The Anisotropic Mechanical and Tribological Behaviors of Additively Manufactured (Material Extrusion) Implant-Grade Polyether Ether Ketone (PEEK)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Properties
2.2. Tribological Properties
3. Results and Discussions
3.1. Mechanical Assessment
3.1.1. Anisotropy Behavior of 3D-Printed PEEK
3.1.2. Contact Area
3.1.3. Elastic and Plastic Behavior
3.2. Tribological Assessment
3.2.1. Friction
3.2.2. Wear
3.2.3. Lubrication
3.2.4. Wear Mechanisms
4. Conclusions
- (1)
- When subjected to loading perpendicular to the layer direction, the PEEK samples exhibited an elastic modulus of 2.30 ± 0.10 GPa and a yield strength of 61.0 ± 1.0 MPa. Conversely, when loaded parallel to the layer direction, the samples demonstrated an elastic modulus of 2.30 ± 0.2 GPa and a yield strength of 76.0 ± 7.0 MPa. The mean Young’s modulus of (2.505 GPa) can be attributed to the application of both normal and tangential loads during the pin-on-disk test.
- (2)
- In 3D-printed PEEK, the onset of elastic-plastic and fully plastic deformation occurred when the mean contact pressure reached approximately 1.064 times the material’s yield strength. In contrast to metals, where a distinct transition between the elastic–plastic and fully plastic regions is typically observed at around 2.8 times the yield strength, the 3D-printed PEEK did not exhibit a clear separation between these deformation phases.
- (3)
- The wear coefficients (K) for 3D-printed PEEK material were calculated values of and under mild and severe wear conditions, respectively.
- (4)
- A mixed lubrication mechanism was determined through the Stribeck curve, which highlighted a decrease in the average coefficient of friction as the Sommerfeld number increased. Mmixed lubrication is suggested by the ratio between the minimum film thickness and the surface roughness being less than 3 for all applied loads.
- (5)
- The COF increased with load due to complex interplay of factors influencing frictional behavior.
- (6)
- Increasing the applied load led to varying wear mechanisms in the 3D-printed PEEK, progressing from minimal plastic deformation and fretting wear at lower loads to pronounced plastic deformations, wear crack formation, and adhesive wear at higher loads.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunter, D.J.; March, L.; Chew, M. Osteoarthritis in 2020 and beyond: A Lancet Commission. Lancet 2020, 396, 1711–1712. [Google Scholar] [CrossRef] [PubMed]
- Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Robbins, S.R.; McDougall, J.J. Osteoarthritis: The genesis of pain. Rheumatology 2018, 57, iv43–iv50. [Google Scholar] [CrossRef] [PubMed]
- Rassir, R.; Nellensteijn, J.M.; Saouti, R.; Nolte, P.A. Bilateral massive osteolysis of uncertain origin after total knee arthroplasty: A case report and review of literature. Int. J. Surg. Case Rep. 2021, 80, 105678. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Nickel, B.; Anderson, P.A. Periprosthetic fractures: An unrecognized osteoporosis crisis. Osteoporos. Int. 2023, 34, 1055–1064. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Jin, Z. A review of the bio-tribology of medical devices. Friction 2022, 10, 4–30. [Google Scholar] [CrossRef]
- Au, A.G.; Raso, V.J.; Liggins, A.B.; Amirfazli, A. Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J. Biomech. 2007, 40, 1410–1416. [Google Scholar] [CrossRef]
- Unsworth, A.; Scholes, S.C.; Smith, S.L.; Elfick, A.P.D.; Ash, H.A. Tribology of replacement hip joints. In Tribology Series; Elsevier: Amsterdam, The Netherlands, 2000; pp. 195–202. [Google Scholar]
- Golish, S.R.; Anderson, P.A. Bearing surfaces for total disc arthroplasty: Metal-on-metal versus metal-on-polyethylene and other biomaterials. Spine J. 2012, 12, 693–701. [Google Scholar] [CrossRef]
- Mont, M.A.; Booth, R.E., Jr.; Laskin, R.S.; Stiehl, J.B.; Ritter, M.A.; Stuchin, S.A.; Rajadhyaksha, A.D. The spectrum of prosthesis design for primary total knee arthroplasty. Instr. Course Lect. 2003, 52, 397–407. [Google Scholar]
