The Effect of Dry Friction upon the Dynamics of a Short Eccentric Rotor: An Analytical and Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Long Rotor Dynamic Equations
- the motion of the centre of mass theorem (a particular case of impulse–momentum theorem)
- the angular momentum theorem with respect to the centre of mass
2.2. Obtaining the Equations of Motion for the Case of a Short Rotor Actuated by Gravitational Force
- the versors of the immobile reference system :
- the versors of the mobile frame, expressed via the projections on the axes of the fixed frame:
- and the versors of the normal and tangent direction to the surface of the bearing in the contact point, and respectively:
2.3. Integration of the Equations of Motion for the Case of Short Rotor
2.3.1. The Motion of the Rotor
2.3.2. Finding the Normal Reaction from the Bearing of the Rotor
3. Experimental Corroboration
3.1. The Experimental Device
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davidson, J.K.; Hunt, K.H. Robots and Screw Theory: Applications of Kinematics and Statics to Robotics, 1st ed.; Oxford University Press: New York, NY, USA, 2004; pp. 134–191. [Google Scholar]
- Spurr, R.T. A theory of brake squeal. Proc. Auto. Div. Instn. Mech. Engrs. 1961, 1, 33–40. [Google Scholar] [CrossRef]
- Nelson, H. Rotordynamics modeling and analysis procedures: A review. JSME Intern. J. Ser. C 1998, 41, 1–12. [Google Scholar]
- Kirk, R.G.; Gunter, E.J. Short bearing analysis applied to rotor dynamics Part 1: Theory. J. Lubr. Technol. 1976, 169, 47–56. [Google Scholar] [CrossRef]
- Kirk, R.G.; Gunter, E.J. Short bearing analysis applied to rotor dynamics Part 2: Results of journal bearing response. J. Lubr. Technol. 1976, 169, 159–169. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P. An application of short bearing theory to analyses the effect of variable permeability on steady performance of turbulent hydrodynamic porous journal bearings. Indian J. Eng. Mater. Sci. 1996, 1, 57–62. [Google Scholar]
- Kascak, A.F. Direct Integration of Transient Rotor Dynamics; Technical report; Lewis Research Center: Cleveland, OH, USA, 1980. [Google Scholar]
- Fu, C.; Sinou, J.J.; Zhu, W.; Lu, K.; Yang, Y. A state-of-the-art review on uncertainty analysis of rotor systems. Mech. Syst. Signal Process 2023, 183, 1–41. [Google Scholar] [CrossRef]
- Rendl, J.; Byrtus, M.; Dyk, S.; Smolik, L. Subcritical behaviour of short cylindrical journal bearings under periodic excitation. Nonlinear Dyn. 2023, 111, 1–14. [Google Scholar] [CrossRef]
- Lin, C.G.; Yang, Y.N.; Chu, J.L.; Sima, C.; Liu, P.; Qi, L.B.; Zou, M.S. Study on nonlinear dynamic characteristics of propulsion shafting under friction contact of stern bearings. Tribol. Int. 2023, 183, 1–13. [Google Scholar] [CrossRef]
- Paulo, P. A Time-Domain Methodology for Rotor Dynamics: Analysis and Force Identification. Master’s Thesis, Technical University of Lisbon, Lisbon, Portugal, 2011. [Google Scholar]
- Wagner, M.B.; Younan, A.; Allaire, P.; Cogill, R. Model reduction methods for rotor dynamic analysis: A survey and review. Int. J. Rotating Mach. 2011, 2010, 273716. [Google Scholar] [CrossRef] [Green Version]
- Kinkaid, N.M.; O’Reilly, O.M.; Papadopoulos, P. Review automotive disc brake squeal. J. Sound. Vib. 2003, 267, 105–166. [Google Scholar] [CrossRef]
- Pavlović, R.; Kozić, P.; Janevski, G. Influence of rotatory inertia on stochastic stability of a viscoelastic rotating shaft. Theoret. Appl. Mech. 2008, 35, 363–379. [Google Scholar] [CrossRef]
- Genta, G. Introduction. In Dynamics of Rotating Systems, 2005th ed.; Genta, G., Ed.; Springer: New York, NY, USA, 2005; Volume 1, pp. 1–31. [Google Scholar]
