An Experimental Investigation of the Tribological Performance and Dispersibility of 2D Nanoparticles as Oil Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Lubricant
Artificial Lubricant Degradation
2.1.2. Test Samples
2.1.3. Nano-Additive Particles
2.2. Methodology
2.2.1. Preparation of the Nanoparticle Contained Improved Lubricants
Process of Mixing of the Nanoparticles in Liquid Lubricant—Conventional Method
- Figure 1b depicts the samples prepared using the conventional method, where the nanoparticles are mixed with fresh oil, and the solution is manually stirred.
- Figure 1c, the nanoparticles are mixed with fresh oil and manually stirred, and the solution is chemically degraded using aqueous HCl.
- Figure 1d, the nanoparticles are mixed with fresh oil, and a surfactant, oleic acid, is added after manually stirring the solution.
Process of Mixing of the Nanoparticles in Liquid Lubricant—Proposed Method
2.2.2. Experimental Design and Methodology
2.3. Experimental Setup
2.4. 2D Nanoparticles Morphological Analysis (FESEM, EDX, TEM and Raman Analysis)
2.4.1. FESEM, EDX and TEM Analysis of 2D Nanoparticles
2.4.2. Raman Analysis of 2D Nanoparticles
3. Results and Discussions
3.1. Specific Film Thickness Calculation
3.2. Tribological Evaluation
3.3. FESEM and EDX Analysis of the Worn out Surfaces
3.4. Comparison of the Conventional Methodology of Mixing the 2D Nano Additives and the New Proposed Methodology
3.4.1. Visual Inspection
3.4.2. Inspection through Optical Imaging
3.4.3. Viscosity Measurement
4. Conclusions
- (a)
- Surface roughness has a direct relationship with wear volume, with increased roughness resulting in more boundary lubrication and increased asperity contact. Lowering surface roughness by 85% can decrease wear volume by 72.7%.
- (b)
- Graphene-based nanolubricants remain ineffective in improving the performance of chemically degraded lubricants.
- (c)
- The proposed dispersion method for mixing the 2D nanoparticles was confirmed to reduce agglomeration and enhance the lubricant consistency. The results confirm a wear reduction of 50% and a friction reduction of 33.33%, compared those results obtained from sample synthesised by the conventional method.
- (d)
- The average coefficient of friction reduction achieved by the nano-additives, compared to the base fluid, ranges from 23.4% to 42.53%.
- (e)
- The implementation of two-dimensional (2D) nano-additives with exceptionally thin longitudinal dimensions has demonstrated a significant reduction in wear, of up to 75% compared to the fresh base lubricant, and up to approximately 83% when utilized with deteriorated lubricant.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Specific Film Thickness
- = Pressure viscosity coefficient
- L = Face width of the gear
- W = Load normal to contact
- = Dynamic viscosity
- Rq = Peak-to-valley surface roughness
- Rx = Effective radius
- P0 = Hertzian pressure
- a = Contact half width
- = Equivalent modulus of elasticity
- = 1.2 × 10−8 m2/N
- L = 0.012 m
- W = 125 N
- = 0.24 to 0.26 Pa·s
- Rx = 0.02 m
- = 226 GPa
References
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Nylund, N.-O.; Mäkelä, K.; Erdemir, A. Global energy consumption due to friction in trucks and buses. Tribol. Int. 2014, 78, 94–114. [Google Scholar] [CrossRef]
- Grutzmacher, P.G.; Suarez, S.; Tolosa, A.; Gachot, C.; Song, G.; Wang, B.; Presser, V.; Mücklich, F.; Anasori, B.; Rosenkranz, A. Superior wear-resistance of Ti3C2T × multilayer coatings. ACS Nano 2021, 15, 8216–8224. [Google Scholar] [CrossRef]
- Singer, I.L. How Third-Body Processes Affect Friction and Wear. MRS Bull. 1998, 23, 37–40. [Google Scholar] [CrossRef]
