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Abstract: The performance of journal bearings is significantly affected by the presence of misalign-
ment, which is usually an accompanying problem for this type of bearing. This includes exceeding
the design limits for the maximum pressure and the minimum film thickness levels, which affect,
in other words, the load-carrying capacity of the system. In addition, it raises the possibility of
increasing the wear rate at the bearing edges and increases the friction coefficient at high levels
of misalignment. This paper deals with the problem of finite-length misaligned journal bearings,
considering a novel comparison between two cases of misalignments: the general 3D misalignment
and the vertical misalignment problems for modified bearings. The effect of introducing a variable
axial bearing profile on the bearing characteristics and the time responses of the rotor bearing system
under position perturbation has also been investigated. The numerical solution of this hydrodynamic
problem is based on the finite difference method using Reynolds boundary conditions method. Re-
sults show that using a variable bearing profile improves bearing characteristics, such as increasing
the minimum film thickness significantly and reducing the pressure levels in addition to reducing the
friction coefficient. Furthermore, the modification enhances the rotor-bearing stability under position
perturbation, extending the speed range for a safe operation.

Keywords: sustainable sources of energy; journal bearing; numerical analysis; stability problem

1. Introduction

The generation of hydrodynamic pressure, or the load-carrying capacity, results from
the squeeze motion or the relative sliding between surfaces separated by a thin layer of
lubricant. This is the basic concept of the hydrodynamic lubrication regime in journal bear-
ings, the most common type of bearing in industrial applications. Such applications include
supporting the rotating shaft in a wide range of machines, such as internal combustion
engines, turbo-generators, compressors, pumps, etc. [1]. Despite the well design of the
journal bearings used in these high-speed rotating machineries, the shaft supported by this
type of bearing usually operates under a misalignment condition [2].

In an ideal situation, which rarely exists, the shaft and bush axes are always parallel.
However, as the load and speed are imposed, the shaft will be subjected to misalignment
while rotating inside its bearing [1]. One of the main negative effects of the misalignment is
the considerable reduction in the levels of lubricant layer thickness. The designed minimum
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film thickness is responsible for preventing any direct contact between the journal and the
bush surfaces, which is clearly affected by the presence of misalignment. Therefore, as the
misalignment actually has a serious impact on the performance and life span of the journal
bearing, this subject has drawn the attention of researchers over the last decades. Singh
and Sinhasan [3], for example, investigated the consequences of small misalignment on the
dynamic characteristics of big end bearing using the finite element method. Their result
showed that the misalignment reduces the minimum film thickness by 28% in comparison
with the perfectly aligned bearing. Choy et al. studied the nonlinear behavior of the
dynamic coefficients. Choy et al. [4] analyzed the nonlinear behavior of the stiffness and
damping coefficients of a journal bearing considering the misalignment effect using the
finite difference method. Nikolakopoulos and Papadopoulos [5] analyzed the problem of a
misaligned journal using the finite element method in order to solve the Reynolds equation.
They calculated the linear and nonlinear dynamic characteristics for the misaligned bearing
based on the fluid forces and moments, which were the function of the displacements and
the angle of misalignment.

The dynamic characteristics of the journal bearing were studied by Ebrat et al. [6],
considering misalignment effects. Their results showed that it is necessary to take the shaft
misalignment into consideration when assessing the dynamic behavior of the rotor-bearing
system. The misalignment in the journal bearing was also shown by Sun and Gui [7], Jang
and Khonsari [1], and Jamali and Al-Hamood [8] to have a significant negative consequence
on the general performance of the bearing system. Recently, Song et al. [9] explained that
misalignment causes an obvious increase in friction over the mixed lubrication region.
The friction (and wear) problems in this type of bearing have also drawn the researcher’s
attention due to its effects on the bearing life and the system’s general performance.

Dufrane et al. [10] suggested a model for studying the wear effect on hydrodynamic
lubrication performance. Their results showed an important outcome, which related
an optimum film thickness value to the rate of wear progress in bearings. Bouyer and
Fillon [11] conducted a very important experimental study to consider the misalignment
effect on journal-bearing performance. They found that the performance of the bearing is
significantly affected by the presence of misalignment, such as the 80% reduction in the
minimum value of the film thickness. Sun et al. [12] showed that the misalignment changes
the distributions and the values of the pressure field as well as the film thickness when they
used a special test bench in their experimental study. Padelis et al. [13] used a numerical
solution in order to determine the relationship among wear depth, coefficient of friction,
and misalignment in journal bearings, where they suggested that functions relate these
parameters.

