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Abstract: In hot stamping of aluminium, the need for efficient methods to evaluate, compare, and
rank lubricants based on their tribological performance is critical in the early stages of selection. Pilot
and simulative testing can be costly, time-consuming, and complex, making it inefficient for initial
benchmarking. This work aims to develop a test methodology to assess lubricant performance for hot
stamping under key operating conditions without fully simulating the forming process. The proposed
method distinguishes the impact of temperature on lubricant degradation, friction, wear response,
and cleanability. The tests utilised a conventional hot work tool steel and a 6010S aluminium alloy
with two commercially available lubricants: a polymeric lubricant and a lubricant containing graphite.
The tribological tests involved a reciprocating, sliding flat-on-flat configuration at two temperatures
(100 ◦C and 300 ◦C). The methodology showed that the graphite-containing lubricant exhibited over
a four times lower friction coefficient than the polymer-based lubricant at 10 wt.% concentration and
300 ◦C. At 100 ◦C, both lubricants provide lubrication and can be cleaned, but increasing temperature
led to a significant decline of both aspects. The observed temperature range where the lubricants
degrade was between 120 ◦C and 170 ◦C.

Keywords: aluminium hot stamping; lubricants for hot stamping; lubricant cleanability

1. Introduction

The use of aluminium alloys has increased in recent years in the automotive industry
due to their excellent strength-to-weight ratio, energy absorption capacity, and high recy-
clability. Due to their formability limitations at room temperature and their spring-back
effect, high-strength aluminium alloys are often formed at a high temperature [1–3]. Hot
stamping of aluminium is on the rise because it can achieve complex shapes and control
the mechanical properties of the final component.

The operating process conditions are known to cause abrasion, adhesion, and, more
critically, material transfer from the aluminium onto the tool surface [2,4–7]. Lubricants are
used in aluminium forming to alleviate these problems. Solid lubricants, such as graphite,
molybdenum disulphide, and boron compounds, are commonly used for hot stamping of
aluminium due to their ability to reduce shear stresses in sliding contacts [4,6,8]. Other
solid lubricants that have recently surfaced are in the form of additives in oil or water
emulsions [9]. Polymer-based lubricants have also gained interest thanks to their potential
to finetune the lubricating properties by combining different compounds [4,8,10]. As
new lubricant solutions emerge, uncertainties regarding their performance in hot forming
also arise.

The cleanability of the lubricants from the workpiece and the forming tool is an aspect
that is not commonly reported, or that is only briefly mentioned on online catalogs, which
is in part due to the continuous development of lubricants and in part because focus is
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given to their tribological behaviour. Cleanability is an important factor for quality and
process efficiency, as well as downstream processes such as heat treatments, painting,
or welding. Furthermore, the accumulation of lubricant on the die over time affects the
process efficiency and can result in necking if the coefficient of friction reduces too much
due to excessive lubrication [11,12]. Krajewski and Morales observed that when tools
were lubricated, the propensity for necking was increased compared to unlubricated tools.
However, expectedly, the tool was prone to galling when no lubricant was used. There
is clearly a balance between the amount of lubricant that should be on the tool to control
friction and wear; thus, it becomes critical to ensure that lubricant can be maintained at an
optimal level. Many studies highlight the negative health effects of synthetic lubricants, or
of dry lubricants using small particles. In a review by Opia et al. [13], they review the many
benefits and potential of using bio-based lubricants in different applications, highlighting
their biodegradability and low hazard properties. However, as almost every study, no
information is given regarding cleanability aspects of lubricants. Thus, it is critical to
address this knowledge gap in a systematic manner.

