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Abstract: The paper proposes the study of dry friction by means of a short eccentric rotor. The rotor
was designed and realised in the laboratory. In an ideal frictionless situation, a rotor actuated by
gravity will have an angular velocity which increases indefinitely. The analytical model assumes dry
friction in the bushing of the rotor and the main result reveals that the angular velocity either stabilizes
around a certain value or drops to zero. Two situations of friction were considered for the theoretical
model: first only dynamic friction and secondly, both static and dynamic friction are present. The
analytical model of the dynamics of the rotor presents the advantage that it can be applied for diverse
friction cases, from dry friction to complex dry friction and wet friction. Experimental tests were
carried out on the designed and constructed device; they are in very good agreement with the results
of the theoretical model.

Keywords: dry friction; static coefficient of friction; dynamic coefficient of friction; nonlinear dynamical
system; short eccentric rotor

1. Introduction

There are few situations in modern engineering applications where a solid part fulfils
a unique certain task independently. In most cases the body interacts with other bodies by
direct contact or by means of a field (magnetic, electric etc.). For the contacting bodies, they
share points, segments of curves or surfaces and thus they form kinematic pairs. Before
contacting, each part of the pair has a number of degrees of freedom but after the contact is
made, the kinematic effect resides in the diminution of the degrees of freedom of one of
the parts.

A first classification criterion of kinematic pairs consists in the number of degrees
of freedom (DOF) removed by the pair. For the pairs, the lower the class, the greater the
difficulty of controlling the relative motion between the two elements. Thus, the conclusion
is reached that, from the point of view of motion control from a kinematic pair, the most
desirable are of the fifth-class pairs, revolute or translational, where the relative position
between the elements of the pair is described by a single scalar parameter. An adequate
example in this case can be a robotic structure [1], where, for ensuring the DOF for the
final element, a kinematic chain is used, having in the structure driving kinematic pairs
of fifth class. Another notable illustration, frequently met in engineering, is the kinematic
revolute pair. It consists in an immobile element (stator) and a mobile element (rotor) that
rotates about an axis. The dynamical behaviour of rotors was profoundly studied [2–7] but
it remains an actual topic [8–10]. Numerous aspects must be considered in analysing the
running of a rotor, such as the ratio between the length of the rotor and the dimension of the
cross section; in addition, there are the long rotors, whose axial dimension is much greater
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than their cross-sectional dimension [11,12] and the short rotors [13,14], having this ratio
less than 1 (proper fraction). Another extremely important aspect is the manner in which
the rotor is supported [15–17]; more precisely, the type of employed bearing (plain bearing
or roller bearing). In the case of the plain bearing, the type of friction, dry or fluid, is a
significant parameter. Most plain bearings work under fluid lubrication conditions [18–20],
but there are situations when the functioning conditions impose the use of dry friction
bushings [10,21]. Another characteristic to be discussed concerns rotor balancing. The
balancing operation is mandatory because the magnitude of unbalance defines the inertial
forces acting upon the rotor and the reactions from the bearings [22,23].

Another aspect of critical importance refers to the vibrations of the rotor. A first cause
producing vibrations is the supporting modality, where for deformable parts of the bearing
the vibration occurrence is inevitable. In the case of long rotors, assuming the hypothesis
of deformable body, the rotor will have infinite vibration modes [24,25]. For an unbalanced
rotor, the inertia forces that have a radial direction will act as exciting forces and may
produce the resonance phenomenon; when the deformations increase over the admissible
limit, cracks occur and finally the entire system deteriorates.

The briefly above-mentioned considerations permit the conclusion that the dynamic
study of a rotor is a difficult task [26,27] if all the parameters mentioned are to be included;
therefore, in the literature there are simpler or more complex dynamical models [28],
according to the accepted simplifying hypotheses [29–32].

In recent years, many scientific papers have been published that present new meth-
ods of studying rotors [33–35]. The dynamic and resonance response of rotational shafts
having different types of blades was analysed and presented by [36,37]. The nonlinear be-
haviour imposes the necessity of developing advanced numerical models and considering
nonlinearity [38,39].

The authors consider that the main justification of this paper consists in presenting
a model for a simple dynamic system, a short rotor actuated by gravity, whose equation
of motion is strongly nonlinear. Two causes are the basis of nonlinearity: the presence of
dry friction in the bearing of the rotor and the existence of two characteristic solutions
of the motion of the system, from which only one corresponds to physical reality, the
other one being induced by solving an irrational equation. We had two main objectives
in the paper: to explore the effect of the adopted model of dry friction upon the evolution
of the theoretical system and the experimental validation of the theoretical model. The
adopted friction models are two of the simplest from the literature: first, the model where
the friction force is characterised by the coefficient of dynamic friction and second, the
model where while the relative velocity decreases under a certain critical value the friction
force is accepted to be described using the coefficient of static friction and beyond this
value, the friction presents a dynamic character. A test rig from the laboratory was used to
evidence that the first model of dynamic friction describes much better the actual behaviour
of the system.

Most of the studies about rotor dynamics consider deformable rotors, and one of the
main objectives becomes finding the stress state occurring during running. Some of the
works from the literature also study the concentrator effect caused by different material
defects or by the shape.

There are also situations when the rigid rotor hypothesis is perfectly plausible, namely
when the angular velocity of the rotor is much smaller than the critical angular velocity of
the rotor. Such a situation is considered in the present work, where, for an experimental
rotor, the proper frequency values were found, and it was established that the first one is
much greater that the regime one. At first sight it could seem that the rigidity assumption
simplifies substantially the study, but the present work shows the opposite. For the concrete
situation of a short rotor actuated by gravity, by applying the general theorems of dynamics
of rigid bodies, a system of differential equations results. The equations are strongly
nonlinear and permit finding the law of motion of the rotor, the low of rotation of the
normal reaction and its magnitude.
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2. Materials and Methods
2.1. Long Rotor Dynamic Equations

The problem of the modelled rotor consists in finding the law of motion and the
reactions from the kinematical joints. All components, the rotor and the stator (plain
bearing) are considered rigid bodies.