Despite the usual unavoidable presence of misalignment in the journal bearing, it
is possible to some extent to limit its negative effects on the system performance. The
improvement of the bearing characteristics in terms of bearing geometry optimization
was studied experimentally by Nacy [14], where he chamfered the edges of the bearing
in an attempt to reduce the lubricant side leakage. Modifying the bearing geometry
was also performed by Bouyer and Fillon [15], where they used predesigned defects in
order to evaluate the bearing characteristics under misalignment. Strzelecki [16] used
variable bearing profiles over the whole bearing width, where his results showed that such
modifications help carry a high load despite misalignment. Chasalevris and Dohnal [17]
used variable geometry for the journal bearing to enhance the dynamic behavior of the
system. Recently Ren at al. [18] investigated the effects of profile parameters on the
performance of the bearing where they explained that using quadratic profile improves
the bearing characteristics. Jamali et al. [19,20] investigated the dynamic behavior of
misaligned bearings. Allmaier and Offner [21] reviewed the simulation of journal bearings
considering the elastohydrodynamic regime. They considered several topics, such as mixed
lubrication, low-viscosity lubricant, and polymer coatings. This review emphasized that
journal bearings are still facing new challenges, which motivate the researcher to develop
more accurate and new methods to address the previously mentioned topics.
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This paper presents a novel comparison between the misalignment in the vertical
plain and the general 3D misalignment case for modified bearings. The numerical solution
for the problem of hydrodynamic journal bearing is based on the finite difference method,
and the Reynolds boundary condition method is followed to identify the boundaries of the
cavitation zone. The variable bearing profile is considered in the analysis in order to reduce
the misalignment effect on the friction coefficient, film thickness, and pressure distribution.
Furthermore, the effects of varying bearing profiles on the time responses of the system to
position perturbation of the journal as well as the stability threshold, are also investigated.

2. The General Model of the Solution

The general model used in this work is schematically shown in Figure 1. Figure 1a
shows a side view of a perfectly aligned bearing, explaining the coordinates used in the
analysis. Figure 1b illustrates a 3D representation for a journal bearing in its aligned case.
As the model considers the misalignment effect, Figure 1c shows a general 3D misalignment
model where the shaft deviations in the horizontal and vertical deviation along the bearing
width are illustrated. More detail about this misalignment model can be found in [11,12].
The last figure (Figure 1d) shows the model used to incorporate the bearing profile variation
in the solution of this hydrodynamic problem where the bearing edges are chamfered to
reduce misalignment effects.
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Figure 1. Schematic drawing of the solution model. (a) Side view of the journal bearing, (b) 3D
aligned journal bearing, (c) general 3D mis. model, and (d) bearing profile mod [20].

The governing equations related to the hydrodynamic solution of the journal-bearing
problem are the Reynolds and the film thickness equations, which are given by [8,22]:

∂

∂x

(
ρh3

12η

∂p
∂x

)
+

∂

∂z

(
ρh3

12η

∂p
∂z

)
= Um

∂ρh
∂x

+
∂ρh
∂t

(1)

h = c(1 + εr cos(θ −∅)) (2)

where,
ρ, η: lubricant density and viscosity (Newtonian oil behavior)

Um: mean velocity (Um =
Uj+Ub

2 )
p: pressure
h: film thickness
t: time
c: clearance
∅: attitude angle
εr: eccentricity ratio (εr = e/c, e: eccentricity distance)
The density is constant in the case of incompressible flow, and the squeeze term is

∂h
∂t = 0 when the system operates under steady-state conditions, Ub=0 for stationary bearing
and the journal, and surface velocity is Uj = Rω.

The solution of Equation (1) is based on using the Reynolds boundary condition
method [23]:

P = 0 at θ = 0
P = ∂P

∂θ = 0 at θ = θcav

The cavitation zone is limited by θcav and is identified by using an iteration
method [23,24].

The governing equations will be written in dimensionless forms using the following
dimensionless variables:

x = Rθ, Z =
z
L

, H =
h
c

P =
p− po

6ηω
(

c2

R2 )

where
P: dimensionless pressure
H: dimensionless film thickness
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L: bearing width
po: the atmospheric pressure
Therefore, Equations (1) and (2) becomes:

∂

∂θ

(
H3 ∂P

∂θ

)
+ α

∂

∂Z

(
H3 ∂P

∂Z

)
− ∂H

∂θ
= 0 (3)

H = 1 + εr cos(θ −∅) (4)

where
α =

R2

L2 =
1

4(L/D)2

Integrating the resulting pressure field results in a dimensionless load [22]:

W =

√
Wr

2
+ Wt

2 (5)

where
Wr =

∫ 1

0

∫ θcav

0
P cos θ dθ dz (6)

Wt =
∫ 1

0

∫ θcav

0
P sin θ dθ dz (7)

W =
w

6ηωRL
(

c
R
)2

The attitude angle is given by [25].

