangular depres-
sions [27], square depressions [28], and more complex shapes [29], the most frequently
studied structures are spherical depressions [30] due to the ease of fabrication [31]. In addi-
tion, the density of the pits plays an important role as it affects the relubrication process of
the sheet metal surface as it travels over the tool surface. Textures can have a preferential
direction or be randomly arranged [32]. The lubricant viscosity, thickness of the lubricating
film, and sliding velocity affect the optimum distance between the depressions [33,34].
Metal sheets produced by the cold-rolling process exhibit a surface topography that consists
of valleys that naturally act as a lubricant reservoir [35,36].

Lubrication is essential to ensure the efficiency of the SMF processes in terms of
component surface quality and acceptable sheet deformations. The selection of the type of
the lubricant is crucial to achieving reducing friction. The valleys in the surface topography
that contain the lubricating oil under high-pressure conditions form a kind of lubrication
cushion. Under the influence of contact pressure, the pressure of the lubricant in the pockets
increases, but, at the same time, the share of the mechanical cooperation of the rubbing
surfaces increases. Many researchers focus on the study of the impact of oil viscosity and
the type of the lubricant on the reduction of the coefficient of friction. Meanwhile, works
aimed at increasing the lubricant pressure on the contact surface, and thus the lubrication
efficiency, are limited in the literature.

In order to provide better surface separation in conditions where the surface topogra-
phy does not contain closed oil pockets of sufficient volume, this article proposes a new
approach to lubricating the sheet surface with pressurized oil directly delivered to the con-
tact zone in the blankholder area in SMF. Studies were carried out using the SDT, the most
frequently used tribotest to analyze friction conditions in SMF [37,38]. Strip drawing tests
were carried out using a specially designed tester equipped with an Argo-Hytos hydraulic
power pack. Cold-rolled low-carbon DC01 steel sheets commonly used in the automotive
industry were used as the test material. Different contact pressures and different pressure
values of oil with different viscosities were tested. The influence of friction conditions on
the surface roughness parameters (Sq, Ssk, Sku, Sz) of the samples and the relationship
between the friction conditions and the value of the coefficient of friction were determined.

2. Material and Methods
2.1. Test Material

A cold-rolled low-carbon DC01 steel sheet was used as the test material. This steel,
due to its high ductility, is very often used in the automotive industry. Quality requirements
for the chemical composition and basic mechanical properties (yield stress Rp0.2, ultimate
tensile stress Rm, and elongation At) of the DC01 steel determined in the uniaxial tensile
test are presented in Tables 1 and 2, respectively. True stress–true strain curves for three
specimens cut along the sheet-rolling direction are shown in Figure 1.
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Table 1. Chemical composition (max. wt.%) of DC01 steel sheet according to EN 10130:2006 standard.

Carbon Manganese Phosphorus Sulfur Iron

0.12 0.6 0.045 0.045 Balance

Table 2. Basic mechanical parameters of DC01 steel sheet.

Rp0.2, MPa Rm, MPa At, % Hardness HV

231.5 348.1 38.5 105
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Figure 1. True stress–strain curve of DC01 steel sheet.

2.2. Friction Test

The values of the COF of the DC01 steel sheet were determined using the SDT
(Figure 2a). This test consisted of pulling a strip specimen between two countersam-
ples made of 145Cr6 cold-work steel, whose working surface was additionally covered with
an abrasion-resistant Mtec (AlTiN) coating. The pressurized lubricant was directly supplied
to the contact zone using special channels drilled in both countersamples (Figure 2b).
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Strip drawing tests were carried out using a specially designed tester (Figure 3c),
mounted in the Z100 (Zwick/Roell) uniaxial tensile testing machine. Samples in the form
of a sheet metal strip with dimensions of 130 mm (length) × 25 mm (width) × 1 mm
(thickness) were pulled between the countersamples with adjustable contact pressure. The
friction force was recorded using the measuring system testing machine, while the normal
force was recorded using Labview program based on the indications of the force sensor type
9345B (Kistler, Winterthur, Switzerland). The values of these two forces were correlated
in Labview program using a Megatron Series SPR18 displacement sensor (Figure 3a). In
addition, in order to carry out SDTs with the use of pressure-assisted lubrication, the stand
was equipped with an Argo-Hytos hydraulic power pack (Baar, Switzerland) (Figure 3b),
with the parameters presented in Table 3.
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Table 3. Basic parameters of hydraulic feeder.

Parameter Value Unit

Flow 0.4 L/min
Maximum pressure 63 bar

Power 0.18 kW
Working temperature −25 . . . +50 ◦C

Based on the values of the normal force FN and corresponding pulling (friction) force
FT, the values of the COF µwere determined by Equation (1).