- Clarke, I.C.; Manaka, M.; Green, D.D.; Williams, P.; Pezzotti, G.; Kim, Y.-H.; Ries, M.; Sugano, N.; Sedel, L.; Delauney, C.; et al. Current status of zirconia used in total hip implants. JBJS 2003, 85, 73–84. [Google Scholar] [CrossRef]
- Maydanshahi, M.R.; Nazarian, A.; Eygendaal, D.; Ebrahimzadeh, M.H.; Kachooei, A.R.; Mousavi Shaegh, S.A. 3D printing-assisted fabrication of a patient-specific antibacterial radial head prosthesis with high periprosthetic bone preservation. Biomed. Mater. 2021, 16, 035027. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Lin, R.; Stark, C.; Dumbleton, J.H. Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements. Wear 1999, 225–229, 724–727. [Google Scholar] [CrossRef]
- Grupp, T.M.; Meisel, H.-J.; Cotton, J.A.; Schwiesau, J.; Fritz, B.; Blömer, W.; Jansson, V. Alternative bearing materials for intervertebral disc arthroplasty. Biomaterials 2010, 31, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Katzer, A.; Marquardt, H.; Westendorf, J.; Wening, J.V.; Von Foerster, G. Polyetheretherketone—Cytotoxicity and mutagenicity in vitro. Biomaterials 2002, 23, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; Peck, J. Chapter 26—FDA Regulation of PEEK Implants☆. In PEEK Biomaterials Handbook, 2nd ed.; Kurtz, S.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 431–445. [Google Scholar] [CrossRef]
- Wang, Y.; Müller, W.D.; Rumjahn, A.; Schwitalla, A. Parameters Influencing the Outcome of Additive Manufacturing of Tiny Medical Devices Based on PEEK. Materials 2020, 13, 466. [Google Scholar] [CrossRef]
- Solomon, I.J.; Sevvel, P.; Gunasekaran, J. A review on the various processing parameters in FDM. Mater. Today Proc. 2020, 37, 509–514. [Google Scholar] [CrossRef]
- Cai, W.; Trefs, J.L.; Hugel, T.; Balzer, B.N. Anisotropy of π-πStacking as Basis for Superlubricity. ACS Mater. Lett. 2023, 5, 172–179. [Google Scholar] [CrossRef]
- Cai, W.; Bullerjahn, J.T.; Lallemang, M.; Kroy, K.; Balzer, B.N.; Hugel, T. Angle-dependent strength of a single chemical bond by stereographic force spectroscopy. Chem. Sci. 2022, 13, 5734. [Google Scholar] [CrossRef]
- Cai, W.; Jäger, M.; Bullerjahn, J.T.; Hugel, T.; Wolf, S.; Balzer, B.N. Anisotropic Friction in a Ligand-Protein Complex. Nano Lett. 2023, 23, 4111–4119. [Google Scholar] [CrossRef]
- Arif, M.F.; Kumar, S.; Varadarajan, K.M.; Cantwell, W.J. Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater. Des. 2018, 146, 249–259. [Google Scholar] [CrossRef]
- Vaezi, M.; Yang, S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 2015, 10, 123–135. [Google Scholar] [CrossRef]
- Wang, Y.; Müller, W.-D.; Rumjahn, A.; Schmidt, F.; Schwitalla, A.D. Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. J. Mech. Behav. Biomed. Mater. 2021, 115, 104250. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.F.; Alhashmi, H.; Varadarajan, K.M.; Koo, J.H.; Hart, A.J.; Kumar, S. Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing. Compos. Part B Eng. 2020, 184, 107625. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Y.; Chen, K.; Zhang, D. Bio-tribological behavior of articular cartilage based on biological morphology. J. Mater. Sci. Mater. Med. 2021, 32, 132. [Google Scholar] [CrossRef]
- Howling, G.I.; Sakoda, H.; Antonarulrajah, A.; Marrs, H.; Stewart, T.D.; Appleyard, S.; Rand, B.; Fisher, J.; Ingham, E. Biological Response to Wear Debris Generated in Carbon Based Composites as Potential Bearing Surfaces for Artificial Hip Joints. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 67, 758–764. [Google Scholar] [CrossRef]
- Liaw, C.Y.; Tolbert, J.W.; Chow, L.W.; Guvendiren, M. Interlayer bonding strength of 3D printed PEEK specimens. Soft Matter 2021, 17, 4775–4789. [Google Scholar] [CrossRef]
- Rahman, K.M.; Letcher, T.; Reese, R. Mechanical properties of additively manufactured peek components using fused filament fabrication. ASME Int. Mech. Eng. Congr. Expo. Proc. 2015, 57359, V02AT02A009. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Pohrt, R.; Popov, V.L.; Pastewka, L.; Robbins, M.O.; Greenwood, J.A.; Tripp, J.H.; Hui, C.Y.; Liu, T.; Salez, T.; Raphael, E.; et al. Fused filament fabrication of peek: A review of process-structure-property relationships. Polymers 2021, 12, 1665. [Google Scholar] [CrossRef]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021, 37, 101658. [Google Scholar] [CrossRef]