A rotor consisting in two cylindrical regions is shown in Figure 1; it can rotate about
an axis defined by the two cylindrical regions (1) and (2). The rotor is not balanced, because,
as can be observed, the centre of mass denoted Γ is not positioned on the axis of rotation. A
fixed coordinate system OXYZ is considered that has the OZ axis in coincidence with the
axis of rotation. Dynamic study requires a mobile coordinate system, attached to the rotor.
This frame is chosen in order to have the axis Oz in coincidence with the axis of rotation OZ.
The Ox axis of the mobile frame is normal to the axis of rotation and passes through the
centre of mass Γ of the rotor, placed at the distance xM from the axis of rotation. The Oy axis
completes a triorthogonal right coordinate frame. The unique external force acting upon
the rotor is the own weight G. In the bearings where the cylindrical regions (1) and (2) take
part, a contact pressure is developed which generates a system of normal elementary forces.
Each distribution of normal forces can be equivalated to a normal reaction, denoted N1 and
N2, respectively, acting in a plane P1 and P2, respectively, normal to the axis of rotation and
passing through the points C1 and C2. The distribution of normal forces from the bearing
will generate, in its turn, a distribution of elementary tangential forces opposing the relative
motion between the points in contact that can be replaced by finite friction force, acting
tangent to the surface of the bearing.
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Figure 1. Schematics of a long rotor.

Therefore, two friction forces, T1 and T2 can be considered and, assuming that the
bearing does not present axial displacements, then T1 and T2 will act in the points C1 and
C2, respectively, and will be contained in the plane P1 and P2, respectively.

In order to solve the problem, two fundamental theorems are applied:
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• the motion of the centre of mass theorem (a particular case of impulse–momentum
theorem)

.
H = G + N1 + N2 + T1 + T2 (1)

where H is the impulse of the rotor.
• the angular momentum theorem with respect to the centre of mass Γ

.
KΓ =

∼
r C1(N1 + T1) +

∼
r C2(N2 + T2) (2)

where KΓ is the angular momentum,
∼
r C1 ,

∼
r C2 are the anti-symmetric matrices associ-

ated to the vectors rC1 , rC2 .

Matrix Equations (1) and (2) are projected on the axes of the mobile system and a set
of six scalar equations results. Due to the lack of axial motion, the projection of Equation (1)
on Oz axis conducts to an identity and then, only five scalar equations are available. For the
case of long bearing, the unknowns of the problem are the positional parameter of the rotor
and the magnitudes and directions of the normal reactions N1 and N2. It is noteworthy that
because the reactions belong to planes normal to the axis of rotation, the versors of the two
normal can be defined using a single parameter.

uN1,2 = (cosψ1,2, sinψ1,2, 0) (3)

The left member of relation (2) in explicit form is:

.
KΓ =

 Jx −Jxy −Jxz
−Jxy Jy −Jyz
−Jxz −Jyz Jz

0
0
..
ϕ

+

0 − .
ϕ 0

.
ϕ 0 0
0 0 0

 Jx −Jxy −Jxz
−Jxy Jy −Jyz
−Jxz −Jyz Jz

0
0
.
ϕ

 =

−Jxz
..
ϕ + Jyz

.
ϕ

2

−Jyz
..
ϕ− Jxz

.
ϕ

2

Jz
..
ϕ

 (4)

and with the explicit right member of relation (2), it results:

∼
r C1(N1 + T1) +

∼
r C2(N2 + T2) =

∼
r C1(N1uN1 + (

∼
k(T1uN1) +

∼
r C2(N2uN2 + (

∼
k(T2uN2)

=


−zC1(N1sinψ1 + T1cosψ1)− zC2(N2sinψ2 + T2cosψ2)
zC1(N1cosψ1 − T1sinψ1) + zC2(N2cosψ2 − T2sinψ2)
(xC1sinψ1 − yC1cosψ1)N1 + (xC1cosψ1 + yC1sinψ1)T1+
(xC2sinψ2 − yC2cosψ1)N2 + (xC2cosψ2 + yC2sinψ1)T2

 (5)

Closing, the equations of projection of the angular momentum theorem with respect
to the centre of mass are:

−Jxz
..
ϕ + Jyz

.
ϕ

2
= −zC1(N1sinψ1 + T1cosψ1

)
− zC2(N2sinψ2 + T2cosψ2)

−Jyz
..
ϕ− Jxz

.
ϕ

2
= zC1(N1cosψ1 − T1sinψ1) + zC2(N2cosψ2 − T2sinψ2)

Jz
..
ϕ =

(
xC1sinψ1 − yC1cosψ1

)
N1 +

(
xC1cosψ1 + yC1sinψ1

)
T1+(

xC2sinψ2 − yC2cosψ1
)

N2 +
(
xC2cosψ2 + yC2sinψ2

)
T2

(6)

For the case of short rotor, the dimensions on the direction of the axis of rotation Oz
are much smaller than the dimensions from the other two directions, are considered at limit
equal to zero, and then the right members of the first two equations of system (6) also tend
to zero.

From the definition of the inertia products Jxz and Jyz:

Jxz =
∫

M
xzdm, Jyz =

∫
M

yzdm (7)

It is noticed that:
lim
z→0

Jxz = lim
z→0

Jyz = 0 (8)

and therefore, for the short rotor, the first two equations become identities. In conclusion, for
the short rotor case, the dynamics’ theorems provide three scalar equations: two equations
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are obtained by projecting the centre of mass theorem on the axes Ox and Oy and the third
equation results from the projection of the angular momentum theorem on the direction of
the rotation axis Oz. From here it results that, for the short rotor, the system of equations
must have three unknowns. One of the unknowns—which also occurs in the case of long
rotor—is ϕ, the angle of rotation of the rotor. The rotor has a single degree of freedom and
from here it results that the other two scalar unknowns are required for characterisation of
the reactions. From relation (1) it is suggested that the normal reaction N and the tangential
reaction T can be introduced as unknowns.

N = N1 + N2; T = T1 + T2 (9)

The introduction of the new variables must be compatible with the last equation of the
system (6) and from the relation (2) it is observed that it is required that the normal reactions
N1, N2 and tangential reactions T1, T2 should act in the same point C1 and C2 , respectively:

rC = rC1 + rC2 (10)

The unknowns of the problem for the short rotor case are the angle of rotation, φ, the
magnitude of the normal, N and its direction, stipulated by the versor uN . The fact that the
normal reaction N acts on a cylindrical surface makes that once the point of aplication C
being stipulated, the direction of action is also defined.