µ =
FT

2·FN
(1)

The tests were carried out using oils typically applied for metal-forming operations. The
kinematic viscosity of the oils used is presented in Table 4. The tests were carried out at
nominal contact pressures pN of 2, 4, 6, and 8 MPa and variable lubrication pressures pL of 0,
6, 12, and 18 bars, respectively. The nominal contact pressure was determined as a ratio of
the contact force and contact area of the sheet with the countersamples. In the deep-drawing
process, the blankholding pressure applied in the flange region during drawing varies in the
range of 1 MPa to 4 MPa depending on the strength of the blank material [39,40]. It should
be emphasized that nominal contact pressure conditions do not represent real tribological
conditions in SMF. The real contact pressure is greater than the nominal pressure and is not
constant over the entire contact area of the surface asperities of the tool and workpiece. The
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surface of cold-rolled sheets is characterized by a random distribution of surface asperities
and valleys. Moreover, the real contact area is constantly evolving.

Table 4. Basic physical parameters of oils tested.

Oil Kinematic Viscosity at 40 ◦C, mm2/s

S100 Plus oil for deep-drawing
(Naftochem) 110

S300 oil for deep-drawing operations
(Naftochem) 300

2.3. Surface Topography

The basic height parameters of the geometric structure and surface topography
(5 × 5 mm) (Figure 4b) were determined using a T8000RC stationary profilometer
(Figure 4a) from Jenoptik AG (Jena, Germany) in accordance with the ISO 25178-2 [41]
standard. In order to compare changes in the surface roughness due to friction, measure-
ments of the surface roughness were carried out before and after the friction tests. The
surface topography of the DC01 steel sheet is shown in Figure 4b. The basic roughness
parameters of the DC01 steel sheet and countersamples are shown in Table 5. The to-
pography of the surfaces of the strip specimens was examined using a MIRA3 scanning
electron microscope (SEM) (Tescan, Brno, Czech Republic). The SEM micrograph of
the surface of the as-received DC01 steel sheet is shown in Figure 5. The hardnesses of
countersamples material and AlTiN coating as an average from six measurements are
250.7 HV 10 and 2714 HV 0.05, respectively.
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Figure 4. (a) Hommel—Etamic T8000RC profilometer and (b) topography of DC01 steel sheet in
as-received state.

Table 5. Basic surface roughness parameters of test material.

Surface Roughness Parameter
Value

Sheet Metal Countersamples

Root mean square roughness Sq, µm 1.82 0.384
Surface skewness Ssk 0.553 −2.87
Surface kurtosis Sku 3.32 24.7

Highest peak of the surface Sp, µm 9.13 4.28
Maximum pit depth Sv, µm 5.31 6.50

10-point peak-valley surface roughness Sz, µm 14.4 10.8
Average roughness Sa, µm 1.44 0.237
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3. Results and Discussion
3.1. Coefficient of Friction

The value of the COF decreases as the lubricant pressure increases for contact pressures
of pN = 2–6 MPa (Figure 6). For a contact pressure of 8 MPa, the lubricant pressure exerts
the least favorable effect of reducing the COF. Only after exceeding the contact pressure of
6 bar does the lubricant pressure clearly reduce the COF value. With an increase in pressure,
the pressure of the lubricant in the closed oil pockets increases, but, at the same time, the
share of the mechanical interaction of the surface asperities in the total friction resistance
increases. Increasing oil pressure has a positive effect on reducing friction, but its value is
limited by the possible occurrence of leaks from the contact zone. It should be emphasized
that, in the range of the parameters of the friction test, such leaks were not observed.
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In the range of contact pressures of pN = 2–8 MPa, which occur in the blankholder
area in SMF [39,40,42], the value of the COF shows the tendency to increase with increas-
ing contact pressure (Figure 6). According to Cillauren et al. [42], Djordjević et al. [43],
Evin et al. [16], Filzek and Groche [44], and Bay et al. [37] (Figure 7), friction conditions
in the blankholder area in SMF are determined using a strip drawing test with flat dies.
Moreover, the researchers of the Friedrich-Alexander-Universität Erlangen-Nürnberg [45]
concluded that a strip drawing test with flat dies “models the tribological conditions of
the area between blank holder and die in a conventional deep drawing process”. A strip
drawing test with flat dies is also commonly used to examine the tribological effects of lu-
bricants in SMF [46] and the effect of the surface texture of the sheet in the final tribological
conditions at the interface [47].
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Conventional lubrication (pL = 0 MPa) with S100 Plus oil, without the forced supply
of the pressurized lubricant, causes only a slight increase in the COF. However, under
the conditions of lubrication with the pressurized lubricant, the decrease in the COF is
evident. For a contact pressure of 2 MPa, the lubricant under 18 bar of pressure reduced
the value of the COF by about 33% compared with lubrication without forced lubricant
pressure. It should be emphasized that during traditional lubrication without forced
lubricant pressure, the contact pressure causes an increase in the lubricant pressure in closed
lubricant pockets [48,49]. However, as research has shown, this effect can be multiplied by
supplying the lubricant under pressure to the contact zone.