∅ = tan−1(
Wt

Wr
) (8)

The general 3D misalignment model shown previously in Figure 1c, which is adapted
from the work of the first author [8], is incorporated in the solution scheme using the
following equations:

∆v(z) = ∆vo (1− 2Z) f or Z ≤ 1/2
∆v(z) = ∆vo (2Z− 1) f or Z > 1/2
∆h(z) = ∆ho (1− 2Z) f or Z ≤ 1/2
∆h(z) = ∆ho (2Z− 1) f or Z > 1/2

(9)

where, ∆ = δ/c, and Z = z/L (dimensionless variables).
Using this 3D representation gives a more realistic modeling of the journal deviations

in the vertical (∆v(z)) and horizontal directions (∆h(z)) along the bearing width.
In the case of misalignment, the eccentricity, as well as the attitude angle, are no longer

constant along the bearing width. They should be identified at each Z position along the
bearing width, as given by [8]:

∅(z) = tan−1 e sin∅+ δh(z)
e cos∅− δv(z)

for z ≤ L/2 (10)

e(z) =
√
(e cos∅− δv(z))2 + (e sin∅+ δh(z))2 (11)

∅(z) = tan−1 e sin∅− δh(z)
e cos∅+ δv(z)

for z > L/2 (12)

e(z) =
√
(e cos∅+ δv(z))2 + (e sin∅− δh(z))2 (13)
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where ∅ and e: the attitude angle and the eccentricity at z = L/2. These equations are used
to calculate the new gap (due to misalignment) between the shaft and the bearing based on
Equation (4).

The bearing with a variable profile was illustrated previously in Figure 1c. More detail
about this profile variation can be found in [19]. The resulting gap in the circumferential
direction related to this variation as a function of the z position along the bearing length is
given by [19]:

G(z) = A (1− Z 1
B ) for Z ≤ B

G(z) = A (1 + 1
B (Z− 1)) for Z ≥ 1− B

G(z) = 0 for B < Z < 1− B
(14)

where A and B (dimensionless) are: A = a/C and B = b/L (see Figure 1c).
These two dimensionless parameters are used to identify the effectiveness of varying

the bearing profile. Dealing with the modification parameters in terms of the main bearing
design parameters (c, L) provides the manufacturers with a more noticeable idea about the
amount of required changes in the values of parameters related to the design of the bearing.

The coupling of Equations (4), (9) and (14) results in the total gap between the mis-
aligned journal and the modified bearing. This gap is then used in the solution required to
determine the static and dynamic characteristics of the bearing system.

The friction coefficient ( f ) can be determined using the following equation [26]:

f =
F
W

(15)

where W is the supported load, F = ℘
u is the friction force, u = Rω, ℘ is the power loss

given by ℘ = ω ∑[ηR3ω
∫ θ

0 l dθ
h + 1

2 εr(FX sin∅− FY cos∅)], and FX and FY are the bearing
forces in the horizontal and vertical directions, respectively. These forces can be easily
calculated by integrating the pressure field.

3. Dynamic Characteristics

Following the linear stability analyses, the nonlinear hydrodynamic forces must be
linearized around the journal steady state position to determine the stiffness and damping
coefficients.

The equations of these eight coefficients are derived based on the time depending
Reynolds equation, which is given by:

∂

∂x

(
h3

12η

∂p
∂x

)
+

∂

∂z

(
h3

12η

∂p
∂z

)
=

Uj

2
∂h
∂x

+
∂h
∂t

(16)

The corresponding film equation is [27]:

h = h0 + ∆x cos θ + ∆y sin θ (17)

Therefore, the ∂h
∂t term in Equation (16) can be written as

∂h
∂t

= ∆
.
x cos θ + ∆

.
y sin θ (18)

Substituting Equation (18) into Equation (16) and using dimensionless variables to get:

∂

∂x

(
h3

12η

∂p
∂x

)
+

∂

∂z

(
h3

12η

∂p
∂z

)
=

U
2

∂h
∂x

+ ∆
.
x cos θ + ∆

.
y sin θ (19)

Equation (19) can be written in a dimensionless form as:

∂

∂θ

(
H3 ∂P

∂θ

)
+ α

∂

∂Z

(
H3 ∂P

∂Z

)
=

∂H
∂θ

+ 2(∆
.

Y sin θ + ∆
.

X cos θ) (20)

where:
.

X = R
.
x

Uc ,
.

Y = R
.
y

Uc .
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The work of Lund and Thomson [26] is followed in this analysis where the x-axis is
downward, but the results are reversed for the purpose of consistency with the system of
coordinates adopted in this analysis.

The hydrodynamic forces are functions of x, y,
.
x, and

.
y [25,26], which are:

Fx = Fx (x , y,
.
x,

.
y
)

Fy = Fy (x , y,
.
x,

.
y
) (21)

Fx =
∫ 1

0

∫ θcav

0
P cos θ dθ dZ Fy =

∫ 1

0

∫ θcav

0
P sin θ dθ dZ (22)

where the total force is
F =

√
Fx2 + Fy2.

The dynamic coefficients can be written in the following form [27]:

[k] =
[

kxx kxy
kyx kyy

]
=

[
∂Fx
∂X

∂Fx
∂Y

∂Fy
∂x

∂Fy
∂Y

]
(23)

[c] =
[

cxx cxy
cyx cyy

]
=

 ∂Fx

∂
.

X
∂Fx

∂
.

Y
∂Fy

∂
.