- Holmberg, K.; Ronkainen, H.; Laukkanen, A.; Wallin, K. Friction and wear of coated surfaces—Scales, modelling and simulation of tribomechanisms. Surface Coat. Technol. 2007, 202, 1034–1049. [Google Scholar] [CrossRef]
- Khadem, M.; Penkov, O.V.; Yang, H.-K.; Kim, D.-E. Tribology of multilayer coatings for wear reduction: A review. Friction 2017, 5, 248–262. [Google Scholar] [CrossRef]
- Subramanian, C.; Strafford, A.K. Review of multicomponent and multilayer coatings for tribological applications. Wear 1993, 165, 85–95. [Google Scholar] [CrossRef]
- Bartz, W.J. Tribology, lubricants and lubrication engineering—A review. Wear 1978, 49, 1–18. [Google Scholar] [CrossRef]
- Boyde, S. Green lubricants. Environmental benefits and impacts of lubrication. Green Chem. 2002, 4, 293–307. [Google Scholar] [CrossRef]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Cai, M.; Yu, Q.; Liu, W.; Zhou, F. Ionic liquid lubricants: When chemistry meets tribology. Chem. Soc. Rev. 2020, 49, 7753–7818. [Google Scholar] [CrossRef]
- Spikes, H.A. Additive-additive and additive-surface interactions in lubrication. Lubr. Sci. 1989, 2, 3–23. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, J.; Wang, C.; Lu, X.; Hao, J. Synergistic effect and long-term lubricating mechanism of WS2/oil combinations determined via oil molecule structures in vacuum. Tribol. Int. 2023, 179, 107997. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, S. 2D nanomaterials as lubricant additive: A review. Mater. Des. 2017, 135, 319–332. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, X.; Lee, K.; Yoon, H.C.; Xu, Q.; Wang, D. Recent development in friction of 2D materials: From mechanisms to applications. Nanotechnology 2021, 32, 312002. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, M.; Li, X.; Jin, L.; Su, G.; Mo, Y.; Li, L.; Zhu, H.; Tian, Y. Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System. Materials 2018, 11, 1314. [Google Scholar] [CrossRef] [PubMed]
- Zaharin, H.; Ghazali, M.; Thachnatharen, N.; Ezzah, F.; Walvekar, R.; Khalid, M. Progress in 2D materials based Nanolubricants: A review. Flatchem 2023, 38, 100485. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Hu, H.; Khadem, M.; Penkov, O.V. Tribology of 2D Nanomaterials: A Review. Coatings 2020, 10, 897. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil additives. J. Nanoparticle Res. 2016, 18, 223. [Google Scholar] [CrossRef]
- Pantano, M.F.; Kuljanishvili, I. Advances in mechanical characterization of 1D and 2D nanomaterials: Progress and prospects. Nano Express 2020, 1, 022001. [Google Scholar] [CrossRef]
- Pritchard, C.; Midgley, J. The effect of humidity on the friction and life of unbonded molybdenum disulphide films. Wear 1969, 13, 39–50. [Google Scholar] [CrossRef]
- Jazaa, Y.; Lan, T.; Padalkar, S.; Sundararajan, S. The Effect of Agglomeration Reduction on the Tribological Behavior of WS2 and MoS2 Nanoparticle Additives in the Boundary Lubrication Regime. Lubricants 2018, 6, 106. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, J.-K.; Lee, J.-K.; Jeong, Y.-M.; Cheong, S.-I.; Ahn, Y.-C.; Kim, S.H. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2008, 186, 145–153. [Google Scholar] [CrossRef]
- Feng, J.; Mao, J.; Wen, X.; Tu, M. Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J. Alloy. Compd. 2011, 509, 9093–9097. [Google Scholar] [CrossRef]
- Bakunin, V.; Suslov, A.; Kuzmina, G.; Parenago, O.; Topchiev, A. Synthesis and Application of Inorganic Nanoparticles as Lubricant Components—A Review. J. Nanoparticle Res. 2004, 6, 273–284. [Google Scholar] [CrossRef]