When lubricated with S100 Plus oil (Figure 6), there is a tendency to stabilize the COF
with increasing lubricant pressure. A different relationship occurs during friction tests with
S300 oil, which is three times more viscous. The direction of the inflection of the curves
shows that the lubrication efficiency has a tendency to increase with increasing lubricant
pressure (Figure 8). The higher viscosity of the lubricant allows the development of the
interaction of the surface asperities to be delayed.
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As expected, the lubricant at the highest forced pressure (pL = 18 bar) reduced the
COF value the most (Figure 8). At a contact pressure of pN = 2 MPa, the COF decreased
by about 39%, and at pN = 8 MPa, it decreased by about 15% compared with lubrication
without forced pressure (pL = 0 bar). Therefore, in order to ensure optimal lubrication
conditions and reduce friction, pressure-assisted lubrication should be applied with oil
of an appropriate viscosity adjusted to the value of the contact pressures occurring in the
contact zone.

For the tests carried out at pL = 0 bar and pL = 6 bar, the COF remains quite constant.
With the increase in the oil pressure to pL = 12 bar, the value of the COF increased in
the range of the analyzed contact pressures, with a visible tendency to stabilization after
exceeding the pressure of pN = 8 MPa. In the range of small contact pressures pN, applying
pressurized oil is most effective in reducing the COF. Increasing the contact pressure pN
reduces the beneficial effect of the oil pressure pL by the intensification of the mechanical
interaction of the surface asperities.

3.2. Effectiveness of Lubrication

The effectiveness of lubrication κL was determined in relation to the coefficient of
friction µ0 obtained under the lubricant pressure of pL = 0 bar:

κL =
µ0 − µp

µ0
× 100% (2)

where µp is the COF obtained at a lubricant pressure of pL > 0 bar.
The lubrication efficiency of S100 Plus oil when tested under pressure pL = 6 bar

slightly increases (from about 4.8% to about 7%) with increasing contact pressure (Figure 9).
At higher lubricant pressures, the lubrication efficiency decreases with increasing contact
pressure. As mentioned earlier, friction is the result of two mechanisms: the formation of a
lubricating ‘cushion’ separating the rubbing surfaces and the resistance associated with the
mechanical interaction of the surface asperities of the tool and steel sheet. The higher the
contact pressure, the greater the share of the latter mechanism. Under these conditions, the
lubrication efficiency is at a much higher level (13.5–20.5% for pL = 12 bar and 15.3–33% for
pL = 18 bar) compared with the tests carried out at a lubricant pressure of pL = 6 bar.
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For the range of applied contact pressures between 2 and 6 MPa, the efficiency of
lubrication with S300 oil at pL = 6 bar (Figure 10) was higher than for S100 Plus oil (Figure 9).
Comparing the lubrication efficiency for the other lubricant pressures does not give such
an unambiguous answer. Similarly, as the contact pressure increases, lubrication efficiency
decreases. At a lubricant pressure of pL = 12 bar, the lubrication efficiency is much more
even over the entire range of tested pressures compared with tests with S100 Plus oil. Very
similar values of lubrication efficiency were obtained during the tests with these two oils. It
can, therefore, be concluded that, at the highest lubricant pressure (pL = 18 bar) and contact
pressures of pN = 4–8 MPa, the viscosity of the lubricant does not significantly affect the
lubrication efficiency. Only at the smallest contact pressure of pN = 2 MPa did the lubricant
with higher viscosity (S300) provide about 8% greater lubrication efficiency compared with
the S100 oil with lower viscosity.
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3.3. Surface Roughness

After the friction process, a decrease in the root mean square roughness parameter Rq
for both tested oils was observed (Figure 11). In the absence of lubricant pressure and in the
conditions of friction tests under a contact pressure of pN = 2 MPa, reduction in roughness
was greater when lubricated with S100 Plus oil compared with S300 oil. In general, due to
the synergistic effect of lubricant pressure and contact pressure on the changes in surface
topography, the roughness of the as-received sheet metal (Sq = 1.82 µm) decreased to about
1.3–1.68 µm.
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(b) S300 oil.