X

∂Fy

∂
.

Y

 (24)

The eight dynamic coefficients are written based on the form used by [26]:

Kxx =
c kxx

F
, Kxy =

c kxy

F
, Kyx =

c kyx

F
, Kyy =

c kyy

F
(25)

Cxx =
c ω cxx

F
, Cxy =

c ω cxy

F
, Cyx =

c ω cyx

F
, Cyy =

c ω cyy

F
(26)

Therefore, using Equations (23) and (24) to differentiate Equation (3) yields:

Kxx =
∫ 1

0

∫ 2π
0 Px cos θ dθ dz

Kxy =
∫ 1

0

∫ 2π
0 Py cos θ dθ dz

Kyy =
∫ 1

0

∫ 2π
0 Py sin θ dθ dz

Kyx =
∫ 1

0

∫ 2π
0 Px sin θ dθ dz

(27)

Similarly, the damping coefficients are:

Cxx =
∫ 1

0

∫ 2π
0 P .

x cos θ dθ dz
Cxy =

∫ 1
0

∫ 2π
0 P.

y cos θ dθ dz

Cyx =
∫ 1

0

∫ 2π
0 P .

x sin θ dθ dz
Cyy =

∫ 1
0

∫ 2π
0 P.

y sin θ dθ dz

(28)

where
Px =

∂P
∂X

, Py =
∂P
∂Y

, P .
x =

∂P

∂
.

X
, P.

y =
∂P

∂
.

Y
The other derivatives required to the determination of the dynamic coefficients are

evaluated as follows:
∂H
∂t

= ∆
.

X cos θ + ∆
.

Y sin θ (29)
∂H
∂X

= cos θ (30)

∂H
∂Y

= sin θ (31)
∂H
∂θ

= −∆X sin θ + ∆Y cos θ (32)

The differentiation with respect to X and Y gives:
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∂

∂θ

(
H3 ∂Px

∂θ

)
+ α

∂

∂Z

(
H3 ∂Px

∂Z

)
= − ∂

∂θ

(
3H2 cos θ

∂P
∂θ

)
− α

∂

∂Z

(
3H2 cos θ

∂P
∂Z

)
− sin θ (33)

∂

∂θ

(
H3 ∂Py

∂θ

)
+ α

∂

∂Z

(
H3 ∂Py

∂Z

)
= − ∂

∂θ

(
3H2 sin θ

∂P
∂θ

)
− α

∂

∂Z

(
3H2 sin θ

∂P
∂Z

)
− cos θ (34)

Similarly, the differentiation with respect to
.

X and
.

Y yields:

∂

∂θ

(
H3 ∂P .

x
∂θ

)
+ α

∂

∂Z

(
H3 ∂P .

x
∂Z

)
= cos θ (35)

∂

∂θ

(
H3

∂P.
y

∂θ

)
+ α

∂

∂Z

(
H3

∂P.
y

∂Z

)
= sin θ (36)

Equations (33)–(36) require a numerical solution in order to determine the pressure
derivatives related to the calculation of Kxx, Kxy, Kyx, Kyy, Cxx, Cxy and Cyx, which will be
explained later.

4. Stability of the System

After determining the dynamic coefficients, the critical speed and the time response of
the bearing system can be identified. The system is stable if the operating rotational speed
is less than the critical speed value. The dangerous journal whirling, which is related to the
stability of the system, takes place around the steady state (equilibrium) position [28]. The
equations of motion for the rigid rotor shown in Figure 2, which is supported by journal
bearings, are given by [28]

m
..
x′ = −Fx + fex − f sin Ωt (37)

m
..
y′ = −Fy + fey − f cos Ωt + W (38)

where [29] Fx and Fy are the bearing forces, f is the unbalance force, fex and fey are the
external loads. x′ and y′ are the axes of whirling of the shaft center around its equilibrium
position.
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M
..
X
′
= −Fx + Fex − Ru sin T (39)

M
..
Y
′
= −Fy + Fey − Ru cos T + 1 (40)

where

M =
m c Ω2

W
, Fx =

Fx

W
and Ru = mu r

Ω2

W
The solution of the equations of motion is essential in determining the dynamic

response of the system [30]. Neglecting the unbalanced and external forces, the critical
speed can be determined using the solution of the following linear equations:

M
..
X
′
+ Fx = 0 (41)

M
..
Y
′
+ Fy = 0 (42)

The bearing forces can be written for small displacement around the steady state
position as [26]:

Fx = Kxx X′ + Kxy Y′ + Cxx
.

X
′
+ Cxy

.
Y
′

(43)

Fy = Kyx X′ + Kyy Y′ + Cyx
.