2.2. Obtaining the Equations of Motion for the Case of a Short Rotor Actuated by
Gravitational Force

A short rotor with a horizontal axis of rotation is presented in Figure 2. M is the mass
of the rotor and JGz is the moment of inertia, with respect to a centroidal axis parallel to the
axis of rotation. The motion of the rotor is ensured by a body of mass m, hung at the end of
an inextensible wire winded on a cylinder of r radius.
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The hypothesis of dry friction, Coulomb type, existing in the bearing is accepted. Two
situations are considered [40,41]:

• The friction is characterised exclusively by the coefficient of dynamic dry friction µd,
model represented in Figure 3a:

µ1(v) = µd (11)

• The friction is characterised by both µd and the coefficient of static friction µs, model
represented in Figure 3b:

µ2(v) =

{
µdsign(v), |v|> vcr
µst
vcr

v,
∣∣∣v∣∣∣≤ vcr

(12)
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In the bearing of the rotor a system of normal elementary forces is developed that
can be reduced to a normal reaction N which acts on the point C. For the normal reaction,
neither the magnitude N nor the orientation—given by the angle ψ— are known. The
presence of the normal reaction has an effect on the occurrence of the friction force T, acting
on the point C, and tangential to the cylindrical surface of the bearing of r radius. The
direction of the friction force is opposite to the relative velocity vC of the point C from the
bearing and has the magnitude:

T = −µ(vC)
vC
vC

N (13)

The rotor is set into motion by the suspended body but, from the free-body diagram,
this is revealed by the tensions from the wire F′ and F′′ to be occurring in a cross section,
which must satisfy the condition:

F′ + F′′ = 0 (14)

The equation of motion of the actuating body on the vertical direction is:

ma = G′ − F′ (15)

Since the wire is inextensible, the velocity of a point A from the periphery of the wiring
cylinder must be equal to the downward velocity of the actuating body:

.
ϕR = v (16)
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The acceleration of the body in downward motion is found by the derivative with
respect to time of relation (16):

..
ϕR = a (17)

As shown previously, the mass centre theorem and the angular momentum theorem
with respect to the centre of mass should be applied [42]; to this purpose definitions of the
versors are required:

• the versors of the immobile reference system I, J, K:

I =

1
0
0

, J =

0
1
0

, K =

0
0
1

 (18)

• the versors of the mobile frame, i, j, k expressed via the projections on the axes of the
fixed frame:

i =

cosϕ
sinϕ

0

, j =

−sinϕ
cosϕ

0

, k = K (19)

• and the versors of the normal and tangent direction to the surface of the bearing in the
contact point, n and t, respectively:

n =

cosψ
sinψ

0

, t =

−sinψ
cosψ

0

, (20)

The mass centre theorem has the form:

MaΓ = G + N + T + F′′ (21)

where the terms from relation (21) are explained by the following relations:

a = − .
ϕ

2xMn +
..
ϕxMt (22)

G = MgI (23)

N = −nN (24)

T = −µNsign
( .

ϕr
)
t (25)

F′′ = F′I = m
(

g− R
..
ϕ
)
I (26)

In relation (25), the sign(x) represents the signum function, defined as:

sign(x) =


1, x > 0
−1, x < 0
0, x = 0

(27)

After expressing all vectors from Equation (21) as functions of the versors of the fixed
system, two scalar equations are obtained:{

−M
.
ϕ

2xMcosϕ−M
..
ϕxMsinϕ + Ncosψ− µNsinψ sign

( .
ϕ
)
− (M + m)g + mR

..
ϕ = 0

−M
.
ϕ

2xMsinϕ + M
..
ϕxMcosϕ + Nsinψ + µNcosψ sign

( .
ϕ
)
= 0

(28)

The scalar Equation (28) is obtained by projecting a plane vector equation on the axes
of a Cartesian system; by multiplying the second equation by the imaginary i, (i2 = −1),
and summing the equations member by member, the equation can be approached unitary as
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is shown in [43]. Considering Euler’s formula, cos ϕ + i sin ϕ = exp(iϕ), a unique equation
is obtained, in the unknown the ϕ angle.

The angular momentum theorem with respect to the centre of mass has the form:

JGz
..
ϕk =

−
ΓC× (N + T) +

−
ΓA× F′′ (29)

where:
ΓC = −xMi (30)

−
ΓA = −xMi + (−R)J (31)

Based on relations (24), (25), (27), (28) and (29), a unique vector equation results, that
has projection only on the direction of the axis of rotation:(

JGz + mR2 + mRxMsinϕ
) ..

ϕ +
[
sinϕ− µcosϕ sign

( .
ϕ
)]

xM Ncosϕ . . .
−
(
cosϕ + µsinϕ sign

( .
ϕ
))

xM Nsinψ−m(R + xMsinϕ)g + µrN sign
( .

ϕ
)
= 0

(32)

Equations (28) and (32) create a system that has as unknowns the angle of rotation of
the rotor, ϕ, the magnitude of the normal reaction N and the angle ψ that stipulates the po-
sition of the normal reaction. In order to solve this system, one can notice that Equation (28)
is linear with respect to cosψ and sinψ; this is a fact that suggests the introduction of the
new variables:

X = Ncosψ; Y = Nsinψ (33)

The system takes the form:
X− µYsign

( .
ϕ
)
= (M + m)g−mR

..
ϕ + M

.
ϕ

2xMcosϕ + M
..
ϕxMsinϕ

µXsign
( .

ϕ
)
+ Y = M

.
ϕ

2xMsinϕ−M
..
φxMcosϕ(

JGz + mR2 + mRxMsinϕ
) ..

ϕ +
[
sinϕ− µcosϕ sign

( .
ϕ
)]

xMX . . .
−
(
cosϕ + µsinϕ sign

( .
ϕ
))

xMY−m(R + xMsinϕ)g + µrNsign
( .