- Shiao, S.; Chhabra, V.; Patist, A.; Free, M.; Huibers, P.; Gregory, A.; Patel, S.; Shah, D. Chain length compatibility effects in mixed surfactant systems for technological applications. Adv. Colloid Interface Sci. 1998, 74, 1–29. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef]
- Raffa, P.; Broekhuis, A.A.; Picchioni, F. Polymeric surfactants for enhanced oil recovery: A review. J. Pet. Sci. Eng. 2016, 145, 723–733. [Google Scholar] [CrossRef]
- Kumar, N.; Saini, V.; Bijwe, J. Performance properties of lithium greases with PTFE particles as additive: Controlling parameter- size or shape? Tribol. Int. 2020, 148, 106302. [Google Scholar] [CrossRef]
- Kumar, N.; Saini, V.; Bijwe, J. Exploration of Talc nanoparticles to enhance the performance of Lithium grease. Tribol. Int. 2021, 162, 107107. [Google Scholar] [CrossRef]
- Huang, H.; Tu, J.; Gan, L.; Li, C. An investigation on tribological properties of graphite nanosheets as oil additive. Wear 2006, 261, 140–144. [Google Scholar] [CrossRef]
- How, H.G.; Jason, Y.J.J.; Teoh, Y.H.; Chuah, H.G. Investigation of Tribological Properties of Graphene Nanoplatelets in Synthetic Oil. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 96, 115–126. [Google Scholar] [CrossRef]
- Xie, H.; Dang, S.; Jiang, B.; Xiang, L.; Zhou, S.; Sheng, H.; Yang, T.; Pan, F. Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Appl. Surface Sci. 2019, 475, 847–856. [Google Scholar] [CrossRef]
- Singh, A.; Chauhan, P.; Mamatha, T.G. A review on tribological performance of lubricants with nanoparticles additives. Mater. Today: Proc. 2020, 25, 586–591. [Google Scholar] [CrossRef]
- Patel, J.; Pereira, G.; Irvine, D.; Kiani, A. Friction and wear properties of base oil enhanced by different forms of reduced graphene. AIP Adv. 2019, 9, 045011. [Google Scholar] [CrossRef]
- Ali, I.; Basheer, A.A.; Kucherova, A.; Memetov, N.; Pasko, T.; Ovchinnikov, K.; Pershin, V.; Kuznetsov, D.; Galunin, E.; Grachev, V.; et al. Advances in carbon nanomaterials as lubricants modifiers. J. Mol. Liq. 2019, 279, 251–266. [Google Scholar] [CrossRef]
- Patel, J.; Kiani, A. Effects of Reduced Graphene Oxide (rGO) at Different Concentrations on Tribological Properties of Liquid Base Lubricants. Lubricants 2019, 7, 11. [Google Scholar] [CrossRef]
- Thampi, A.D.; Prasanth, M.; Anandu, A.; Sneha, E.; Sasidharan, B.; Rani, S. The effect of nanoparticle additives on the tribological properties of various lubricating oils—Review. Mater. Today Proc. 2021, 47, 4919–4924. [Google Scholar] [CrossRef]
- He, T.; Chen, N.; Fang, J.; Cai, G.; Wang, J.; Chen, B.; Liang, Q. Micro/nano carbon spheres as liquid lubricant additive: Achievements and prospects. J. Mol. Liq. 2022, 357, 119090. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.; Roy, R.; Younis, H.; AlNahyan, M.; Younes, H. Carbon Nanomaterial-Based Lubricants: Review of Recent Developments. Lubricants 2022, 10, 281. [Google Scholar] [CrossRef]
- Morshed, A.; Wu, H.; Jiang, Z. A Comprehensive Review of Water-Based Nanolubricants. Lubricants 2021, 9, 89. [Google Scholar] [CrossRef]
- Marian, M.; Berman, D.; Rota, A.; Jackson, R.L.; Rosenkranz, A. Layered 2D Nanomaterials to Tailor Friction and Wear in Machine Elements—A Review. Adv. Mater. Interfaces 2021, 9, 2101622. [Google Scholar] [CrossRef]
- Marian, M.; Berman, D.; Nečas, D.; Emami, N.; Ruggiero, A.; Rosenkranz, A. Roadmap for 2D materials in biotribological/biomedical applications—A review. Adv. Colloid Interface Sci. 2022, 307, 102747. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, A.; Liu, Y.; Yang, L.; Chen, L. 2D nano-materials beyond graphene: From synthesis to tribological studies. Appl. Nanosci. 2020, 10, 3353–3388. [Google Scholar] [CrossRef]