X
′
+ Cyy

.
Y
′

(44)

Substitution of these two Equations (43) and (44) in Equations (41) and (42) yields:

M
..
X
′
+ Kxx X′ + Kxy Y′ + Cxx

.
X
′
+ Cxy

.
Y
′
= 0 (45)

M
..
Y
′
+ Kyx X′ + Kyy Y′ + Cyx

.
X
′
+ Cyy

.
Y
′
= 0 (46)

The solution for these two equations are [31]:

X′ = Aeiλt, Y′ = Beiλt (47)

Substitution of these solutions in Equations (45) and (46) gives:

(keq− Kxx)
(
keq− Kyy

)
− λ2 Cxx Cyy − Kxy Kyx + λ2 CxyCyx = 0 (48)

where

λ =

√
(keq− Kxx)

(
Keq− Kyy

)
− Kxy Kyx

Cxx Cyy − CxyCyx
(49)

Keq =
Kxx Cyy + KyyCxx − KyxCxy − KxyCyx

Cxx + Cyy
(50)

The critical speed (Ωcrit) is:

Ωcrit =

√
keq
λ

(51)

5. Numerical Solution

The determination of the eight dynamic coefficients requires a numerical solution
for the governing equations illustrated previously. Following this determination, the
equations of motion can be solved numerically in order to determine the time responses
of the system to the position perturbation in addition to the identification of the stability
limits of the system. The solution of these equations is based on using a fourth-order
Runge-Kutta method. The solution plane for the variable profile bearing hydrodynamic
problem under misalignment conditions is a rectangle where the nodes are distributed in
the circumferential and longitudinal directions. The successive over-relaxation method is
used in order to obtain a relatively faster convergence for the Gauss–Sedial method.

Discretizing the related equations yields the following equations:
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P(i,j) =
1
β

[
Hb

3 P(i+1,j) + Ha
3 P(i−1,j) + αC2Hc

3 P(i,j+1) + αC2Hd
3 P(i,j−1) − C1H(i+1,j) + C1H(i−1,j)

]
(52)

where α = R2

L2 , C1 = ∆θ
2 , C2 = (∆θ)2

(∆Z)2 , β = Hb
3 + Ha

3 + α C2Hc
3 + α C2Hd

3, ∆Z and ∆θ are

the mesh steps.
The lubricant film in terms of i, j position is:

H(i, j) =
(

1 + εr(Z) cos(θ(i,j) −∅
)
) (53)

More details about the solution method can be found in [8].

The convergence condition of the pressure values is given by
∑|P(i,j)new−P(i,j)old|

∑ P(i,j)old
< 10−7.

Furthermore, after obtaining the pressure convergence, the resultant hydrodynamic load is
calculated. This load is then compared with the actual supported load to achieve an accurate
load condition of ∓10−5. If this condition is not satisfied, the eccentricity ratio changes, and
the pressure field is again determined based on the newly updated eccentricity ratio. This
process is repeated until the load (as well as the pressure) convergence is achieved. This load
corresponds to εr = 0.6 in the aligned case. A flow chart for the general solution procedure
is shown in Figure 3. After obtaining the solution convergences, the stuffiness and damping
coefficients are calculated, and then the time responses to the position perturbation are
determined by solving the equations of motion based on the Runge–Kutta method.
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The numerical solution of Equations (33)–(36) is required to calculate the dynamic
coefficients. Using the finite difference method to discretize these equations yields the
following general equation to determine the corresponding pressure derivative (P(i.j)):

P(i.j) =
1
ψ

[
(∆θ)2 RHS− Hb

3 P(i+1.j) − Ha
3 P(i−1.j) − αC2Hc

3 P(i.j+1) − αC2Hd
3 P(i.j−1) + C1H(i+1.j) − C1H(i−1.j)

]
(54)

where α = R2

L2 , C1 = ∆θ
2 , C2 = (∆θ)2

(∆Z)2 and ψ = −Hb
3 − Ha

3 − α C2Hc
3 − α C2Hd

3.

The right side of Equations (33)–(36) can be calculated numerically using the following
equations:

RHS(19) =
(3 cos θb H2

b+3 cos θa H2
a)P(i.j)

(∆θ)2 − 3 cos θb H2
b P(i+1.j)

(∆θ)2 − 3 cos θa H2
a P(i−1.j)

(∆θ)2 +

α
(3 cos θc H2

c +3 cos θd H2
d)P(i.j)

(∆Z)2 − α
3 cos θc H2

c P(i.j+1)

(∆Z)2 − α
3 cos θd H2

d P(i.j−1)

(∆Z)2 − sin θ

(55)

RHS(20) =
(3 sin θb H2

b+3 sin θa H2
a)P(i.j)

(∆θ)2 − 3 sin θb H2
b P(i+1.j)

(∆θ)2 − 3 sin θa H2
a P(i−1.j)

(∆θ)2 +

α
(3 sin θc H2

c +3 sin θd H2
d)P(i.j)

(∆Z)2 − α
3 sin θc H2

c P(i.j+1)

(∆Z)2 − α
3 sin θd H2

d P(i.j−1)

(∆Z)2 − cos θ

(56)

RHS(21) = cos θ(i.j) (57)

RHS(22) = sin θ(i.j) (58)

6. Results and Discussions

The numerical model used in this work is firstly examined in terms of the required
numbers of nodes and time steps to ensure the independence of the analysis on the dis-
cretization density (16,471 nodes have been found to be sufficient enough for the solution).
Furthermore, the calculated critical speed is compared with the well-known work of Lund
and Thomson [26] for the purpose of verification. Table 1 shows this comparison for
different values of the eccentricity ratio and L/D = 1. The maximum difference is only
1.23% at a high eccentricity ratio. The agreement is also excellent at the lower values of
the eccentricity ratio. The results presented in this work are obtained for a bearing with
L/D = 1.25 and a supported load corresponding to an ideal case where the eccentricity
ratio is 0.6.