ϕ
)
= 0

(34)

From the first two equations of system (34) we obtain:
X =

sinϕ−µcosϕ sign(
.
ϕ)− mR

MxM
1+µ2 MxM

..
ϕ +

µsinϕ sign(
.
ϕ)+cosϕ

1+µ2 MxM
.
ϕ

2
+ M+m

1+µ2 g

Y = −
cosϕ−µsign(

.
ϕ)
(

mR
MxM

−sinϕ
)
−

1+µ2 MxM
..
ϕ +

sinϕ−µcosϕsign(
.
ϕ)

1+µ2 MxM
.
ϕ

2 − µ M+m
1+µ2 gsign(

.
ϕ)

(35)

and from relations (33):
N =

√
X2 + Y2 (36)

The last equation of the system (34) takes the form:(
JGz + mR2 + mRxMsinϕ

) ..
ϕ +

[
sinϕ− µcosϕ sign

( .
ϕ
)]

xMX . . .
−
(
cosϕ + µsinϕ sign

( .
ϕ
)]

xMY−m(R + xMsinϕ)g + µr
(√

X2 + Y2
)

sign
( .

ϕ
)
= 0

(37)

Equation (37) is an irrational one, with the unknowns the angle of rotation of the rotor,
φ and its derivatives,

.
ϕ and

..
ϕ. In order to resolve this equation, the term containing the

root
√

X2 + Y2 is isolated in the right member and then, both sides of the equation are
squared. An equation of second order in unknown

..
ϕ is obtained, which has the solutions:

..
ϕ1,2 =

−B±
√

B2 − AC
A

(38)
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where 

A = (JGz + mR2 + Mx2
M)2 − µ2r2 M2x2

M−2mMxM R+m2R2

1+µ2

B =
(

JGz + mR2 + Mx2
M
)
(xM Msinϕ−mR)g+

µ2

1+µ2 r2
[

MmRxM
.
ϕ

2cosϕ− [MxMsinϕ + mR](M + m)g
]

C = (xM Msinϕ−mR)2g2+
µ2

1+µ2 r2
[

M2x2
M

.
ϕ

4
+ 2M(M + m)xM

.
ϕ

2gcosϕ + (M + m)2g2
]

(39)

2.3. Integration of the Equations of Motion for the Case of Short Rotor
2.3.1. The Motion of the Rotor

Analysing Equations (38) and (39) it can be observed that the motion of the rotor
is described by a strongly nonlinear differential equation. In order to integrate it, the
Runge–Kutta IV algorithm [44] was applied. Additionally, by squaring the equation for
radical elimination, an extraneous root was introduced which should be ignored. For a
set of typical values JGz = 0.012 kg ·m2; µd = 0.5; r = 0.006 m; M = 1.2 kg; xM = 0.1 m;
R = 0.02 m; m = 0.3 kg and for the initial conditions:

t = 0,
{

ϕ = ϕ0 = π/2
ω = ω0 = 0

(40)

the results of the integration of differential Equation (38) are plotted in Figure 4. The plots
from Figure 4 do not correspond to physical reality, since for the considered value of the
coefficient of friction, µd = 0.5, the amplitude of the oscillations does not decrease but
instead remains constant for Equation (38).
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motion: ϕ1,2—the solutions of Equation (38).

In [45] it was shown that a correction must be applied to the Equation (38), under the
form:

..
ϕ1,2 =

−B±
√

B2 − ACsign(
.
ϕ)

A
(41)

The function sign(
.
ϕ) was introduced because it disappeared when Equation (38) was

squared for removing the radical, with the consequence:

sign(x)2 = 1. (42)
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Integrating once more the two equations, one can state the correct solution:

..
ϕ1 =

−B−
√

B2 − ACsign
( .

ϕ
)

A
(43)

The attempt to integrate the other option:

..
ϕ2 =

−B +
√

B2 − ACsign
( .

ϕ
)

A
(44)

conducts to the blocking of the programme for a very small value of the sample time since
the angular velocity of the rotor increases very rapidly. In Figure 5 there are presented
comparatively the variations of angular velocity corresponding to Equation (43), red line,
and Equation (44), blue line, when only the dynamic friction was supposed, characterised
by a coefficient of friction µd = 0.5. One can remark that Equation (43) models a damped
oscillatory motion while Equation (44) suggests a rotational motion with the angular
velocity increasing rapidly.
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Figure 5. Variation of the angular velocity of the rotor according to Equation (39), red line, and
Equation (40), blue line, for µd = 0.5.

In order to eliminate any indecision, Equations (43) and (44) were integrated for two
values of the coefficient of friction; the variations of the angular velocities of the rotor are
represented in Figure 6. From Figure 6b one can observe that Equation (44) foresees a
rotational motion, with the angular velocity increasing more rapidly with increased friction,
while Equation (43), (Figure 6a), predicts an oscillatory motion with decreasing amplitude
for greater value of the coefficient of friction. From here, we draw the conclusion that
Equation (43) corresponds to physical reality.
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Figure 6. The variation of the angular velocity of the rotor for two values of the coefficient of
friction, µd1 = 0.5 (red line) and µd2 = 0.9 (blue line), for (a) solution according to Equation (43) and
(b) solution according to Equation (44).

Next, for a set of mechanical parameters: M = 0.5 kg; JGz = 0.012 kg ·m2; m = 0.3 kg;
r = 0.006 m and R = 0.02 m, we studied the influence of the coefficient of friction and of
the eccentricity upon the angular velocity of the rotor for the initial conditions:

ϕ(t = 0) = π; ω(t = 0) = 0 (45)

The variation of the angular velocity, obtained with the relation (32), for a balanced rotor,
for two different values of the coefficient of friction is presented in Figure 7.

The plots show that the angular velocity increases linearly with time, according to the
analytic study, and the higher the coefficient of friction, the lesser the increase of velocity,
Figure 7a. The effect of eccentricity of the rotor in the absence of friction is presented in
Figure 7b; the angular velocity oscillates about a mean value that increases continuously
and the average value of velocity increases more rapidly for a smaller eccentricity. In
Figure 7c the effect of the coefficient of friction upon the velocity of two rotors with
identical eccentricities and a clear different dynamic behaviour is observed; the first rotor
presents a continuous rotational motion and tends to oscillate about a constant value, but
the motion of the second rotor stops after a relatively short time. Lastly, the cumulative
effect of friction and eccentricity is presented in Figure 7d. It can be noticed that for a minor
friction, even for a substantial increase of eccentricity xm = 0.6 m, the rotor will still be in
motion, but for high friction µ = 0.7 and small eccentricity the motion of the rotor stops.

