Improving the Surface Integrity and Tribological Behavior of a High-Temperature Friction Surface via the Synergy of Laser Cladding and Ultrasonic Burnishing
Abstract
:1. Introduction
2. Experimental Details
2.1. Material and Sample Preparation
2.2. Microstructure Characterization
2.3. Wear
3. Results and Discussion
3.1. Surface Morphology and Porosity
3.2. Surface Microstructure
3.3. XRD Analysis
3.4. Residual Stress
3.5. Microhardness
3.6. High-Temperature Friction Behavior
4. Conclusions
- (1)
- In comparison to the control, the hardness of the HT-treated sample was raised by 26.90%. However, turning alone could not improve the roughness or change the tensile residual stress.
- (2)
- In comparison to the HT-treated sample, the UB-treated sample had a 79.2% roughness reduction, a further 15.2% increase in the hardness, and an 85.1% decrease in the porosity. Moreover, UB introduced compressive residual stress in the near-surface material of the coating.
- (3)
- The two coated samples had better high-temperature wear resistance than the control. When compared with the HT-treated sample, although the UB-treated sample showed a larger friction coefficient in the running-in friction period, it had a lower friction coefficient and much less wear loss.
- (4)
- A wearable coating serving at a high temperature could be manufactured and remanufactured via a laser and then post-treated via an HT-UB chain in a low-cost manner.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, K.; Yang, Y.; Hu, G.; Lu, X.; Li, J. Thermal expansion control of composite coatings on 42CrMo by laser cladding. Surf. Coat. Technol. 2020, 397, 125983. [Google Scholar] [CrossRef]
- Yang, Z.; Li, S.; Zhang, J.; Zhang, J.; Li, G.; Li, Z.; Hui, W.; Weng, Y. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Mater. 2004, 52, 5235–5241. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, M.; Zhong, J. Microstructural evolution in 42CrMo steel during compression at elevated temperatures. Mater. Lett. 2008, 62, 2132–2135. [Google Scholar] [CrossRef]
- Tejero-Martin, D.; Rad, M.; McDonald, A.; Hussain, T. Beyond traditional coatings, a review on thermal sprayed functional and smart coatings. J. Therm. Spray Technol. 2018, 28, 598–644. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Y.; Yan, M.; Tu, B.; Li, Y. Microstructure and mechanical properties of surface coating prepared on grade 2 titanium by Ni-B composite electroplating and laser cladding. Opt. Laser Technol. 2023, 164, 109498. [Google Scholar] [CrossRef]
- Jansons, E.; Lungevics, J.; Kanders, U.; Leitans, A.; Civcisa, G.; Linins, O.; Kundzins, K.; Boiko, I. Tribological and Mechanical Properties of the Nanostructured Superlattice Coatings with Respect to Surface Texture. Lubricants 2022, 10, 285. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Xuan, F.; Wang, Z.; Tu, S. Rolling contact fatigue behavior of laser cladded WC/Ni composite coating. Surf. Coat. Technol. 2014, 239, 7–15. [Google Scholar] [CrossRef]
- Kołodziejczak, P.; Bober, M.; Chmielewski, T. Wear Resistance Comparison Research of High-Alloy Protective Coatings for Power Industry Prepared by Means of CMT Cladding. Appl. Sci. 2022, 12, 4568. [Google Scholar] [CrossRef]
- Barr, C.; Rashid, R.; Palanisamy, S.; Watts, J.; Brandt, M. Examination of steel compatibility with additive manufacturing and repair via laser directed energy deposition. J. Laser Appl. 2023, 35, 022015. [Google Scholar] [CrossRef]
- Rashid, R.; Nazari, K.; Barr, C.; Palanisamy, S.; Orchowski, N.; Matthews, N.; Dargusch, M. Effect of laser reheat post-treatment on the microstructural characteristics of laser-cladded ultra-high strength steel. Surf. Coat. Technol. 2019, 372, 93–102. [Google Scholar] [CrossRef]