Table 1. Verification of the current work (L/D = 1).

εr Current Work Lund and Thomson % Diff.

0.15 2.0901 2.0966 0.31139

0.352 2.0909 2.1096 0.88648

0.559 2.1559 2.1714 0.71303

0.734 2.7871 2.8217 1.22693

The results of the solution for the case of the perfectly aligned bearing are shown
in Figure 4 for a finite length bearing where L/D = 1.25 and the eccentricity ratio (εr) is
0.6. Figure 4a shows the dimensionless pressure distribution, and Figure 4b illustrates the
dimensionless film thickness levels. The determination of the cavitation zone is important
for the purpose of obtaining the correct solution for the hydrodynamic problem of the
journal bearing as the pressure generation extends beyond the position of 180◦, as shown
in Figure 4a. It can be seen that the pressure distribution is symmetrical with the center of
the bearing width (Z direction), where its maximum value is at this position. In addition,
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the film thickness levels are also symmetrical with the position of minimum film thickness
where the angle in the circumferential direction is 180◦. Furthermore, the film thickness
value at any position in the circumferential direction is constant (extruded shape) along
the bearing width. However, this ideal situation rarely exists in the typical usages of this
type of bearing as the bearing system is usually subjected to some degree of misalignment,
which affects the shape and the values of the film and pressure distributions.
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Figure 4. Dimensionless results of the perfectly aligned bearing, (a) Pressure distribution and
(b) film thickness.

Figure 5 illustrates this concept, where two cases of misalignment are considered.
The dimensionless pressure distributions on the left side correspond to the misalignment
case in the vertical direction only, while the right side shows the pressure distributions
for the general case of 3D misalignment where the shaft deviation takes place in the
vertical and horizontal directions. The misalignment due to only horizontal deviation is not
considered, as the vertical misalignment usually accompanies the journal bearing system
as a result of shaft deformation under the supported load. It is worth mentioning that each
side has a different legend, as using a single unified legend does not give a clear picture
of the differences between the two cases. Five values for the misalignment parameters
are examined in this figure for each case, which are ∆v = 0.2, 0.5, 0.55, 0.57 and 0.59
for the first case and ∆v = ∆h = 0.2, 0.5, 0.55, 0.57 and 0.59 for the second 3D case.
These values range from light to extreme levels of misalignment. In comparison with
the pressure distribution of the perfectly aligned bearing shown previously in Figure 4,
two distinguished features can be observed from the results shown in Figure 5. The first
thing is that the maximum pressure increased significantly as the misalignment parameters
increased and concentrated close to the bearing edge, where the misalignment effect is
the maximum in reducing the gap between the shaft and the bearing wall. The second
issue is that the pressure distribution is no longer symmetrical due to the misalignment.
These two features are more clear at the extreme levels of misalignment, particularly in
the last case, Figure 5e, where the misalignment parameter is 0.59. Furthermore, the
vertical misalignment negatively affects the pressure distribution in terms of the maximum
pressure values and the asymmetricity in the distribution of the pressure levels. However,
the 3D misalignment, as will be shown later, has a larger drawback regarding the friction
coefficient.
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As explained previously, the perfect alignment of the bearing system is hard to achieve
in industrial applications, where the presence of misalignment is actually unavoidable.
Using a variable profile in the longitudinal bearing direction can be used to reduce the
misalignment effect by reducing the pressure levels and increasing the minimum film
thickness, which means, in other words, extending the life of the bearing. Figure 6 illustrates
this effect where the bearings in the last extreme cases shown in the previous figure
(Figure 5e) are modified. The pressure distributions of Figure 5e are repeated here for the
purpose of comparison with the modified bearings. The modification parameters used in
this figure are A = B = 0.25 (more details about the effect of the modification parameters
will be explained later in the following figures). Figure 6a shows the modification effect
on the pressure distribution of the bearing system when the misalignment presents in the
vertical direction. The maximum pressure value was reduced by 26.6% (from 1.58 to 1.16)
due to this modification. The pressure spike is relatively shifted away from the bearing
edge, which may help prevent the bearing wear at the bearing edge. Similar behavior can
be seen in the case of 3D misalignment, as shown in Figure 6b, where Pmax is reduced by
29.2% (from 1.06 to 0.75) in addition to shifting the pressure spikes from the bearing edges.