An interesting feature is the effect of the value of the velocity at which the transition
from static to dynamic friction occurs. In Figures 8 and 9 the variation of angular velocity
for different values of transition velocity vcr is presented for the initial conditions (45) and
(46), respectively:

ϕ(t = 0) = ϕ0 = π/2; ω(t = 0) = ω0 = 0 (46)

When the rotor is set to motion from rest for ϕ0 = π for reduced values of transition
velocity (vcr = 0.01 m/s) the effect of vcr is not perceptible and the plots are quasi identical,
as shown in Figure 8a. For increased transition velocity ( vcr = 0.1 m/s), the motion is
rotational but the angular velocity for the rotor with static friction (blue line) is smaller.
Increasing again the transition velocity to vcr = 0.5 m/s the motions are both rotational but
the angular velocity for the rotor with static and dynamic friction (blue line) is greater than
for the rotor with dynamic friction (red line).

In Figure 9 the same variations as in Figure 8 are presented, but for a different launch-
ing of the initial conditions (46). This time, regardless of the values of the coefficients of
friction and of the adopted friction model, the rotor presents a linearly damped oscillatory
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motion, with a pronounced damping for the case when only dynamic friction is considered.
The model considering both static and dynamic friction shows a diminished damping
velocity when the transition velocity increases.

The analysis of the evolution of the dynamic system reveals that when both friction
and eccentricity are present, the rotor may perform either a linearly damped oscillatory
motion or a rotational motion with the angular velocity varying about a constant value.
For a set of constructive values and magnitudes of tribological parameters, the factors
determining the evolution of the system in one manner or another, are expected to be the
values of the initial position ϕ0 and initial angular velocity ω0.
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locity, Figure 7a. The effect of eccentricity of the rotor in the absence of friction is presented 
in Figure 7b; the angular velocity oscillates about a mean value that increases continuously 
and the average value of velocity increases more rapidly for a smaller eccentricity. In Fig-
ure 7c the effect of the coefficient of friction upon the velocity of two rotors with identical 
eccentricities and a clear different dynamic behaviour is observed; the first rotor presents 
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tion of the second rotor stops after a relatively short time. Lastly, the cumulative effect of 
friction and eccentricity is presented in Figure 7d. It can be noticed that for a minor 

Figure 7. The effect of dynamic friction and eccentricity upon the angular velocity of the rotor:
(a) the effect of friction upon the angular velocity for a balanced rotor µ1 = 0.3, (red), µ2 = 0.7,
(blue), xM1 = xM2 = 0; (b) the effect of eccentricity upon the angular velocity for unbalanced rotor,
µ1 = 0.0, µ2 = 0, xM1 = 0.1 m, (red), xM2 = 0.2 m(blue); (c) the cumulative effect of friction
and eccentricity upon the angular velocity—two identical eccentric rotors, different coefficients
of friction µ1 = 0.3, (red), µ2 = 0.7, (blue); xM1 = xM2 = 0.1 and (d) the cumulative effect of
friction and eccentricity upon the angular velocity—eccentric rotors, different coefficients of friction
µ1 = 0.3, xM1 = 0.6 m (red); µ2 = 0.7, xM2

= 0.2 m (blue).
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Figure 8. The effect of transition velocity  𝑣௖௥ upon the rotors’ dynamics for initial conditions 𝜑଴ =𝜋; 𝜔଴ = 0,  when different friction models are considered: dynamic friction (red line), 𝜇ௗ = 0.3; 
static and dynamic friction (blue line), 𝜇௦௧ = 0.5 , 𝜇ௗ = 0.3 : (a) 𝑣௖௥ = 0.01 m/s;  (b) 𝑣௖௥ = 0.1 m/s 
and (c) 𝑣௖௥ = 0.5 m/s. 

Figure 8. The effect of transition velocity vcr upon the rotors’ dynamics for initial conditions
ϕ0 = π; ω0 = 0, when different friction models are considered: dynamic friction (red line), µd = 0.3;
static and dynamic friction (blue line), µst = 0.5, µd = 0.3: (a) vcr = 0.01 m/s; (b) vcr = 0.1 m/s and
(c) vcr = 0.5 m/s.
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Figure 9. The effect of transition velocity vcr upon the dynamics of the rotor when dynamic fric-
tion (red line) and static plus dynamic friction (blue line) is considered, for the initial conditions
ϕ0 = π

2 ; ω0 = 0. (a) vcr = 0.01 m/s; (b) vcr = 0.1 m/s and (c) vcr = 0.5 m/s.

In Figure 10 the variation of the angular velocity of the rotor launched from rest is
presented for different values of the angle ϕ0 varying in a very narrow range, for the
transition velocity varying in a large domain. It is observed that the theoretical model
predicts the existence of a well-stipulated launching angle that delimitates the two domains
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of evolution of the system, while the change of the transition velocity does not alter
qualitatively the type of motion of the system (from oscillatory to rotational and reverse)
but only modifies the kinematic parameters (amplitude, period, average velocity, etc.).

Figure 10. Variation of angular velocity of the rotor, for dynamic friction model (red plot) and
static-and dynamic friction model (blue plot): (a) vcr = 0; ϕ0 = 0.984π; (b) vcr = 0.5 m

s ; ϕ0 = 0.984π;
(c) vcr = 0, ϕ0 = 0.985π and (d) vcr = 0.5 m

s ; ϕ0 = 0.985π.
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Figure 11 highlights the complexity of the analysed system. In this figure, the effects of
the initial angular velocity and friction hypothesis are presented. In Figure 11a, the energy
of the rotor is bigger than the energy of the rotor represented in Figure 11c, but at the end,
the rotor is at rest for the first case, while for a smaller value, last case, the rotor remains
in steady motion. Another remark results from Figure 11b, where the two laws of friction
determining completely different dynamic behaviours.

2.3.2. Finding the Normal Reaction from the Bearing of the Rotor

With the law of motion ϕ = ϕ(t), known from the integration of Equation (43), one
can find, using the relations (35), the projections on the axes of the immobile system of
the normal N : X = X(t), Y = Y(t) and from here, the angle ψ(t) that the direction of the
normal N makes with the OX axis.

ψ(t) = angle[X(t), Y(t)] (47)

The inverse function of two arguments was the option because the use of the function
(y/x) would create confusions; for different positions of the normal reaction, the same
value of the angle ψ is obtained:

atan(y/x)= atan(− y/− x) (48)

For a stipulated position of the direction of the normal, the relation (47) gives a single
angle from the interval [0, 2π], while the relation (48) gives two values for the angle from
the same interval.