A critical challenge in the development and validation of lubricants for hot forming
is the relatively limited options available for assessing and ranking the lubricants’ perfor-
mance in conditions similar to the forming operation. The number of tribometers designed
to simulate sliding conditions in hot stamping is limited, and some of the most salient
drawbacks with these is their complexity (which is necessary to closely simulate the contact
conditions), their need for significant costs, and time for preparation and operation, making
screening tests or exploratory studies difficult and not economically viable. Simple bench-
mark test equipment exists and is used in many studies, but these studies usually focus on
cold forming, evaluate lubrication at low temperatures, or focus on different materials than
aluminium. Some studies do exist where simple benchmark tests have been developed
to evaluate lubricants. Noder et al. [14] conducted tests using twist compression tests to
assess the performance of the lubricant in warm forming applications. They were able to
rank different lubricants as a function of temperature and sliding distance before lubricant
film failure. This type of test enables the relatively easy ranking of the lubricants, but
has the clear disadvantage of not being representative of actual friction values or distance
before lubricant failure. In a study by Shafiee Sabet et al. [15], a relatively simple contact
configuration was used to replicate the contact conditions experienced in the forming of
aluminium and evaluate lubricant behaviour at temperatures up to 100 ◦C. This tribometer
has the advantage of using small samples and not being resource demanding, but it is not
as widely spread and common in most testing facilities and it is unclear what the maximum
temperature attainable is. There is a need to develop test methodologies using easily or
readily available test equipment with simple configurations, which offers significant value
when developing new lubricants for hot stamping of aluminium, because demand and
interest is significant.

In this study, one of the primary objectives is to develop a simple test methodology
using a reciprocating friction and wear tester to evaluate lubricants used in hot stamping
of aluminium. The applicability of this method focuses not on simulating the forming
operation, but on selecting parameters relevant to the hot stamping of aluminium that
affect the lubricant performance, such as temperature. Using the aforementioned method,
this work aims to compare the friction and wear behaviour of two different lubricants
developed for aluminium hot stamping, and evaluates the effect of lubricant concentration
and temperature on their tribological response. Furthermore, this study also explores
cleanability aspects of these lubricants as a function of temperature. This is a critical aspect
of lubricants that is significantly under-reported in the open literature and that is critical
when evaluating lubricants for hot sheet metal forming.



Lubricants 2023, 11, 359 3 of 13

2. Experimental Procedure
2.1. Materials and Specimens

A commercially available pre-hardened hot work tool steel, Toolox 33, was used for the
tribological tests, and the counter surface was an aluminium 6010S alloy provided by Norsk
Hydro (Finspång, Sweden). The chemical composition of the materials is shown in Table 1,
as provided by the suppliers. The tool steel pin specimens were ground with a defined
surface lay, to an arithmetic surface roughness (Sa) of 0.15 ± 0.03 µm. The aluminium alloy
was used in the as-delivered condition, which also has a defined surface lay and a Sa of
0.46 ± 0.02 µm after the manufacturing process. The surface roughness of the specimens
was measured in the lab by means of white light interferometry.

Table 1. Chemical composition of the tested materials in wt.%.

Aluminium Alloy Composition

Cr Cu Fe Mg Mn Si Ti Zn

0.01 0.23 0.30 0.76 0.53 0.94 0.024 0.19 -

Tool Steel Composition

C Si Mn P S Cr Mo V Ni

0.22–0.24 0.6–1.1 0.8 Max. 0.010 Max. 0.002 1.0–1.2 0.3 0.10–0.11 Max. 1.0

The lubricants used in this study were commercially available lubricants; one was a
polymer-based water emulsion with a free release agent and white appearance. The second
lubricant was a graphite-based forging emulsion with a black appearance. Both lubricants
are designed for hot and warm forging of ferrous and non-ferrous metals.

2.2. Tribological Equipment and Test Methodology

The tribological test set-up was a reciprocating sliding friction and wear tester
(Optimol® SRV III); a schematic representation of the contact configuration is shown
in Figure 1a. The tribometer consists of an upper specimen (tool steel pin) that oscillates by
means of an electromagnetic drive against a stationary lower specimen (aluminium alloy
plate). The test configuration was a pin-on-plate configuration, resulting in flat-on-flat con-
tact. The tool steel pin specimens were cylinders with an end diameter of Ø 4 mm and the
aluminium alloy was in the form of a plate of 20 mm × 20 mm × 3.5 mm; representations
of the specimens are shown in Figure 1b. The tribological tests were performed with a
perpendicular surface lay between the pin and the plate, where the orientation of the tool
steel topography was parallel to the sliding direction (Figure 1b).