The corresponding effect of the modification on the level of the dimensionless film
thickness for the severe misalignment case illustrated in Figure 5e (misalignment parameter
is 0.59) is shown in Figure 7. The minimum film thickness decreases from 0.4 for the case of
a perfectly aligned bearing (see Figure 4b) to 0.0495 for the case when the misalignment is
in the vertical direction only, as shown in Figure 7a. The bearing profile modification helps
in elevating Hmin to be 0.1887 as shown on the right side of this figure. The corresponding
results of the minimum film thickness for the 3D misalignment case are shown in Figure 7b.
This case of misalignment reduces the film thickness to 0.0572 in comparison with 0.4 for
the ideal aligned case (see Figure 4b).

The bearing modification elevates the level of Hmin to 0.2443. In the two cases of the
severe level of misalignment, introducing the bearing profile modification significantly
improves the levels of film thickness. This is an expected outcome due to the resulting
change in the geometry to compensate for the loss of the sufficient gap between the bearing
walls and the surface of the shaft due to the misalignment.

The comparison between the two cases of misalignment is extended to include their
effects on the friction coefficient in addition to more detail about the misalignment conse-
quences on Pmax and Hmin for a wide range of misalignment parameters. Figure 8 illustrates
these comparisons where Figure 8a shows the variations in Pmax and Hmin and Figure 8b
illustrates the comparisons in terms of the friction coefficient and critical speed. The mis-
alignment parameters are a range of ∆v (∆h = 0) for the vertical misalignment case and
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arrange as ∆v = ∆h for the 3D misalignment case. The vertical and 3D misalignment
increases Pmax and reduces Hmin for the whole range of the modification parameters, as
shown in Figure 8a, with a more negative influence associated with the vertical misalign-
ment case. On the other hand, the friction coefficient in both cases is not significantly
affected by the presence of misalignment when the misalignment parameter is relatively
low (≤0.4), but as this parameter increases, the friction coefficient starts to increase in both
cases. It can be seen that the case of 3D misalignment causes significant increases in the
coefficient of friction in comparison with the vertical misalignment case, particularly at the
extreme levels of misalignment parameters. The friction coefficient for the perfectly aligned
case is 2.2181, which increases to 2.3718 and 2.5643 for the vertical and 3D misalignment
cases, respectively, when the misalignment parameter is 0.59. This represents an increase of
6.92% and 15.6% for the vertical and 3D misalignment cases, respectively. This increase
in the friction coefficient of the 3D misalignment case in comparison with the vertical
misalignment case can be attributed to the resulting geometry of the gap between the shaft
surface and the bearing wall. As the shaft deviates in the vertical and horizontal direction
in the 3D misalignment case, the shaft surface becomes closer to the bearing wall over a
relatively wider area, leading to an increase in the coefficient of friction. This Figure also
shows that the dimensionless critical speeds in both cases are increased with the increasing
misalignment parameters. The significant changes in the friction coefficient and the critical
speed occur when the ∆v (or ∆v = ∆h) ≥ 0.4. Therefore, this range of misalignment will be
investigated in the following Figures, where the bearing profile modification is introduced
to reduce the misalignment consequences on the bearing characteristics.
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Figure 9 shows the effect of bearing profile modification on the bearing character-
istics for the first case of vertical misalignment when the modification parameters are
A = B = 0.25. Figure 9a illustrates this effect on Pmax and Hmin where the modification
reduces the maximum pressure and increases the minimum film thickness. The reduction
in Pmax is 26.6% and the increase in Hmin is about three times the corresponding unmodified
misaligned bearing when ∆v = 0.59 as explained previously. The corresponding effects
of profile modification on the friction coefficient and the critical speed for the first case of
vertical misalignment are shown in Figure 9b. It can be seen that the friction coefficient
is reduced by 4.97% (from 2.3718 to 2.2539). The critical speed of the misaligned bearing,
on the other hand, is also reduced as a result of the modification, but the positive thing is
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that the critical speed for the modified bearing (3.6906) is greater than that of the perfectly
aligned bearing (2.6789).
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The corresponding results of the effect of profile modification on the bearing charac-
teristics of the second case of 3D misalignment are shown in Figure 10. In general, similar
behaviors have been obtained for all bearing characteristics. The friction coefficient is
reduced by 9.76% (from 2.5357 to 2.2881), representing a significant gain for the profile
modification in addition to improvement in the minimum film thickness levels and the
reduction in the maximum pressure values. Furthermore, despite the reduction in the
critical speed due to the profile modification compared with the misaligned case, there is
an improvement in the critical speed of the modified bearing (3.4121) compared with the
aligned case where the critical speed is 2.6789.