In Figure 12 there are represented comparatively the results obtained with
Equations (47) and (48). For the dynamic friction model, Figure 12a, the variation in time
of the angles of reactions are plotted in Figure 12c, and the correct one is represented blue,
obtained with relation (47) while the red plot, obtained with relation (48), is not valid.
In Figure 12e, the angular velocity of the rotor (blue plot) is compared to the angular
velocity of the direction of reaction (red plot). The friction model that considers both static
and dynamic friction is analysed in Figure 12b,d,f: variation of the angles of reactions in
Figure 12 (in blue, the solution from Equation (47) and red plot, solution from Equation
(48)) and the variation of the angular velocities, for rotor (blue plot) and reaction (red plot),
in Figure 12f.

In Figure 13, similarly to Figure 12 but for initial launching conditions ϕ0 = π/2,
ω0 = 0, there are evidenced the angles of reactions and the angular velocities for the two
friction models, with the comparison between the solutions obtained with the adequate
relation (47) and the improper relation (48).

The variations of the normal reactions for the two friction models N1, N2 are repre-
sented in Figure 14 for ϕ0 = π and in Figure 15 for ϕ0 = π/2. The corresponding friction
forces T1, T2 are also plotted in these figures. To be remarked from Figure 15b that the
two friction models predict for the friction forces complete different variations: for the
friction model from Figure 13a (only dynamic friction) the friction force from the bearing,
T1, presents discontinuities and jumps from positive to negative values but for the model
with static friction (Figure 13b) the friction force T2 has continuous variation.
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two friction models, with the comparison between the solutions obtained with the ade-
quate relation (47) and the improper relation (48).  

Figure 12. Comparison between the analytical solutions of the angles of reaction and angular
velocities for the two friction models, launching for initial conditions ϕ0 = π: (a) dynamic friction
model; (b) static and dynamic friction model; (c) angles of the reactions for model from (a); (d) angles
of the reactions for the model from (b); (e) angular velocity of the rotor and of the direction of the
reaction, model from (a); (f) angular velocity of the rotor and of the direction of the reaction, model
from (b).
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3. Experimental Corroboration 
3.1. The Experimental Device 

In order to validate the theoretical results obtained, a device was designed and con-
structed, Figure 16. The rotor consists in a bronze bushing 1, inner diameter 2𝑟 = 10 mm 
and length 40 mm. The bushing is pressed mounted into a central hole of an aluminium 
prismatic bar 2. Two symmetrical holes are made into the bar 2, where two aluminium 
discs, 3 and 4, are mounted with two screws, 5. The disc 3 has the mass 𝑚ଵ = 0.2 kg and 
the disc 4 has the mass 𝑚ଶ = 0.1 kg. The parts 1–5 form the asymmetric rotor. Modifying 
the order of assembling the discs into the two holes, only the eccentricity 𝑥ெ of the rotor 
varies, the other inertia characteristics (the mass 𝑀 and the moment of inertia with re-
spect to the axis of rotation) remain unchanged. The rotor is assembled on the fixed shaft 

Figure 14. Forces from the plain bearing for the two friction models, for ϕ0 = π: (a) the normal reac-
tions N1, N2; (b) the friction forces T1, T2; (red, dynamic friction; blue, static and dynamic friction).
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3. Experimental Corroboration
3.1. The Experimental Device

In order to validate the theoretical results obtained, a device was designed and con-
structed, Figure 16. The rotor consists in a bronze bushing 1, inner diameter 2r = 10 mm
and length 40 mm. The bushing is pressed mounted into a central hole of an aluminium
prismatic bar 2. Two symmetrical holes are made into the bar 2, where two aluminium
discs, 3 and 4, are mounted with two screws, 5. The disc 3 has the mass m1 = 0.2 kg and
the disc 4 has the mass m2 = 0.1 kg. The parts 1–5 form the asymmetric rotor. Modifying
the order of assembling the discs into the two holes, only the eccentricity xM of the rotor
varies, the other inertia characteristics (the mass M and the moment of inertia with respect
to the axis of rotation) remain unchanged. The rotor is assembled on the fixed shaft 7 with
the possibility of rotating about the shaft. To launch the rotor into motion, an inextensible
wire is winded on the outer surface of the bushing having suspended at the other end the
actuating part 8 of mass m.
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Figure 16. Sketch of the laboratory device: 1—bushing; 2—rod; 3 and 4—discs; 5—screw, 6—inex-
tensible wire, 7—shaft, 8—cylindrical part.

The angular velocity is difficult to measure accurately; therefore, it is preferred that 
the rotor is launched from rest but for varying launching angles. The reference coordinate 
system of the rotor 𝑂𝑥𝑦𝑧 is similar to the theoretical one, the 𝑂𝑧 axis is the axis of rota-
tion, the 𝑂𝑥  axis passes through the center of mass 𝛤  and the 𝑂𝑦  axis competes the
right frame.

The rotor was modelled in CATIA, software allowing for the estimation of inertial
characteristics. In Figure 17 a capture is presented with the window showing the obtained 
inertial characteristics of the rotor. 

Figure 17. Finding the inertial characteristics of the rotor by CATIA model. 

From Figure 17 there are retained: moment of inertia 𝐽 ೥ = 0.009 kg ⋅ mଶ; position of
the center of mass 𝑥ெ = 37.5 mm and mass of the rotor 𝑀 = 0.788 kg. It also can be ob-
served that the centrifugal products 𝐽௫௬ and 𝐽௬௭ are zero due to the fact that the plane 𝑥𝑧 is the plane of symmetry of the rotor. Additionally, the centroidal moment of inertia 

Figure 16. Sketch of the laboratory device: 1—bushing; 2—rod; 3 and 4—discs; 5—screw,
6—inextensible wire, 7—shaft, 8—cylindrical part.

The angular velocity is difficult to measure accurately; therefore, it is preferred that
the rotor is launched from rest but for varying launching angles. The reference coordinate
system of the rotor Oxyz is similar to the theoretical one, the Oz axis is the axis of rotation,
the Ox axis passes through the center of mass Γ and the Oy axis competes the right frame.