Lubricants 2023, 11, x FOR PEER REVIEW 3 of 14 
 

 

2. Experimental Procedure 
2.1. Materials and Specimens 

A commercially available pre-hardened hot work tool steel, Toolox 33, was used for 
the tribological tests, and the counter surface was an aluminium 6010S alloy provided by 
Norsk Hydro (Finspång, Sweden). The chemical composition of the materials is shown in 
Table 1, as provided by the suppliers. The tool steel pin specimens were ground with a 
defined surface lay, to an arithmetic surface roughness (Sa) of 0.15 ± 0.03 µm. The alumin-
ium alloy was used in the as-delivered condition, which also has a defined surface lay and 
a Sa of 0.46 ± 0.02 µm after the manufacturing process. The surface roughness of the spec-
imens was measured in the lab by means of white light interferometry.  

The lubricants used in this study were commercially available lubricants; one was a 
polymer-based water emulsion with a free release agent and white appearance. The sec-
ond lubricant was a graphite-based forging emulsion with a black appearance. Both lub-
ricants are designed for hot and warm forging of ferrous and non-ferrous metals.  

Table 1. Chemical composition of the tested materials in wt.%. 

Aluminium Alloy Composition 
Cr Cu Fe Mg Mn Si Ti Zn  

0.01 0.23 0.30 0.76 0.53 0.94 0.024 0.19 - 
Tool Steel Composition 

C Si Mn P S Cr Mo V Ni 
0.22–0.24 0.6–1.1 0.8 Max. 0.010 Max. 0.002 1.0–1.2 0.3 0.10–0.11 Max.1.0 

2.2. Tribological Equipment and Test Methodology 
The tribological test set-up was a reciprocating sliding friction and wear tester (Opti-

mol® SRV III); a schematic representation of the contact configuration is shown in Figure 
1a. The tribometer consists of an upper specimen (tool steel pin) that oscillates by means 
of an electromagnetic drive against a stationary lower specimen (aluminium alloy plate). 
The test configuration was a pin-on-plate configuration, resulting in flat-on-flat contact. 
The tool steel pin specimens were cylinders with an end diameter of Ø 4 mm and the 
aluminium alloy was in the form of a plate of 20 mm × 20 mm × 3.5 mm; representations 
of the specimens are shown in Figure 1b. The tribological tests were performed with a 
perpendicular surface lay between the pin and the plate, where the orientation of the tool 
steel topography was parallel to the sliding direction (Figure 1b). 

 
Figure 1. (a) Schematic representation of the test set-up, (b) surface sliding configuration, and (c) 
heat cycle. 

The aluminium alloy plate is mounted on a heating block that is actively heated up. 
The friction coefficient is measured throughout the entire duration of the test and the 

Figure 1. (a) Schematic representation of the test set-up, (b) surface sliding configuration, and (c)
heat cycle.



Lubricants 2023, 11, 359 4 of 13

The aluminium alloy plate is mounted on a heating block that is actively heated up.
The friction coefficient is measured throughout the entire duration of the test and the tri-
bometer controls, and monitors the sliding frequency, stroke length, load, and temperature.

For the tests, the lubricant was applied on both specimens and left to dry at room
temperature. The lubricant was applied with a pipette to measure the quantity and to
apply the same volume in every test. One drop was applied on the tool steel pin and
1 mL on the aluminium alloy plate. The lubricants were diluted in distilled water and the
concentrations used were 10 wt.%, 50 wt.%; and 100 wt.% concentration.

After applying and drying of the lubricant, the heating cycle was initiated. During
the initial heating, the specimens were kept separated and the load was applied only after
the desired temperature was reached. Table 2 shows the test parameters. A schematic
representation of the heat cycle is shown in Figure 1c.

Table 2. Tribological test parameters.

Parameter Value

Temperature 100 ◦C and 300 ◦C
Load 10 N

Contact pressure 0.8 MPa
Stroke length 4 mm

Frequency 12.5 Hz
Test duration 15 s

Sliding distance 1500 mm

It is important to note that the contact pressure used in the current investigation was
selected to promote as minimal ploughing as possible on the hot aluminium alloy. In the
forming operation, contact pressures are typically higher, particularly at the radii of the
forming dies. The contact pressure in the current study can consequently be viewed as a
mild condition, which can be experienced in the flat regions within a forming die.

2.3. Analysis Techniques

The wear mechanisms, surface damage, and cleanability were analysed using a Dino-
lite Optical Microscope (AnMo Electronics Corporation, Taiwan), as well as a Zeiss Merlin
FEG Scanning Electron Microscope (SEM), Germany, coupled with energy dispersive
spectroscopy (EDS).