- Hearmon, R.F.S. The elastic constants of anisotropic materials—II. Adv. Phys. 1956, 5, 323–382. [Google Scholar] [CrossRef]
- Kim, D.-H. Composite Structures for Civil and Architectural Engineering. In Composite Structures for Civil and Architectural Engineering; CRC Press: London, UK, 1994. [Google Scholar] [CrossRef]
- Popov, V.L.; Heß, M.; Willert, E. Handbook of Contact Mechanics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Nejati, M.; Dambly, M.L.T.; Saar, M.O. A methodology to determine the elastic properties of anisotropic rocks from a single uniaxial compression test. J. Rock Mech. Geotech. Eng. 2019, 11, 1166–1183. [Google Scholar] [CrossRef]
- WEI, D.; ZHAI, C.; HANAOR, D.; GAN, Y. Contact behaviour of simulated rough spheres generated with spherical harmonics. Int. J. Solids Struct. 2020, 193–194, 54–68. [Google Scholar] [CrossRef]
- Stronge, W.J. Continuum Modeling for Local Deformation Near Contact Area; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Fundamentals, S. Encyclopedia of Tribology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Tabor, D. The hardness of solids. Rev. Phys. Technol. 1970, 1, 145–179. [Google Scholar] [CrossRef]
- Hutchings, I.M. Tribology: Friction and wear of engineering materials. Mater. Des. 1992, 13, 187. [Google Scholar] [CrossRef]
- Walker, P.S.; Gold, B.L. The tribology (friction, lubrication and wear) of all-metal artificial hip joints. Wear 1971, 17, 285–299. [Google Scholar] [CrossRef]
- Sahoo, P.; Das, S.K.; Paulo Davim, J. Tribology of Materials for Biomedical Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Dangnan, F.; Espejo, C.; Liskiewicz, T.; Gester, M.; Neville, A. Friction and wear of additive manufactured polymers in dry contact. J. Manuf. Process. 2020, 59, 238–247. [Google Scholar] [CrossRef]
- Najari, M.R.; Sajjadi, S.A.; Ganji, O. Microstructural evolution and wear properties of chromium carbide coating formed by thermo-reactive diffusion (TRD) process on a cold-work tool steel. Results Surf. Interfaces 2022, 8, 100059. [Google Scholar] [CrossRef]
- Equbal, A.; Sood, A.K.; Toppo, V.; Ohdar, R.K.; Mahapatra, S.S. Prediction and analysis of sliding wear performance of fused deposition modelling-processed ABS plastic parts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 1261–1271. [Google Scholar] [CrossRef]
- Günen, A.; Kalkandelen, M.; Gök, M.S.; Kanca, E.; Kurt, B.; Karakaş, M.S.; Karahan, İ.H.; Çetin, M. Characteristics and high temperature wear behavior of chrome vanadium carbide composite coatings produced by thermo-reactive diffusion. Surf. Coat. Technol. 2020, 402, 126402. [Google Scholar] [CrossRef]
- Betancourt-Dougherty, L.C.; Smith, R.W. Effects of load and sliding speed on the wear behaviour of plasma sprayed TiCNiCrBSi coatings. Wear 1998, 217, 147–154. [Google Scholar] [CrossRef]
- Gang, S.; Fengzhou, F.; Chengwei, K. Tribological Performance of Bioimplants: A Comprehensive Review. Nami Jishu Yu Jingmi Gongcheng/Nanotechnol. Precis. Eng. 2018, 1, 107–122. [Google Scholar] [CrossRef]
- Walczak, M.; Caban, J. Tribological characteristics of polymer materials used for slide bearings. Open Eng. 2021, 11, 624–629. [Google Scholar] [CrossRef]
- Unsworth, A. Tribology of artificial hip joints. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2006, 220, 711–718. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, J.F.; Fang, F.Z. In vitro evaluation of artificial joints: A comprehensive review. Adv. Manuf. 2019, 7, 1–14. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Schmid, S.R.; Jacobson, B.O. Fundamentals of Fluid Film Lubrication. In Fundamentals of Fluid Film Lubrication; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Streicher, R.M. Tribology of Artificial Joints. In Endoprosthetics; Springer: Berlin/Heidelberg, Germany, 1995; pp. 34–48. [Google Scholar] [CrossRef]