- Ashraf, A.; Shafi, W.K.; Ul Haq, M.I.; Raina, A. Dispersion stability of nano additives in lubricating oils—An overview of mechanisms, theories and methodologies. Tribol. Mater. Surf. Interfaces 2022, 16, 34–56. [Google Scholar] [CrossRef]
- Shahnazar, S.; Bagheri, S.; Hamid, S.B.A. Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrog. Energy 2016, 41, 3153–3170. [Google Scholar] [CrossRef]
- Muzakkir, S.M.; Hirani, H.; Thakre, G.D. Lubricant for Heavily Loaded Slow-Speed Journal Bearing. Tribol. Trans. 2013, 56, 1060–1068. [Google Scholar] [CrossRef]
- Shinde, A.B.; Pawar, P.M. Multi-objective optimization of surface textured journal bearing by Taguchi based Grey relational analysis. Tribol. Int. 2017, 114, 349–357. [Google Scholar] [CrossRef]
- Hirani, H.; Athre, K.; Biswas, S. Lubricant Shear Thinning Analysis of Engine Journal Bearings. Tribol. Trans. 2001, 44, 125–131. [Google Scholar] [CrossRef]
- Das, R.; Bej, S.; Hirani, H.; Banerjee, P. Trace-level humidity sensing from commercial organic solvents and food products by an AIE/ESIPT-triggered piezochromic luminogen and ppb-level “OFF–ON–OFF” sensing of Cu2+: A combined experimental and theoretical outcome. Acs Omega 2021, 6, 14104–14121. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Murmu, M.; Mandal, S.; Hirani, H.; Banerjee, P. Competitive corrosion inhibition performance of alkyl/acyl substituted 2-(2-hydroxybenzylideneamino)phenol protecting mild steel used in adverse acidic medium: A dual approach analysis using FMOs/molecular dynamics simulation corroborated experimental findings. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 617, 126314. [Google Scholar] [CrossRef]
- Bej, S.; Das, R.; Hirani, H.; Ghosh, S.; Banerjee, P. “Naked-eye” detection of CN− from aqueous phase and other extracellular matrices: An experimental and theoretical approach mimicking the logic gate concept. New J. Chem. 2019, 43, 18098–18109. [Google Scholar] [CrossRef]
- Rezasoltani, A.; Khonsari, M. Experimental investigation of the chemical degradation of lubricating grease from an energy point of view. Tribol. Int. 2019, 137, 289–302. [Google Scholar] [CrossRef]
- Hirani, H.; Jangra, D.; Sidh, K.N. Experimental Investigation on the Wear Performance of Nano-Additives on Degraded Gear Lubricant. Lubricants 2023, 11, 51. [Google Scholar] [CrossRef]
- Gupta, M.K.; Bijwe, J. A complex interdependence of dispersant in nano-suspensions with varying amount of graphite particles on its stability and tribological performance. Tribol. Int. 2020, 142, 105968. [Google Scholar] [CrossRef]
- Box, G.E.; Hunter, J.S.; Hunter, W.G. Statistics for experimenters. In Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Guo, P.; Chen, L.; Wang, J.; Geng, Z.; Lu, Z.; Zhang, G. Enhanced Tribological Performance of Aminated Nano-Silica Modified Graphene Oxide as Water-Based Lubricant Additive. ACS Appl. Nano Mater. 2018, 1, 6444–6453. [Google Scholar] [CrossRef]
- Bao, Y.Y.; Sun, J.L.; Kong, L.H. Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 182, p. 12025. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Zhao, Z.; Yue, Z.; Feng, P.; Ma, X.; Li, H.; Ye, X.; Zhu, M. Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils. Carbon 2022, 191, 84–97. [Google Scholar] [CrossRef]
- Reyes, L.; Loganathan, A.; Boesl, B.; Agarwal, A. Effect of 2D Boron Nitride Nanoplate Additive on Tribological Properties of Natural Oils. Tribol. Lett. 2016, 64, 41. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef] [PubMed]
- HPCL India. Available online: https://www.hplubricants.in/sites/default/files/hp-gear-drive-ep-90.pdf (accessed on 10 April 2023).