The surfaces of the specimens prior to the tribological tests were analysed by means of
a 3D white-light optical interferometer Ametek Zygo NewView 9000, USA, using a 10×
objective lens with a 0.83 mm × 0.83 mm analysis area. Samples were analysed at random,
and 5 values were averaged for each material.

Additionally, the lubricants were characterised by means of differential scanning
calorimetry (DSC) and thermogravimetric analysis (TGA) using a simultaneous thermal
analyser instrument. The undiluted lubricants were analysed in the air atmosphere using
Pt crucibles from room temperature up to 300 ◦C and a heating rate of 10 K/min.

2.4. Cleanability Analysis Methodology

A qualitative study was conducted to evaluate the cleanability of the lubricants. The
cleaning evaluation made use of different methods after exposing the specimens at 150 ◦C
and 300 ◦C for 6 min using the undiluted lubricants. These temperatures were chosen
based on the DSC/TGA analysis and the observed changes.

The methodologies were developed using a mixture of different cleaning methodolo-
gies such as mechanical, dissolution, and chemical cleaning, as well as using different agents
such as detergent and ethanol. Figure 2 shows the three different cleaning methodologies.
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3. Results and Discussion
3.1. Influence of Temperature on Lubricant Degradation

The DSC curves presented in Figure 3 show that the lubricants undergo transforma-
tions as the temperature increases. Steps akin to glass transition are observed for both
lubricants: at 100 ◦C for the polymer-based lubricant and at 70 ◦C for the graphite-based
lubricant. At 140 ◦C, a peak indicating possible crystallisation of the polymer is formed,
whereas the graphite-based lubricant shows multiple peaks between 120 ◦C and 150 ◦C.
Above 150 ◦C, the graphite-based lubricant does not undergo significant changes, and in
the case of the polymer-based lubricant, no changes were observed after 175 ◦C; at this
temperature, degradation of both materials has taken place. TGA analysis shows the weight
change of the lubricants as a function of temperature, where the graphite-based lubricant
shows a sharp weight reduction (40%) from 100 ◦C to 160 ◦C, and the polymer-based
lubricant shows an 85% weight loss from the start of the measurement until 160 ◦C.

The changes observed in these measurements are associated with burnout, as well as
transitions related to transformations of the compounds in the lubricants. Since no detailed
information on the composition is known for either lubricant, it is difficult to make an exact
analysis of the different transformations that take place. However, a clear takeaway from
the DSC/TGA analysis is that no significant or critical changes or degradation occurs below
100 ◦C for either of the lubricants. Above 100 ◦C, the loss of weight starts changing more
rapidly, and a number of transformations start to take place before the final degradation.
It is clear from this analysis that when the lubricants are exposed to temperatures above
150 ◦C, they will be degraded. In hot stamping of aluminium alloys, typical temperatures
of the workpiece range from 300 ◦C to 500 ◦C depending on the material and the specific
process parameters. On solutions where the lubricant is applied on the tool, the lubricant
is expected to resist temperatures up to 400 ◦C for a short period of time [16]. Even if the
surface temperature of the tool is not the same as the workpiece, it can still increase to levels
that initiate degradation. Zheng et al. [17] calculated surface temperatures up to 180 ◦C
during forming depending on the process parameters, such as initial die temperature,
workpiece temperature, and contact pressure.
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Figure 3. DSC and TGA measurements for (a) 100 wt.% polymer-based lubricant, and (b) 100 wt.%
graphite-based lubricant.

Considering that the lubricant starts to degrade at 100 ◦C, and that the recommended
usage temperature by the lubricants supplier is between 80–150 ◦C, the tribological tests
were performed at 100 ◦C and at 300 ◦C—consequently evaluating the lubricant before
any significant change has taken place—and at 300 ◦C, which is a relevant temperature
for the hot stamping process of aluminium alloys, as well as a severe temperature for
the lubricants.

For the cleanability studies, the temperatures selected were 150 ◦C—which is the
temperature where degradation has already had a significant impact—and 300 ◦C, where
the lubricant should be fully degraded, consequently giving direct information on how the
transformations of the lubricants affect their cleanability.