- Unswotih, A. Recent developments ology of artificial in the joints. Tribol. Int. 1995, 28, 485–495. [Google Scholar] [CrossRef]
- Unsworth, A. Tribology of human and artificial joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1991, 205, 163–172. [Google Scholar] [CrossRef]
- Yan, Y. Tribology and tribo-corrosion testing and analysis of metallic biomaterials. In Metals for Biomedical Devices; Woodhead Publishing: Cambridge, UK, 2010; pp. 178–201. [Google Scholar] [CrossRef]
- Dowson, B.J.; Dowson, D. Minimum Film Thickness in Elliptical Contacts for Different Regimes of Fluid-Film Lubrication; NASA Technical Paper 1342; NASA: Washington, DC, USA, 1978. [Google Scholar]
- Stewart, T.D. Tribology of artificial joints. Orthop. Trauma 2010, 24, 435–440. [Google Scholar] [CrossRef]
- Wang, S.; Song, J.; Liao, Z.; Liu, Y.; Zhang, C.; Liu, W. Study on the Wettability and Tribological Behavior of Different Polymers as Bearing Materials for Cervical Prosthesis. J. Mater. Eng. Perform. 2015, 24, 2481–2493. [Google Scholar] [CrossRef]
- Guo, Q.; Luo, W. Mechanisms of fretting wear resistance in terms of material structures for unfilled engineering polymers. Wear 2001, 249, 924–931. [Google Scholar] [CrossRef]
- Jin, X.; Shipway, P.H.; Sun, W. The Role of Temperature and Frequency on Fretting Wear of a Like-on-Like Stainless Steel Contact. Tribol. Lett. 2017, 65, 77. [Google Scholar] [CrossRef]
- Massocchi, D.; Riboni, G.; Lecis, N.; Chatterton, S.; Pennacchi, P. Tribological Characterization of Polyether Ether Ketone (PEEK) Polymers Produced by Additive Manufacturing for Hydrodynamic Bearing Application. Lubricants 2021, 9, 112. [Google Scholar] [CrossRef]
Nozzle Temperature [°C] | Bed and Chamber Temperature [°C] | Nozzle Diameter [mm] | Layer Height [mm] | Raster Angle [°] | Printing Speed [mm/min] | Infill Density [%] | Cooling Fan [%] | Outline Shells |
---|---|---|---|---|---|---|---|---|
410 | 120 | 0.4 | 0.1 | 0/90 | 1500 | 100 | 0 | 2 |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
Elastic constants [GPa] | 2.846 | 1.141 | 1.156 | 3.011 | 0.885 | 0.853 |
Load [N] | Radius of Circular Contact Area [mm] | Average Contact Pressures [MPa] | Maximum Contact Pressures [MPa] | Maximum Deflection [mm] | Depth of Maximum Shear Stress [mm] |
---|---|---|---|---|---|
14 | 0.227 | 86.708 | 130.063 | 0.017 | 0.145 |
30 | 0.292 | 111.787 | 167.681 | 0.028 | 0.186 |
50 | 0.346 | 132.538 | 198.808 | 0.040 | 0.221 |
70 | 0.388 | 148.269 | 222.404 | 0.050 | 0.247 |
Load [N] | Average Coefficient of Friction | Sommerfeld Number | Minimum Fluid-Film Thickness [nm] | Lambda (λ) | Mass Loss [mg] | |
---|---|---|---|---|---|---|
14 | 0.133 | 1.887 | 0.018 | 0.30 | ||
30 | 0.173 | 1.608 | 0.015 | 3.90 | ||
50 | 0.200 | 1.444 | 0.014 | 17.10 | ||
70 | 0.213 | 1.346 | 0.013 | 22.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maydanshahi, M.R.; Najari, M.R.; Slatter, T.; Mohammadpour, M. The Anisotropic Mechanical and Tribological Behaviors of Additively Manufactured (Material Extrusion) Implant-Grade Polyether Ether Ketone (PEEK). Lubricants 2024, 12, 347. https://doi.org/10.3390/lubricants12100347
Maydanshahi MR, Najari MR, Slatter T, Mohammadpour M. The Anisotropic Mechanical and Tribological Behaviors of Additively Manufactured (Material Extrusion) Implant-Grade Polyether Ether Ketone (PEEK). Lubricants. 2024; 12(10):347. https://doi.org/10.3390/lubricants12100347
Chicago/Turabian StyleMaydanshahi, Mohammad Reza, Mohammad Reza Najari, Tom Slatter, and Mahdi Mohammadpour. 2024. "The Anisotropic Mechanical and Tribological Behaviors of Additively Manufactured (Material Extrusion) Implant-Grade Polyether Ether Ketone (PEEK)" Lubricants 12, no. 10: 347. https://doi.org/10.3390/lubricants12100347
APA StyleMaydanshahi, M. R., Najari, M. R., Slatter, T., & Mohammadpour, M. (2024). The Anisotropic Mechanical and Tribological Behaviors of Additively Manufactured (Material Extrusion) Implant-Grade Polyether Ether Ketone (PEEK). Lubricants, 12(10), 347. https://doi.org/10.3390/lubricants12100347