The kurtosis Sku similarly to the Sq parameter also decreased for the specimens
subjected to friction (Figure 12). The kurtosis of the as-received surface shows deep valleys
or unexpectedly high peaks (Sku > 3) on the surface. The summits of the sheet asperities
after friction were sheared or deformed; therefore, Sku < 3. Surface wear due to friction
reduces the Sku value. In SMF processes, the surface of the tool is made of a material with
much greater mechanical strength than the sheet material, which undergoes intentional
plastic deformations. In the process of friction, the kurtosis of the surface Sku is one of the
most important parameters indicating a change in the height of the surface profile [50].
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The skewness Ssk provides information about the surface asymmetry. The valley-
dominant surface is characterized by Ssk < 0, while the peak-dominant surface is character-
ized by Ssk > 0 [17]. In addition to the Sq parameter, the Ssk and Sku parameters describe
the surface roughness of sheets in industrial practice [34,51]. Moreover, an increase in
kurtosis and skewness leads to an increase in the contact area ratio (the ratio between the
real contact area and nominal contact area) of the sheet surface [52]. During friction for
the highest pressure value, the skewness Ssk values are negative or close to 0 (Figure 13),
which means the surface is characterized by a high load capacity resulting from the lack
of high summits. A local increase in the skewness value at the highest values of lubricant
and contact pressure means the activation of the flattening mechanism [53,54]. Under
these conditions, the phenomenon of intensive flattening and plowing occurs, causing the
formation of grooves (Figure 14) of various depths on the surface of the sheet. Figure 15
shows the surface profiles of the DC01 steel sheet before and after friction tests.
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Figure 16 presents the effect of friction conditions on the changes in the parameters Sq,
Ssk, Sku, and Sz in conditions without forced lubricant pressure (pL = 0 bar). Changing
the friction conditions by using S300 oil instead of S100 Plus oil with almost three times
lower viscosity reduces the Sq (Figure 16a) and Ssk (Figure 16b) parameters for the applied
contact pressures of pN = 6–8 MPa. At contact pressures of pN = 2–4 MPa, the change in
the above-mentioned parameters is insignificant in the range of 1.56–1.67 µm and 0.13–0.25
for the Sq and Ssk parameters, respectively. For the contact pressure of pN = 6 MPa, the
real contact area of the surface profile was stabilized, and the change in the type of the
lubricant did not change the value of the Ssk parameter (Figure 16b). An increase in the
value of the Sq parameter under the contact pressure of 2–4 MPa in relation to the dry
friction conditions (Figure 16a) is due to lubricant entrapment. For the same lubrication
conditions, but with a contact pressure of pN = 8 MPa, lubrication reduces the Sq parameter
compared with dry friction. The lubricant pressure was sufficient to limit the mechanical
interaction of the surface asperities, while high values of contact pressures increased the
real contact area.

Kurtosis is a measure of the flattening of the surface compared with the normal
distribution—it is the basic identifier of the shape of the probability distribution. For
a Gaussian distribution, the Sku kurtosis value is 3.0. The value of the kurtosis of the
original sheet surface (Sku = 3.32, Figure 16c) indicates a more convex distribution than
a Gaussian distribution. However, after the friction process, all the tested sheets showed
a distribution flatter than a Gaussian distribution (Sku < 2.6). Increasing the value of the
contact pressure from 2 MPa to 4 MPa resulted in the reduction of the Sz parameter in
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all analyzed friction conditions (Figure 16d). This parameter is an appropriate indicator
to determine the moment when lubricating film breaks and the sheet metal surface is
plowed by the surface asperities of the tool’s surface. For the conditions of lubrication
with S100 Plus oil, a similar character of changes in the Sz parameter was observed. At
contact pressures of 4 and 6 MPa, S300 oil provided a thicker lubricant due to its higher
viscosity compared with S100 Plus oil. In this way, under these conditions, a lower value
of the Sz parameter was observed. When the contact pressure was further increased to
pN = 8 MPa, unfortunately, the S300 oil lost its ability to effectively separate rubbing
surfaces; hence, the value of the Sz parameter was at a similar level as during the tests
for the dry friction conditions.

Lubricants 2023, 16, x FOR PEER REVIEW 12 of 17 
 

 

 
(a)                         (b) 

Figure 13. Effect of lubricant pressure on the surface skewness Ssk for lubrication with (a) S100 Plus 
oil and (b) S300 oil. 