3.2. Friction and Wear Behaviour
3.2.1. Influence of Temperature on Lubricant Behaviour

Figure 4 shows the friction behaviour from the tests at 100 ◦C and 300 ◦C using a
10 wt.% concentration on the lubricants. The results for graphite-based lubricant at 100 ◦C
(Figure 4a) and 300 ◦C (Figure 4b) show relatively low and steady coefficients of friction
(COF) over the entire duration of the test after an initially high coefficient of friction. The
behaviour was more reproducible at low temperatures than at high temperatures. The
higher friction observed at the beginning of the test is a common observation in this
type of test; in the initial states, the friction coefficient is heavily influenced by the initial
acceleration and stabilization of the test conditions. Nevertheless, it was observed that the
initial coefficient of friction was higher for the tests at 300 ◦C than those at 100 ◦C. In the
steady state, at 100 ◦C, the average COF was 0.12 ± 0.01, whereas at 300 ◦C, it was slightly
higher and with more scatter (0.18 ± 0.02). The higher scatter was the result of the outlier
results from one of the repeat tests.

In contrast, the tests performed using the polymer-based lubricant resulted in higher
COF and more unstable behaviour. As shown in Figure 4d, at 100 ◦C, an initial friction peak
was observed, followed by a reduction in the coefficient of friction; however, the behaviour
was different for every test, although a dominant trend was for the friction coefficient
to increase with sliding. For these tests, an average COF of 0.29 ± 0.28 was measured.
For the tests at 300 ◦C, an even more unstable friction was obtained (Figure 4e). In this
case, the average COF was 0.81 ± 0.63. Due to the high scatter at this temperature, two
additional tests were performed. In this case, full failure of the lubricant was observed with
the occurrence of aluminium transfer onto the tool. Examples of the tool surface after the
tests at 300 ◦C are shown in Figure 4c,f for the graphite and the polymer-based lubricants,
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respectively. It can be seen that only the tests using the polymer-based lubricant underwent
aluminium transfer.
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Figure 4. Coefficient of friction of the graphite-based lubricant at (a) 100 ◦C and (b) 300 ◦C, and for
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shown: (c) graphite-based, (f) polymer-based.

The degradation of the lubricant with the increased temperature is not unexpected. It
has been observed in other studies that increasing temperature results in a larger scatter
and higher coefficient of friction of various lubricated systems [4,9,15].

This indicates that despite the observed changes in the DSC/TGA, the graphite-based
lubricant is able to maintain good lubrication over the tested temperature range, and
although the stability seems to be affected, the lubricant maintains low friction and wear
protection. It also possible that the changes observed in the DSC/TGA analysis are mostly
limited to the carrier, and no significant degradation or changes on the graphite occur at
this temperature.

In contrast, the polymer-based lubricant was only effective in preventing wear at the
recommended temperature (100 ◦C), but friction stability was affected. Furthermore, an
increase in temperature results in actual failure of the lubricant and direct contact between
the two samples.

A similar tribological response for other lubricants has been reported in the literature,
both in terms of wear and friction response in simple test configurations [9,15], and even
in simulative testing for hot stamping [18]. This highlights the potential of the current
methodology for investigating the tribological response of new lubricants for hot stamping
of aluminium.

3.2.2. Influence of Lubricant Concentration on the Tribological Behaviour

The effect of lubricant concentration was evaluated for both lubricants. In this case,
tests were performed at 300 ◦C. This was conducted with the aim of assessing whether the
lubricants are able to provide sufficient lubrication at the harsher condition by increasing
the lubricant concentration. Figure 5 shows the comparison for the two lubricants with 10,
50, and 100 wt.% concentrations. The behaviour of the graphite-based lubricant did not
change significantly when increasing the concentration. A slight increase in friction with
the increase in concentration was observed; for the 10 and 50 wt.%, similar average values
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were seen for both concentrations 0.18 ± 0.2 and 0.16 ± 0.2, respectively. Further increasing
the concentration to 100 wt.% showed a slight increase to an average COF up to 0.23 ± 0.11.
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lubricant with (d) 10 wt.%, (e) 50 wt.%, (f) 100 wt.% concentration. All tests 
were conducted at 300 °C.  
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wt.%. Sliding left to right. 

Figure 5. Coefficient of friction of repeat tests from the graphite-based lubricant with (a) 10 wt.%,
(b) 50 wt.%, (c) 100 wt.% concentration; and from the polymer-based lubricant with (d) 10 wt.%,
(e) 50 wt.%, (f) 100 wt.% concentration. All tests were conducted at 300 ◦C.