The effect of the chamfer parameter, B, which represents the amount of material
removal from the bearing’s inner surface in the longitudinal direction of the bearing, is
illustrated in Figure 11. Figure 11a represents the variation of Pmax and Hmin with B
and Figure 11b illustrates the corresponding variations in the friction coefficient and the
critical speed. It can be seen that the optimum range of B is 0.2 ≤ B ≤ 0.4 where the four
examined characteristics responded more efficiently over this range. The other modification
parameter, A, which represents the amount of material removal in the radial direction from
the bearing inner surface, has also been examined in detail, where the optimum value is
found to be 0.25.

The investigation of the bearing modification is further extended to include the time
response of the journal to the position perturbation. If the journal shifts to the bearing center
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and is released, the resulting movement of its center reflects its stability characteristics. If
the journal returns to its equilibrium position, this means that the rotor-bearing system is
stable. On the other hand, for the critical case, the shaft is whirling around the equilibrium
position. If the shaft rotates at a speed greater than its critical speed, the vibration amplitude
will increase with time until it reaches the bearing wall. Therefore, the stability of the
modified and unmodified bearings is examined in terms of the time response of the position
coordinates x and y and the eccentricity ratio, εr under four operation speeds. The first
speed is less than the critical speed of both modified and unmodified bearings, with the
responses shown in Figure 12. It can be seen that the shaft center returns to its equilibrium
position after a relatively short period of time (t < 0.1 s), which means, in other words,
that the system for both bearings is stable. Figure 13 illustrates the time responses when
the journal rotates at a speed equal to the critical speed of the unmodified bearing. It can be
seen that the modified bearing is stable as it returns to its equilibrium position after about
3 s while all the responses of the unmodified bearing repeated with time, which means
that the bearing system is under a critical situation. The third chosen speed is the critical
speed of the modified bearing, where the time responses under this operating speed are
illustrated in Figure 14. It can be seen that when the x and y response of the unmodified
bearing increased with time and exceeded 140 µm when t > 0.1 s (see Figure 14a,b) where
the radial clearance used in this bearing is 150 µm. The combination of the x and y response
gives the eccentricity ratio shown in Figure 14c, which is equal to 1 at t = 0.13 s, and which
means that the journal surface touches the bearing wall. On the other hand, the x, y, and εr
responses of the modified bearing repeated with time as the bearing rotates at its critical
speed. The last case shown in Figure 15 illustrates the responses when the operating speed
is less than the critical speed of the modified bearing and greater than the critical speed
of the unmodified bearing. It can also be seen that the modified bearing is stable, which
requires about 5 s to return to its equilibrium position, while the unmodified bearing is
unstable where the journal surface reaches the bearing wall after 0.33 s. It is clear that the
modified bearing operates safely over a wider range of speeds compared to the unmodified
bearing. It is worth mentioning that the time response of the misaligned and modified
bearing is an extremely complex problem as it requires a solution for the equations of
motion corresponding to geometry in space. However, this important solution will be
addressed by the authors in the near future.
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7. Conclusions

This paper presents a numerical solution for the problem of misaligned journal bear-
ings, considering the misalignment in the vertical plane in addition to a general 3D mis-
alignment case. The solution considers varying the bearing profile in order to reduce the
misalignment effect and investigate the system time responses to the position perturbation.
The solution considers the Reynolds boundary condition to identify the cavitation zone.
It has been found that vertical misalignment has more negative consequences in terms of
the maximum pressure and minimum film thickness values. The pressure distribution
is much more asymmetrical compared to the 3D misalignment case. However, the 3D
misalignment has many negative consequences on the coefficient of friction at the higher
levels of misalignment, which increased by 15.6% in comparison with 6.92% for the vertical
misalignment case. The variable profile of the bearing reduces Pmax by 26.6% 29.2% and
reduces the friction coefficient by 4.97% and 9.76% for the vertical and 3D misalignment
cases, respectively. The minimum film thickness in both cases of misalignment has in-
creased almost three times, and the critical speed and the time responses are also improved
by varying the bearing profile.
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Nomenclature

Symbol Description Units
a, b Design parameters for the bearing modification m
A, B Dimensionless design parameters -
c Clearance m
e Eccentricity of the journal m
h Lubricant film thickness m
H Dimensionless film thickness, H = h

c -
Hmin Dimensionless Minimum film thickness -
L Bearing width m
P Dimensionless pressure, P =

p−po
6ηω ( c2

R2 ) -
R Bearing radius m
U Velocity m/s
Um Mean velocity m/s
z Axial coordinate, 0 ≤ z ≤ L m
Z Dimensionless coordinate, Z = Z

L -
∅ Attitude angle degree
∆h Dimensionless horizontal misalignment -
∆ho Dimensionless horizontal misalignment at the bearing edge -
∆v Dimensionless vertical misalignment -
∆vo Dimensionless vertical misalignment at the bearing edge -
εr Eccentricity Ratio, εr =

e
c -

η Lubrication viscosity Pa·s
ρ Mass density of oil kg/m3

θ Angle in the circumferential direction degree
ω Journal Angular velocity,ω = 2πN rad/s
∆θ Step in the circumferential direction degree
∆Z Dimensionless step in the longitudinal direction -
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