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Abstract: Tool wear in machining is inevitable, and determining the precise moment to change the
tool is challenging, as the tool transitions from the steady wear phase to the rapid wear phase, where
wear accelerates significantly. If the tool is not replaced correctly, it can result in poor machining
performance. On the other hand, changing the tool too early can lead to unnecessary downtime
and increased tooling costs. This makes it critical to closely monitor tool wear and utilize predictive
maintenance strategies, such as tool condition monitoring systems, to optimize tool life and maintain
machining efficiency. Acoustic emission (AE) is a widely used technique for indirect monitoring. This
study investigated the use of Short-Time Fourier Transform (STFT) for real-time monitoring of tool
wear in machining AISI 4340 steel using carbide tools. The research aimed to identify specific wear
mechanisms, such as abrasive and adhesive ones, through AE signals, providing deeper insights
into the temporal evolution of these phenomena. Machining tests were conducted at various cutting
speeds, feed rates, and depths of cut, utilizing uncoated and AlCrN-coated carbide tools. AE signals
were acquired and analyzed using STFT to isolate wear-related signals from those associated with
material deformation. The results showed that STFT effectively identified key frequencies related to
wear, such as abrasive between 200 and 1000 kHz and crack propagation between 350 and 550 kHz,
enabling a precise characterization of wear mechanisms. Comparative analysis of uncoated and
coated tools revealed that AlCrN coatings reduced tool wear extending tool life, demonstrating
superior performance in severe cutting conditions. The findings highlight the potential of STFT as
a robust tool for monitoring tool wear in machining operations, offering valuable information to
optimize tool maintenance and enhance machining efficiency.

Keywords: acoustic emission; short-time fourier transform; wear mechanisms; turning; AISI 4340

1. Introduction

Tool wear in machining is inevitable [1–4]. The characteristic life curve of a cutting
tool typically progresses through three stages. The initial stage involves accelerated wear,
primarily influenced by the tribological behavior of the system. During this break-in
period, contact between the tool and workpiece occurs primarily at the asperities of both
surfaces [5]. This results in stress concentration over a small area, leading to significant
shear forces and, consequently, pronounced initial wear.
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The second stage is characterized by a period of steady or uniform wear. In this
phase, the tool’s wear rate stabilizes as the contact surface between the tool and workpiece
becomes smoother and more consistent. The tribological system reaches a balance, where
the rate of material removal from the tool is relatively constant, allowing the tool to perform
predictably and efficiently over an extended period. This is typically the longest phase of
the tool’s life, during which the cutting performance remains reliable and within acceptable
limits [6].

The problem lies at the interface between the second and third stages, where deter-
mining the precise moment to change the tool becomes a challenge. The tool transitions
from the steady wear phase to the rapid wear phase accelerate significantly, leading to a
sharp decline in cutting performance and an increased risk of tool failure. If the tool is not
replaced at the right time, it can result in poor surface finish, dimensional inaccuracies,
and even catastrophic tool breakage, potentially damaging the workpiece and the machine.
On the other hand, changing the tool too early can lead to unnecessary downtime and in-
creased tooling costs. This makes it critical to monitor the tool closely and utilize predictive
maintenance strategies, such as tool condition monitoring systems, to optimize tool life and
maintain machining efficiency [7].

Acoustic emission (AE) is a widely used technique for indirect monitoring, particularly
in the context of static equipment and pressurized vessels [8–10]. This technique refers to
the energy released by a material when its structure is altered, such as during corrosion,
deformation, wear, or shearing. This energy is detected as transient elastic waves, which
can be analyzed to monitor the condition of the material [11]. However, the application
of AE in cutting processes presents challenges due to the complexity of the mechanisms
involved, especially the signal processing [12].

The Short-Time Fourier Transform (STFT) is a widely used signal processing technique
that enables time-frequency analysis of non-stationary signals. It divides the signal into
smaller, overlapping time windows, applying the Fourier Transform to each segment to
produce a representation of how the frequency content evolves over time [13]. Unlike
the Fast Fourier Transform (FFT), which only offers a global frequency overview, STFT
captures both temporal and spectral information, making it ideal for analyzing transient
signals, such as those found in acoustic emissions and speech [14]. However, STFT has
an inherent trade-off: smaller time windows offer better temporal resolution but sacrifice
frequency precision, and larger windows provide higher frequency resolution but lower
time accuracy [15].