In contrast, the polymeric lubricant showed a significant improvement in terms of
repeatability, stability, and lower friction with the increase in concentration. In this case,
50 wt.% and 100 wt.% did not undergo failure of the lubricant. Furthermore, the undiluted
lubricant showed the most stable and lowest friction of all tested conditions, with an
average CoF of 0.12 ± 0.01 at 100 wt.% compared to 0.14 ± 0.2 at 50 wt.%.

The worn surfaces after the tribological tests for the 50 and 100 wt.% are shown in
Figure 6. No significant wear took place on the tool pin specimens for either lubricant.
However, lubricant remnants were observed in all tests, with the graphite-based lubricant
leaving significantly more residue after the tests when it was undiluted.

In contrast, the aluminium alloy showed signs of wear for both lubricants when a
concentration of 50 wt.% was used. Interestingly, even though wear did take place on the
aluminium alloy specimen, no significant material transfer nor sudden increases on friction
were seen for any of these tests. It is unclear if the damage observed in the aluminium is
generated during the first few seconds of the tests, or later during the test. What is apparent
is that regardless of when the damage is generated, the lubricants are able to prevent
material transfer on the tool steel. It has been suggested by Podgordnik et al. [19] that an
optimal concentration for solid lubrication exists, increasing concentration and lubricant
size results in a reduction of the coefficient of friction and wear only up to a certain point.
It is likely that in this study, the optimal lubricant concentration was not observed, but it is
noteworthy that the test methodology is able to differentiate the influence of this parameter.
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Figure 6. Representative worn surfaces of the tool pin and the aluminium plate after the tribological
tests for the graphite-based lubricant with (a) 50 wt.% and (b) 100 wt.%, and the polymer-based
lubricant with (c) 50 wt.% and (d) 100 wt.%. Sliding left to right.

A more in-depth analysis of the worn tool steel specimens using the undiluted lubri-
cants was conducted by means of SEM (Figure 7). The specimen where graphite-based
lubricant was used showed no signs of surface damage in the form of adhesive or abrasive
wear on the tool. In contrast, when the polymer-based lubricant was used, localized abra-
sive wear was seen, and transferred aluminium was detected, as highlighted by the EDS
analysis, even though it was difficult to see. It is likely that the transferred aluminium is
in a thin layer that is transparent to the secondary electrons. It is important to note that
friction for this test was the most stable, lowest, and most repeatable. As mentioned earlier,
it is possible that the damage observed in this case takes place during the initial stages of
the test. The specimens are initially statically loaded, and then accelerated to reach the
set sliding conditions; it is likely that the damage observed occurs during the acceleration
stage, as harsher conditions are experienced in the contact. It is also important to mention
that this was seen only on one specimen, which indicates that wear is mostly negligible
with this lubricant under the tested conditions.

Graphite-based lubricants have been reported to operate well in hot forming operation
or at high temperatures. Some other studies on polymeric lubricants have also highlighted
the possibility of utilising them in hot stamping conditions [18,20,21]. This study highlights
the importance of finding the best concentration for the lubricant, as well as controlling the
temperature.
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Figure 7. SEM micrographs of the worn tool steel surface observed with 100 wt.% graphite-based
lubricant (a) overview, (b) detail of lubricant accumulation; and with 100 wt.% polymer-based
lubricant (c) overview, (d) detail of worn surface (EDS corresponds to area in (c)). Observation done
with 10 kV and 10 mm working distance.

3.3. Lubricant Cleanability Study

Figure 8 shows the results after the cleanability tests. It was observed that at 150 ◦C,
the lubricants could be cleaned by all of the different methodologies. However, once
exposed to 300 ◦C, they cannot be cleaned effectively by any of the cleaning methods. Use
of ethanol resulted in more effective cleaning of the surfaces, particularly for the polymer-
based lubricant, and even after exposure to high temperatures, some of the lubricant was
removed. These results show that the changes that the lubricants undergo after exposure to
high temperature result in a strong bonding to the surfaces. Even if the lubricants manage
to maintain a certain degree of lubrication, such as the case of the graphite-based lubricant,
the end result is that a more aggressive cleaning procedure needs to be used in order to
clean the surfaces.