- Feng, Y.; Pang, X.; Feng, K.; Feng, Y.; Li, Z. Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M 3 (C, B). J. Mater. Res. Technol. 2021, 15, 5597–5607. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y. Microstructure and wear behavior of laser-cladded Ni-based coatings decorated by graphite particles. Surf. Coat. Technol. 2021, 412, 127044. [Google Scholar] [CrossRef]
- Kumar, R.; Torres, H.; Aydinyan, S.; Antonov, M.; Varga, M.; Hussainova, I.; Ripoll, M. Tribological behavior of Ni-based self-lubricating claddings containing sulfide of nickel, copper, or bismuth at temperatures up to 600 °C. Surf. Coat. Technol. 2023, 456, 129270. [Google Scholar] [CrossRef]
- Yin, M.; Cai, Z.; Zhang, Z.; Yue, W. Effect of ultrasonic surface rolling process on impact-sliding wear behavior of the 690 alloy. Tribol. Int. 2020, 147, 105600. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Lu, J.; Lu, K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015, 87, 150–160. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wang, B.; Cai, Y.; Song, Q. Analytical Prediction and Experimental Investigation of Burnishing Force in Rotary Ultrasonic Roller Burnishing Titanium Alloy Ti-6Al-4V. J. Manuf. Sci. Eng. 2020, 142, 031004. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, X.; Xu, G.; Xu, C.; Wang, B.; Su, G. Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips. Arch. Civ. Mech. Eng. 2020, 20, 79. [Google Scholar] [CrossRef]
- Teimouri, R.; Amini, S. Analytical modeling of ultrasonic burnishing process: Evaluation of active forces. Measurement 2019, 131, 654–663. [Google Scholar] [CrossRef]
- Hao, J.; Hu, F.; Le, X.; Liu, H.; Han, J. Microstructure and high-temperature wear behaviour of Inconel 625 multi-layer cladding prepared on H13 mould steel by a hybrid additive manufacturing method. J. Mater. Process. Technol. 2020, 291, 117036. [Google Scholar] [CrossRef]
- Ye, H.; Zhu, J.; Liu, Y.; Liu, W.; Wang, D. Microstructure and mechanical properties of laser cladded Cr-Ni alloy by hard turning (HT) and ultrasonic surface rolling (USR). Surf. Coat. Technol. 2020, 393, 125806. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, X.; Wang, J.; Wang, J.; Xu, C.; He, J.; Bai, X. Improving surface properties of Fe-based laser cladding coating deposited on a carbon steel by heat assisted ultrasonic burnishing. J. Mater. Res. Technol. 2021, 12, 100–116. [Google Scholar] [CrossRef]
- Amanov, A. Effect of local treatment temperature of ultrasonic nanocrystalline surface modification on tribological behavior and corrosion resistance of stainless steel 316L produced by selective laser melting. Surf. Coat. Technol. 2020, 398, 126080. [Google Scholar] [CrossRef]
- Shen, X.; Gong, X.; Zhang, J.; Su, G. An investigation of stress condition in vibration-assisted burnishing. Int. J. Adv. Manuf. Technol. 2019, 105, 1189–1207. [Google Scholar] [CrossRef]
- Su, H.; Shen, X.; Xu, C.; He, J.; Su, G. Surface characteristics and corrosion behavior of TC11 titanium alloy strengthened by ultrasonic roller burnishing at room and medium temperature. J. Mater. Res. Technol. 2020, 9, 8172–8185. [Google Scholar] [CrossRef]
- Gong, L.; Pan, Y.; Peng, C.; Fu, X.; Jiang, Z.; Jiang, S. Effect of ultrasonic surface rolling processing on wear properties of Cr12MoV steel. Mater. Today Commun. 2022, 33, 104762. [Google Scholar] [CrossRef]
- Liu, D.; Liu, D.; Zhang, X.; Liu, C.; Ao, N. Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Mater. Sci. Eng.-A Struct. 2018, 726, 69–81. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, Y.; Zhang, B.; Zhou, H.; Li, J.; Wang, F. Spectral response of polarization properties of fiber Bragg grating under local pressure. Opt. Fiber Technol. 2015, 25, 15–19. [Google Scholar] [CrossRef]
- Krzysztof, T.; Halina, G. Manufacturing of nanostructured titanium Grade2 using caliber rolling. Mater. Sci. Eng. A Struct. 2019, 739, 277–288. [Google Scholar]
- Marcello, C. Minimum necessary strain to induce tangled dislocation to form cell and grain boundaries in a 6N-A1. Mater. Sci. Eng. A Struct. 2020, 770, 138420. [Google Scholar]