The rotor was modelled in CATIA, software allowing for the estimation of inertial
characteristics. In Figure 17 a capture is presented with the window showing the obtained
inertial characteristics of the rotor.

Lubricants 2023, 11, x FOR PEER REVIEW 21 of 29 
 

 

7 with the possibility of rotating about the shaft. To launch the rotor into motion, an inex-
tensible wire is winded on the outer surface of the bushing having suspended at the other 
end the actuating part 8 of mass 𝑚.  

 
Figure 16. Sketch of the laboratory device: 1—bushing; 2—rod; 3 and 4—discs; 5—screw, 6—inex-
tensible wire, 7—shaft, 8—cylindrical part. 

The angular velocity is difficult to measure accurately; therefore, it is preferred that 
the rotor is launched from rest but for varying launching angles. The reference coordinate 
system of the rotor 𝑂𝑥𝑦𝑧 is similar to the theoretical one, the 𝑂𝑧 axis is the axis of rota-
tion, the 𝑂𝑥  axis passes through the center of mass 𝛤  and the 𝑂𝑦  axis competes the 
right frame.  

The rotor was modelled in CATIA, software allowing for the estimation of inertial 
characteristics. In Figure 17 a capture is presented with the window showing the obtained 
inertial characteristics of the rotor.  

 
Figure 17. Finding the inertial characteristics of the rotor by CATIA model. 

From Figure 17 there are retained: moment of inertia 𝐽 ೥ = 0.009 kg ⋅ mଶ; position of 
the center of mass 𝑥ெ = 37.5 mm and mass of the rotor 𝑀 = 0.788 kg. It also can be ob-
served that the centrifugal products 𝐽௫௬ and 𝐽௬௭ are zero due to the fact that the plane 𝑥𝑧 is the plane of symmetry of the rotor. Additionally, the centroidal moment of inertia 

Figure 17. Finding the inertial characteristics of the rotor by CATIA model.



Lubricants 2023, 11, 340 22 of 29

From Figure 17 there are retained: moment of inertia JGz = 0.009 kg ·m2; position
of the center of mass xM = 37.5 mm and mass of the rotor M = 0.788 kg. It also can be
observed that the centrifugal products Jxy and Jyz are zero due to the fact that the plane xz
is the plane of symmetry of the rotor. Additionally, the centroidal moment of inertia with
respect to the axis parallel to the axis of rotation JGz = 9 · 10−3 kg ·m2 while the centrifugal
product Jxz = 2.25 · 10−4 kg ·m2 is practically 2.5% of JGz, and can be neglected. Thus,
the conditions to assimilate the proposed system to a short rotor, relation (8), are fulfilled.
The laboratory device constructed according to the sketch from Figure 16 is presented in
Figure 18.
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Figure 18. The laboratory set up.

The principle of validation of the theoretical model consists in comparing the law
of motion of the theoretical model to the one of the physical rotor. The motion of the
experimental device was established via a non-contact method, applied in order to minimize
the measuring errors. To this end, a graduated disc was attached to the prismatic bar. The
wire was wound on the bronze bushing and the arm of the rod containing the centre of
mass Γ was brought into the desired launching position, the angle ϕ0 being measured with
respect to the downward vertical. The system is released, and the entire motion of the
system is video recorded, using a camera with an acquisition velocity of 240 f rames/sec.
Using specialised software, the index j of a frame corresponding to a mark from the
graduated disc is found and then the numerical dependency between the values of the
angle of rotation and time is obtained:

ϕexj = j∆ϕ (49)

where ∆ϕ is the angular increment ∆ϕ = π/4rad and the time corresponding to a rotation
of angle ϕex j is:

texj =
f ramej − f rame0

240 · f rame/sec
(50)

In order to compare the experimental data to the theoretical data, finding the coefficient
of friction is necessary. A first method is to use the values of the coefficients µst and µd
from the literature [46]. Another precise and rapid method to find the dynamic coefficient
of friction, based on the inclined plane method, consists in placing the balanced rotor on
the shaft, Figure 19. An end of the shaft is supported by a fixed body and the other end is
slightly raised by supporting it on a cylindrical body. When the body of the rotor starts
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sliding, the procedure is stopped and the angle α of tilting of the shaft is found using
elementary trigonometry and the coefficient of dynamic friction is thus obtained.
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Figure 19. Finding the coefficient of friction µd = tan(α) between the shaft and the bushing.

3.2. Experimental Results

The value of the coefficient of dynamic friction found with the method described above
is µd = 0.167. Using this value, the curves for the variation of the rotation angle, theoretic
and experimental, were traced and are presented in Figure 20. A very good agreement
between the theoretical data and the experimental results is observed.
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Figure 20. The rotation angle of the rotor: experimental (red circles) and theoretical (blue line for
dynamic friction model and red line for static and dynamic friction model).

A better comparison is obtained considering the angular velocity of the model and of
the experimental rotor. The dependency

(
texj , ϕexj

)
is numericaly differentiated and the

mean value of the angular velocity on the interval (texj − texj−1 ) is obtained:

ωexj =
ϕexj − ϕex j−1

texj − texj−1

(51)

The theoretical and experimental angular velocities of the rotor are presented by
comparison in Figure 21 and a very good concordance is shown.
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In order to validate the hypothesis of rigid rotor, a simulation was accomplished us-
ing FEM Catia analysis; it was evidenced that the first proper frequency of the rotor is 
significantly greater than the working rotational velocities of the experimental rotor. In 
Figure 23 screen capture is presented with the first ten proper frequencies and the rotor 
shape for the fundamental frequency. 

Figure 21. Comparison between theoretical and experimental angular velocities: black points,
experimental; blue, theoretical model with dynamic friction and red, theoretical model with static
and dynamic friction for vcr → 0 .

The attempt to interpolate the experimental data was prevented by the fact that
once the transition velocity increases, the only change that occurs is the decrease of the
oscillation period of the angular velocity and the rapid increase of its average value. Trying
to compensate, even partially, for these effects by a greater coefficient of static friction
assumes accepting values which have no correspondence in physical reality (µst = 1.5) as
in Figure 22.
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Figure 22. Attempt to interpolate the experimental data considering the second friction model
(static-and-dynamic friction): black, experimental and blue, theoretical solution: (a) µd = 0.167;
µst = 0.3; vcr = 0.5 m/s and (b) µd = 0.167; µst = 1.5; vcr = 0.5 m/s.