- Genta, G. Dynamic behavior of free rotors. In Dynamics of Rotating Systems, 2005th ed.; Genta, G., Ed.; Springer: New York, NY, USA, 2005; Volume 1, pp. 413–463. [Google Scholar]
- Choi, Y.S.; Noah, S.T. Nonlinear steady-state response of a rotor-support system. J. Vib. Acoust. 1987, 109, 255–261. [Google Scholar] [CrossRef]
- Zheng, W.; Aghababaei, R.; Hong, J.; Pei, S. An efficient method for transient response of rotor systems based on squeeze film damper. Tribol. Int. 2023, 183, 1–10. [Google Scholar] [CrossRef]
- Liu, N.Y.; Ouyang, H.J. Friction-induced vibration of a slider on an elastic disc spinning at variable speeds. Nonlinear Dyn. 2019, 98, 39–60. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, J.; Guo, Y. Uncertainty representation and quantification for a nonlinear rotor/stator system with mixed uncertainties. J. Vibroeng. 2016, 18, 4836–4851. [Google Scholar] [CrossRef] [Green Version]
- Marino, L.; Cicirello, A. Experimental investigation of a single-degree-of-freedom system with Coulomb friction. Nonlinear Dyn. 2020, 99, 1781–1799. [Google Scholar] [CrossRef] [Green Version]
- Adiletta, G.; Guido, A.R.; Rossi, C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearings. Part I: Theoretical analysis. Nonlinear Dyn. 1997, 14, 57–87. [Google Scholar] [CrossRef]
- Adiletta, G.; Guido, A.R.; Rossi, C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearings. Part II: Experimental analysis. Nonlinear Dyn. 1997, 14, 157–189. [Google Scholar] [CrossRef]
- Matsushita, O.; Tanaka, M.; Kobayashi, M.; Keogh, P.; Kanki, H. Vibrations of Rotating Machinery. Volume 1. Basic Rotordynamics: Introduction to Practical Vibration Analysis, 1st ed.; Springer: Tokyo, Japan, 2017; pp. 41–78. [Google Scholar]
- Matsushita, O.; Tanaka, M.; Kobayashi, M.; Keogh, P.; Kanki, H. Vibrations of Rotating Machinery. Volume 2. Advanced Rotodynamics: Applications of Analysis, Troubleshooting and Diagnosis, 1st ed.; Springer: Tokyo, Japan, 2020; pp. 19–40. [Google Scholar]
- Wagner, N.; Helfrich, R. Dynamics of rotors in complex structures. In Proceedings of the NAFEMS World Congress, Salzburg, Austria, 9–12 June 2013. [Google Scholar]
- Creci, G.; Menezes, J.C.; Barbosa, J.R.; Corra, J.A. Rotordynamic analysis of a 5-kilonewton thrust gas turbine by considering bearing dynamics. J. Propuls. Power 2011, 27, 330–336. [Google Scholar] [CrossRef]
- Shaw, J.; Shaw, S.W. Instabilities and bifurcations in a rotating shaft. J. Sound. Vib. 1989, 132, 227–244. [Google Scholar] [CrossRef]
- Badgley, R.H.; Booker, J.F. Rigid-body rotor dynamics: Dynamic unbalance and lubricant temperature changes. ASME J. Lubr. Technol. 1970, 92, 415–421. [Google Scholar] [CrossRef]
- Rao, J.S. Rotor Dynamics, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1983; pp. 73–84. [Google Scholar]
- Dimarogonas, A.D.; Paipetis, S.A.; Chondros, T.G. Mathematical Models for Rotor Dynamic Analysis. In Analytical Methods in Rotor Dynamics, 2nd ed.; Dimarogonas, A.D., Paipetis, S.A., Chondros, T.G., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 9, pp. 43–75. [Google Scholar]
- Subbiah, R.; Littleton, J. Mathematical model. In Rotor and Structural Dynamics of Turbomachinery: A Practical Guide for Engineers and Scientists, 1st ed.; Subbiah, R., Littleton, J., Eds.; Springer: New York, NY, USA, 2018; Volume 1, pp. 25–72. [Google Scholar]
- Sinou, J.J.; Nechak, L.; Besset, S. Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor. Complexity 2018, 2018, 1264619. [Google Scholar] [CrossRef] [Green Version]