The specimens cleaned at 150 ◦C were further analysed at higher magnification with
SEM (Figure 9). In these images, the darker contrast is caused by remnants of the lubricant
after the different cleaning methodologies. It is clearer from these images that ethanol is
the best agent to effectively remove the lubricant, even if it may visually seem that the
surfaces are clean using the other methodologies. This is more prominent for the case of the
polymeric lubricant, where the surface is essentially cleaned completely after cleaning with
ethanol (Figure 9c). The graphitic lubricant left remnants after all of the methodologies, but
attained a significantly clean surface with all the different cleaning methodologies.
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Figure 8. Photographs of the aluminium surfaces after the different cleaning methodologies at 150 ◦C
and 300 ◦C for both lubricants. (a) before testing, (b) after methodology 1, (c) after methodology 2,
and (d) after methodology 3.

3.4. Test Method Discussion

This test methodology showcased that both lubricants operate well at lower temper-
atures, but relatively worse behaviour exists for the polymeric lubricant, which worsens
further as the temperature increases. The test methodology was also able to showcase
the effect of the lubricant concentration, where it was observed that with the right con-
centration, the polymeric lubricant could maintain low friction and wear. The tests also
highlighted the direct effects of temperature and lubricant on cleanability. It is clear that
further analysis is necessary on this topic, but this study shows that simple tests can be
performed to further improve the knowledge in this regard.
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Figure 9. SEM micrographs of the aluminium surfaces after the different cleaning methodologies at
150 ◦C for both lubricants. (a) after methodology 1, (b) after methodology 2, and (c) after methodology
3. Observation done with 10 kV and 10 mm working distance.

4. Conclusions

In this study, a test methodology to evaluate the tribological behaviour of lubricants
intended for hot stamping of aluminium was developed. Two lubricants were evaluated
with this methodology and their cleanability was also assessed. The salient conclusions
from this study are as follows:

• The developed test methodology to evaluate lubricants at high temperatures proved
to be effective. The tests showed good repeatability and differences in the friction, and
wear behaviour of the lubricants could be assessed.

• An increase in friction and frictional instabilities as temperature increases due to
changes and/or degradation that the lubricants undergo. For graphite-based lubricant,
the CoF increased from 0.12 to 0.18, and for the polymer-based lubricant, it increased
from 0.29 to 0.81 when their concentration was 10 wt.%.

• The graphite-based lubricant results in a higher coefficient of friction when increasing
concentration from 0.18 to 0.23 at 300 ◦C, but is able to prevent galling on the tool steel.

• The polymeric lubricant is more effective at higher concentrations, reducing the CoF
down to 0.12 in its undiluted form.

• The best cleanability was achieved when using ethanol, particularly for the polymer-
based lubricant.

• The cleanability of the lubricants significantly worsens as a result of the changes that
the lubricants undergo when exposed to higher temperatures.

The results have highlighted the potential of the present methodology to evaluate and
rank lubricant performance and their cleanability within the context of hot stamping of
aluminium. It is also important to note that the method can be improved to account for
other parameters such as contact pressure, and further improvements need to be addressed
to more quantifiably rank the cleanability of the lubricants.
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15. Shafiee Sabet, A.; Domitner, J.; Ristić, A.; Öksüz, K.I.; Rodríguez Ripoll, M.; Sommitsch, C. Effects of temperature on friction and

degradation of dry film lubricants during sliding against aluminum alloy sheets. Tribol. Int. 2023, 180, 108205. [CrossRef]
16. Rigas, N.; Merklein, M. Characterization of the Tribological Behavior of Different Tool Coatings and Dry Lubricant for High-

Strength Aluminum Alloys at Elevated Temperatures. Adv. Eng. Mater. 2023, 25, 202201650. [CrossRef]
17. Zheng, K.; Lee, J.; Xiao, W.; Wang, B.; Lin, J. Experimental Investigations of the In-Die Quenching Efficiency and Die Surface

Temperature of Hot Stamping Aluminium Alloys. Metals 2018, 8, 231. [CrossRef]
18. Decrozant-Triquenaux, J.; Pelcastre, L.; Courbon, C.; Prakash, B.; Hardell, J. Effect of Surface Engineered Tool Steel and Lubrication

on Aluminium Transfer at High Temperature. Wear 2021, 477, 203879. [CrossRef]
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