- Suárez, A.; Amado, J.; Tobar, M.; Yanez, A.; Frag, E.; Peel, M. Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation. Surf. Coat. Technol. 2010, 204, 1983–1988. [Google Scholar] [CrossRef]
- Shen, X.; He, X.; Gao, L.; Su, G.; Xu, H.; Xu, N. Study on crack behavior of laser cladding ceramic-metal composite coating with high content of WC. Ceram. Int. 2022, 48, 17460–17470. [Google Scholar] [CrossRef]
- Ravil, K.; Young, S.; Pyun, C.; Min, S.; Riichi, M. Mechanical and fatigue characteristics of Ti-6Al-4V extra low interstitial and solution-treated and annealed alloys after ultrasonic nanocrystal surface modification treatment. J. Nanosci. Nanotechnol. 2014, 14, 9430–9435. [Google Scholar]
- Korzynski, M.; Pacana, A.; Cwanek, J. Fatigue strength of chromium coated elements and possibility of its improvement with slide diamond burnishing. Surf. Coat. Technol. 2009, 203, 1670–1676. [Google Scholar] [CrossRef]
- Ye, C.; Telang, A.; Gill, A.; Suslov, S.; Idell, Y.; Zweiacker, K.; Wiezorek, J.; Zhou, Z.; Qian, D.; Mannava, S.; et al. Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility. Mater. Sci. Eng. A Struct. 2014, 613, 274–288. [Google Scholar] [CrossRef]
- Fernandes, F.; Mahesh, K.; Silva, R.; Gurau, C.; Gurau, G. XRD study of the transformation characteristics of severely plastic deformed Ni-Ti SMAs. Phys. Status Solidi C 2010, 7, 1348–1350. [Google Scholar] [CrossRef]
- Qin, W.; Li, J.; Liu, Y.; Yue, W.; Wang, C.; Mao, Q.; Li, Y. Effect of Rolling Strain on the Mechanical and Tribological Properties of 316 L Stainless Steel. J. Tribol. 2019, 141, 021606. [Google Scholar] [CrossRef]
- Amanov, A.; Urmanov, B.; Amanov, T.; Pyun, Y. Strengthening of Ti-6Al-4V alloy by high temperature ultrasonic nanocrystal surface modification technique. Mater. Lett. 2017, 196, 198–201. [Google Scholar] [CrossRef]
- Konyashin, I.; Ries, B.; Hlawatschek, D.; Zhuk, Y.; Park, D. Wear-resistance and hardness, Are they Directly related for nanostructured hard materials? Int. J. Refract. Met. Hard 2015, 49, 203–211. [Google Scholar] [CrossRef]
- Amanov, A. Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification. Wear 2020, 446, 203208. [Google Scholar] [CrossRef]
Cutting Depth (mm) | Spindle Speed (r/min) | Feed (r/mm) |
---|---|---|
0.1 | 300 | 0.06 |
Frequency (kHz) | Amplitude (μm) | Feed (mm/min) | Static Load (N) | Spindle Speed (rpm) |
---|---|---|---|---|
28 | 7 | 10 | 320 | 160 |
Samples | C | Si | Cr | Mo | Fe | Ni | O |
---|---|---|---|---|---|---|---|
Powder | 0.43 | 0.31 | 1.09 | 0.20 | 97.28 | - | - |
Control | 5.09 | 0.82 | 1.09 | 0.15 | 87.47 | - | 4.58 |
HT treated | 11.89 | 1.59 | 14.41 | 1.18 | 49.88 | 5.44 | 12.23 |
UB treated | 0.68 | 1.71 | 16.29 | 1.15 | 57.18 | 6.33 | 12.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Jiang, X.; Shen, X.; Peng, H. Improving the Surface Integrity and Tribological Behavior of a High-Temperature Friction Surface via the Synergy of Laser Cladding and Ultrasonic Burnishing. Lubricants 2023, 11, 379. https://doi.org/10.3390/lubricants11090379
Xu N, Jiang X, Shen X, Peng H. Improving the Surface Integrity and Tribological Behavior of a High-Temperature Friction Surface via the Synergy of Laser Cladding and Ultrasonic Burnishing. Lubricants. 2023; 11(9):379. https://doi.org/10.3390/lubricants11090379
Chicago/Turabian StyleXu, Nan, Xiaochen Jiang, Xuehui Shen, and Hao Peng. 2023. "Improving the Surface Integrity and Tribological Behavior of a High-Temperature Friction Surface via the Synergy of Laser Cladding and Ultrasonic Burnishing" Lubricants 11, no. 9: 379. https://doi.org/10.3390/lubricants11090379
APA StyleXu, N., Jiang, X., Shen, X., & Peng, H. (2023). Improving the Surface Integrity and Tribological Behavior of a High-Temperature Friction Surface via the Synergy of Laser Cladding and Ultrasonic Burnishing. Lubricants, 11(9), 379. https://doi.org/10.3390/lubricants11090379