- Armanini, C.; Dal Corso, F.; Misseroni, D.; Bigoni, D. Configurational forces and nonlinear structural dynamics. J. Mech. Phys. Solids 2019, 130, 82–100. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.M.; Liu, T.; Kang, H.; Tian, J.; Jing, J.; Wang, D. Theoretical and experimental investigations on steady-state responses of rotor-blade systems with varying rotating speeds based on a new nonlinear dynamic model. Mech. Syst. Signal Process. 2023, 184, 109692. [Google Scholar] [CrossRef]
- Tang, P.; Zehnder, J.; Coros, S.; Thomaszewski, B. A harmonic balance approach for designing compliant mechanical systems with nonlinear periodic motions. ACM T Graph. 2020, 39, 1–14. [Google Scholar] [CrossRef]
- Liu, G.; Chen, G.; Cui, F.; Xi, A. Nonlinear vibration analysis of composite blade with variable rotating speed using Chebyshev polynomials. Eur. J. Mech. A Solids 2020, 82, 103976. [Google Scholar] [CrossRef]
- Shi, X.; Chatzis, M.N. Lie symmetries of nonlinear systems with unknown inputs. Mech. Syst. Signal. Process. 2023, 188, 110027. [Google Scholar] [CrossRef]
- Vetyukov, Y.; Oborin, E. Snap-through instability during transmission of rotation by a flexible shaft with initial curvature. Int. J. Non Linear Mech. 2023, 154, 104431. [Google Scholar] [CrossRef]
- Flores, P.; Lankarani, H.M. Contact Force Models for Multibody Dynamics; Solid Mechanics and Its Applications Series; Springer International Publishing: Cham, Switzerland, 2016; Volume 226, p. 171. [Google Scholar]
- Marques, F.; Flores, P.; Claro, I.C.P.; Lankarani, H.M. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 2016, 86, 1407–1443. [Google Scholar] [CrossRef]
- Ardema, M.D. Review of newtonian dynamics. In Analytical Dynamics: Theory and Applications, 2005th ed.; Ardema, M.D., Ed.; Springer: New York, NY, USA, 2004; Volume 1, pp. 1–45. [Google Scholar]
- Pavlenko, I.; Verbovyi, A.; Neamţu, C.; Ivanov, V.; Ciszak, O.; Trojanowska, I. Fractional-order mathematical model of single-mass rotor dynamics and stability. Alex. Eng. J. 2023, 76, 91–100. [Google Scholar] [CrossRef]
- Koshy, C.S.; Flores, P.; Lankarani, H.M. Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: Computational and experimental approaches. Nonlinear Dyn. 2013, 73, 325–338. [Google Scholar] [CrossRef]
- Alaci, S.; Kalitchin, Z.; Kandeva, M.; Ciornei, F.C.; Bujoreanu, C.; Machado, J. Simple technique and device for slurries viscosity measurement. J. Environ. Prot. Ecol. 2019, 20, 761–772. [Google Scholar]
- Chen, G.S.; Liu, X. Friction Dynamics-Principles and Applications, 1st ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 247–298. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaci, S.; Musca, I.; Bujoreanu, C.; Romanu, I.-C.; Nitu, N.-A.; Ciornei, F.-C. The Effect of Dry Friction upon the Dynamics of a Short Eccentric Rotor: An Analytical and Experimental Study. Lubricants 2023, 11, 340. https://doi.org/10.3390/lubricants11080340
Alaci S, Musca I, Bujoreanu C, Romanu I-C, Nitu N-A, Ciornei F-C. The Effect of Dry Friction upon the Dynamics of a Short Eccentric Rotor: An Analytical and Experimental Study. Lubricants. 2023; 11(8):340. https://doi.org/10.3390/lubricants11080340
Chicago/Turabian StyleAlaci, Stelian, Ilie Musca, Carmen Bujoreanu, Ionut-Cristian Romanu, Nicolae-Adrian Nitu, and Florina-Carmen Ciornei. 2023. "The Effect of Dry Friction upon the Dynamics of a Short Eccentric Rotor: An Analytical and Experimental Study" Lubricants 11, no. 8: 340. https://doi.org/10.3390/lubricants11080340
APA StyleAlaci, S., Musca, I., Bujoreanu, C., Romanu, I. -C., Nitu, N. -A., & Ciornei, F. -C. (2023). The Effect of Dry Friction upon the Dynamics of a Short Eccentric Rotor: An Analytical and Experimental Study. Lubricants, 11(8), 340. https://doi.org/10.3390/lubricants11080340