- Booser, E.R. Applied Tribology: Bearing Design and Lubrication; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Ash, D.C.; Joyce, M.J.; Barnes, C.; Booth, C.J.; Jefferies, A.C. Viscosity measurement of industrial oils using the droplet quartz crystal microbalance. Meas. Sci. Technol. 2003, 14, 1955–1962. [Google Scholar] [CrossRef]
- Amarnath, M.; Lee, S.-K. Assessment of surface contact fatigue failure in a spur geared system based on the tribological and vibration parameter analysis. Measurement 2015, 76, 32–44. [Google Scholar] [CrossRef]
S. No. | Particle Nomenclature | Average Size of Particles (nm) |
---|---|---|
1 | Graphene (G) | 50–60 nm with the purity of 99.99% |
2 | MoS2 | |
3 | hBN | |
4 | rGO |
Variable | Level | |||
---|---|---|---|---|
1 | 2 | 3 | ||
Graphene (G) | 0 | 0.2 wt% | 0.4 wt% | |
rGO | 0 | 0.2 wt% | 0.4 wt% | |
MoS2 | 0 | 0.2 wt% | 0.4 wt% | |
hBN | 0 | 0.2 wt% | 0.4 wt% | |
Experiment Design | ||||
Experiment No./Sample ID | Graphene (in wt%) | rGO (in wt%) | MoS2 (in wt%) | hBN (in wt%) |
L1 | 0 | 0 | 0 | 0 |
L2 | 0 | 0.2 | 0.2 | 0.2 |
L3 | 0 | 0.4 | 0.4 | 0.4 |
L4 | 0.2 | 0 | 0.2 | 0.4 |
L5 | 0.2 | 0.2 | 0.4 | 0 |
L6 | 0.2 | 0.4 | 0 | 0.2 |
L7 | 0.4 | 0 | 0.4 | 0.2 |
L8 | 0.4 | 0.2 | 0 | 0.4 |
L9 | 0.4 | 0.4 | 0.2 | 0 |
Parameters | Levels |
---|---|
Test sample | EN24 with 40 ± 1 HRC |
Roughness (µm) | Ra: 0.032 ± 0.005 |
Rq: 0.051 ± 0.009 | |
Load (N) | 125.86 |
Time (s) | 3600 |
Speed (rpm) | 100 |
Temperature (°C) | 40 |
Specific Film Thickness | ||||
---|---|---|---|---|
Experiment No./Sample ID | Viscosity (Pa·s) (@40 °C) | Viscosity (Pa·s) (@70 °C) | Viscosity (Pa·s) (@60 °C, Using Equation (A8)) | Specific Film Thickness |
L1 | 0.731 | 0.157 | 0.247 | 2.529 |
L3 | 0.741 | 0.171 | 0.264 | 2.649 |
L9 | 0.747 | 0.174 | 0.268 | 2.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidh, K.N.; Jangra, D.; Hirani, H. An Experimental Investigation of the Tribological Performance and Dispersibility of 2D Nanoparticles as Oil Additives. Lubricants 2023, 11, 179. https://doi.org/10.3390/lubricants11040179
Sidh KN, Jangra D, Hirani H. An Experimental Investigation of the Tribological Performance and Dispersibility of 2D Nanoparticles as Oil Additives. Lubricants. 2023; 11(4):179. https://doi.org/10.3390/lubricants11040179
Chicago/Turabian StyleSidh, Kishan Nath, Dharmender Jangra, and Harish Hirani. 2023. "An Experimental Investigation of the Tribological Performance and Dispersibility of 2D Nanoparticles as Oil Additives" Lubricants 11, no. 4: 179. https://doi.org/10.3390/lubricants11040179
APA StyleSidh, K. N., Jangra, D., & Hirani, H. (2023). An Experimental Investigation of the Tribological Performance and Dispersibility of 2D Nanoparticles as Oil Additives. Lubricants, 11(4), 179. https://doi.org/10.3390/lubricants11040179