In order to validate the hypothesis of rigid rotor, a simulation was accomplished
using FEM Catia analysis; it was evidenced that the first proper frequency of the rotor is
significantly greater than the working rotational velocities of the experimental rotor. In
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Figure 23 screen capture is presented with the first ten proper frequencies and the rotor
shape for the fundamental frequency.
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From these simulations one can remark that the first six values correspond to the
displacements of rigid body, and afterwards, that the first fundamental frequency corre-
sponding to bending about an horizontal axis is 461 Hz, while from Figures 22 and 23 it
results that the maximum value of the angular velocity is ω < 50 rad/ sec or n < 10 sec−1.

The authors propose defining some characteristic parameters for the evolution of the
system in the two situations.

For the damped rotor, Figure 24, tend is found to confirm that the signal of the angular
velocity is enveloped by the straight line:

ωe(t) = αt + β (52)
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The parameters α and β are found from the condition that the straight line is tangential
to the plot of angular velocity, using the least-squares method. The physical significance of
these two parameters is obvious: α is the velocity of linear diminishing of the amplitude of
angular velocity and β allows for finding the final time of the motion tend = −β/α.

For the case presented in Figure 25, when the motion of the system becomes permanent,
it is proposed that the function that best approximates the mean value of the angular velocity
is obtained using the LSM, that is a parabola defined on the interval [0, tch].
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The tch value is the time when steady state occurs and ωstab is a value about which the
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ωm(t) =
{

α t2 + βt + Γ, i f t < tch
ωstab, i f t > tch
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where ωm is the median line of the angular velocity.
One of the limitations of the model is the small value of the duration times on the actual

device, caused by the imposed height at which it is placed in the laboratory. A first change
to amend this aspect is using another rotor, with smaller radius R and greater driving mass
for obeying the condition mR = const, (the same acting torque). Another solution could
be the use of an actuating motor with well-stipulated mechanical characteristic; for this
situation the calculus must be completed correspondingly.

4. Conclusions

The aim of this paper is the study of the cumulative effect of dry friction and mass
eccentricity upon the behaviour of dynamic systems actuated by the gravity force.

The dynamic system consists in a rotor with controlled eccentricity, having a horizontal
axis of rotation. The system is set into motion using a mass suspended at the end of an
inextensible wire, wound on the shaft of the rotor. It is assumed that dry friction exists
in the joint of the rotor. The friction models accepted are two of the simplest existing
in the technical literature: the first model, considering Coulomb friction characterised
by the coefficient of dynamic friction and the second model, which considers that the
friction is characterised with respect to transition velocity: for velocities greater than vcr, the
coefficient of static friction is considered and below the critical value, the coefficient varies
linearly with the velocity up to a maximum value, equal to the coefficient of static friction.

The equations of the model are obtained for more general conditions, regarding the
long rotor supported symmetrically by two coaxial identical bearings with very short length
and so, the normal reactions could be assimilated to concentrated forces. Applying the
fundamental theorems of dynamics of rigid bodies, the equation of motion of the rotor and
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the characteristics of the reaction forces (magnitude and orientation) from the two bearings
are obtained. Next, considering that the distance between the two bearings tends to zero, a
dynamic model of the short rotor is obtained. The unknowns of the dynamic model of the
short rotor are the law of motion and the characteristics of the reaction force (magnitude
and orientation) from the bearing.

The model is characterised by the following parameters: tribological characteristics, the
values of the coefficients of static friction and dynamic friction, the value of the conventional
transition velocity from the static to dynamic regime, the mass of the actuating body, the
inertia characteristics of the rotor (mass, position of the centre of mass and axial centric
moment of inertia) and the initial conditions (position and angular velocity) together with
the parameters of the integration algorithm (time domain and number of divisions).

The most important remark is the fact that the combined effect of dry friction and
eccentricity leads to a rotational motion of the rotor either with angular velocity oscillating
around a constant value, or damped motion, with angular amplitude decreasing linearly
to zero. When there is a lack of dry friction, regardless of the value and type of friction,
the angular velocity increases indefinitely. Once the law of motion is established, then the
values of the normal reaction, friction force and angular velocity can be found.

In order to decide which of the two laws of friction better describes the behaviour of the
model, an experimental device was designed and realised for corroborating the theoretical
model. The complex shape of the rotor suggested that is simpler to obtain the values of
the dynamic parameters (mass, position of the centre of gravity and moment of inertia
with respect to the axis of rotation) by modelling the rotor using CAD software. Another
required parameter is the coefficient of friction from the plain bearing. Concerning the static
friction, the value of the coefficient was the one recommended by the technical literature.

With the identified shape and dimensions of the rotor, the modelling was possible,
using a finite element software which allows for finding the oscillation modes. It is observed
that the value of the vibration is considerably higher than the maximum rotation velocity
reached by the rotor during the experimental tests.

In order to validate the proposed theoretical model, the law of motion of the exper-
imental rotor was found. For minimum disturbance upon the evolution of the dynamic
system, the rotor was filmed with a high-speed video-recording camera and afterwards,
the movie was split into frames, using software, to determine the numerical dependency of
the angle of rotation with respect to time.

The experimental data were numerically differentiated, and the experimental variation
of the angular velocity of the rotor was obtained. The plots of experimental variation of
the angle and angular velocity of the rotor were compared to the theoretical variations for
the two friction models considered and it was concluded that the model considering only
dynamic friction interpolates the experimental data in an excellent manner. The attempt
to apply the model with static friction for significant values of the transition velocity
proved inadequate because an acceptable interpolation is obtained only for unrealistic
tribological parameters.

One of the limitations of the experimental set up resides in the relatively short actuating
time of the driving mass, due to the small value of the positioning height (on vertical
direction) of the device. In order to improve this aspect, the employment of a greater
driving mass and diminished diameter of the winding shaft of the wire is proposed.

The paper can be continued with other research concerning mainly the application of
more complex dry friction models [40], as well as the fluid friction rotor; another direction
can consider different types of actuation (spring, direct current etc.).

An alternative generalization of the model consists in actuating with a driving motor
with well-stipulated characteristics, capable of activating the rotor with rotation velocities
comparable to the resonant frequencies, in order to highlight the differences between the
rotor assumed rigid and the rotor supposed to be a deformable body.
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