 
Figure 14. SEM micrographs of specimen surfaces tested under the following conditions: (a) S100 
Plus oil, pN = 4 MPa, pL = 0 bar; (b) S100 Plus oil, pN = 4 MPa, pL = 6 bar; (c) S100 Plus oil, pN = 4 MPa, 
pL = 12 bar; (d) S100 Plus oil, pN = 4 MPa, pL = 18 bar. 

Figure 14. SEM micrographs of specimen surfaces tested under the following conditions: (a) S100 Plus
oil, pN = 4 MPa, pL = 0 bar; (b) S100 Plus oil, pN = 4 MPa, pL = 6 bar; (c) S100 Plus oil, pN = 4 MPa,
pL = 12 bar; (d) S100 Plus oil, pN = 4 MPa, pL = 18 bar.
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4. Conclusions

In this paper, an approach to reducing the COF in SMF by directly applying pressurized
oil to the contact zone was investigated. Strip drawing tests were performed for contact
pressures commonly occurring in the blankholder zone in SMF. Experimental studies
carried out using the SDT are the basis for drawing the following conclusions:

• The COF decreases with increasing lubricant pressure for contact pressures pN of
2–6 MPa. For the contact pressure of 8 MPa, the lubricant pressure has the least
favorable effect of reducing the COF.

• Increasing the oil pressure has a positive effect on the reduction of friction, but its value is
limited by the possible occurrence of leaks from the contact zone. Therefore, the lubricant
pressure must be properly selected for the size of the nominal contact surface.

• Conventional lubrication (pL = 0 MPa) without the forced supply of oil under pressure
causes only a slight increase in the COF with increasing contact pressures. This fact
was observed for both oils tested.

• The value of the COF is the resultant of the effect of the lubricating film. The use of oil
with a higher viscosity allows the development of the mechanical interaction of the
surface asperities to be delayed.

• At the lowest applied lubricant pressures (pL = 6 bar), the lubrication efficiency was
similar over the nominal pressures pN = 2–8 MPa.

• At the higher lubricant pressures pL = 12 bar and pL = 18 bar, the lubrication efficiency
depends on the viscosity of the oil and decreases with increasing nominal pressure.

• The values of the analyzed roughness parameters Sp, Ssk, and Sku decreased. There is
a tendency for the Sku parameter to decrease with increasing lubricant pressure.

Author Contributions: Conceptualization, T.T., K.S. and M.S.; methodology, T.T., K.S. and M.S.;
validation, T.T., K.S. and M.S.; investigation, T.T., K.S. and M.S.; data curation, T.T., K.S. and M.S.;
writing—original draft preparation, K.S. and T.T.; writing—review and editing, T.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gronostajski, Z.; Pater, Z.; Madej, L.; Gontarz, A.; Lisiecki, L.; Łukaszek-Sołek, A.; Łuksza, J.; Mróz, S.; Muskalski, Z.; Muzykiewicz,

W. Recent development trends in metal forming. Arch. Civ. Mech. Eng. 2019, 19, 898–941. [CrossRef]
2. Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J.H.; Chezan, T.; Carleer, B.; van den Boogaard, T. Friction in sheet metal forming:

Influence of surface roughness and strain rate on sheet metal forming simulation results. Procedia Manuf. 2019, 29, 512–519.
[CrossRef]

3. Schmoeckel, D.; Frontzek, H.; von Finckenstein, E. Reduction of Wear on Sheet Metal Forming Tools. CIRP Ann. 1986, 35, 195–198.
[CrossRef]

4. Bang, J.; Song, J.; Bae, G.; Park, N.; Lee, M.; Kim, H. Quantitative evaluation of experimental wear behaviour for CrN-coated tool
steels in sheet metal forming process of TRIP 1180. Procedia Manuf. 2020, 50, 791–794. [CrossRef]

5. Domitner, J.; Silvayeh, Z.; Sabet, A.S.; Öksüz, K.I.; Pelcastre, L.; Hardell, J. Characterization of wear and friction between tool steel
and aluminum alloys in sheet forming at room temperature. J. Manuf. Process. 2021, 64, 774–784. [CrossRef]
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51. Sedlaček, M.; Vilhena, L.M.S.; Podgornik, B.; Vižintin, J. Surface topography modelling for reduced friction. Stroj. Vestn. J. Mech.
Eng. 2011, 57, 674–680. [CrossRef]

52. Wang, W.Z.; Chen, H.; Hu, Y.Z.; Wang, H. Effect of surface roughness parameters on mixed lubrication characteristics. Tribol. Int.
2006, 39, 522–527. [CrossRef]

53. Żaba, K.; Kuczek, Ł.; Puchlerska, S.; Wiewióra, M.; Góral, M.; Trzepieciński, T. Analysis of Tribological Performance of New
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