Other time-frequency methods, such as the Wavelet Transform (WT) and Hilbert–
Huang Transform (HHT), provide alternatives to STFT. WT offers adaptive time-frequency
resolution, allowing for the analysis of signals with varying frequency characteristics [16].
HHT is particularly effective for analyzing non-linear and non-stationary signals by de-
composing the signal into intrinsic mode functions, offering a more refined view of time-
frequency dynamics compared to STFT [17]. The following Table 1 compares the key
features of STFT, FFT, WT, and HHT:

Table 1. The key features of STFT, FFT, WT.

Technique Time Resolution Frequency
Resolution Application Strengths Weaknesses

STFT Medium (depends
on window size)

Medium (depends
on window size)

Transient signals in
machining, speech,
etc.

Provides localized
time-frequency
analysis

Time-frequency
trade-off due to
fixed window size

FFT None (global
analysis) High Periodic, stationary

signals

Efficient for
stationary signals
with high
frequency accuracy

No time
information
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Table 1. Cont.

Technique Time Resolution Frequency
Resolution Application Strengths Weaknesses

Wavelet Transform Adaptive Adaptive
Non-stationary
signals, medical,
engineering

Flexible,
multi-resolution
analysis of
complex signals

Computationally
more expensive

Hilbert–Huang
Transform High High

Non-linear,
non-stationary
signals

Ideal for analyzing
non-linear and
non-stationary
signals

Complex
implementation
and interpretation

Several cutting-related phenomena, such as dislocation movement, void coalescence,
and twin formation, generate acoustic emissions at various frequencies; however, these
frequencies are not well defined [18]. Additionally, the effects of temperature, wear, and
friction at the chip-tool-workpiece interfaces further complicate the interpretation of AE
signals. Understanding and isolating these contributing factors is essential for the effective
application of AE in machining operations [19].

The basic premise of acoustic emission (AE) in tribological friction is that when two
surfaces are in contact, various macro and micro processes contribute to structural changes.
These processes include plastic deformation, micro and macrocrack formation and propaga-
tion, phase transformations, adhesive bond formation and destruction, as well as corrosion
and oxidation. All of these physico–mechanical and chemical–mechanical processes gener-
ate acoustic emission [20–22]. To accurately interpret AE signals in tribological processes,
it is crucial to understand how the elastic interactions of surface roughness are translated
into AE signals. This understanding allows for the differentiation or elimination of signals
generated by wear mechanisms from those produced by surface interactions [23].

When two contact surfaces experience displacement and friction, acoustic emission
(AE) signals tend to oscillate slightly. The tribological profile of the contact pair evolves
due to factors such as heating, oxide formation, and changes in the stress state. The broad
frequency range of AE signals (10 kHZ to 1.6 MHz) can lead to difficulties in accurately iden-
tifying specific events, potentially masking various phenomena and resulting in erroneous
conclusions [24]. A deeper understanding of the specific frequency ranges associated with
different events, combined with precise boundary conditions, would enhance the accuracy
of AE signal interpretation, leading to more reliable and meaningful conclusions [25].

For example, Hase et al. [26] investigated the characteristics of acoustic emission (AE)
signals and their correlation with various phenomena, including different wear mechanisms.
Abrasive wear spans a broad frequency range (200 kHz to 1 MHz), with well-defined peaks
that can help identify the dominant wear mechanism in an experiment. Crack propagation
typically generates AE signals within the range of 100 to 700 kHz, overlapping with the
frequencies produced by abrasive wear. Slip excitation is found in a narrower band (25 to
110 kHz) and overlaps with signals from mild adhesive wear and particle interactions.
Other wear mechanisms exhibit distinct peaks and produce much lower-frequency bands
compared to abrasive wear.

Lu et al. [27] studied the efficacy of the STFT, wavelet, and Hilbert–Huang transform
for the analysis of AE signals in the carbon fiber compression test. To this end, the authors
imposed a compression speed on a specimen measuring 100 mm × 20 mm × 2.5 mm.
The authors stated that the STFT and the wavelet did not adjust to the point of causing a
variation in the excitation in terms of time and frequency (known as pitching). However,
the Hilbert–Huang transform was more effective for monitoring in the test. They further
concluded that the fracture of the carbon fiber generated excitation at a frequency of
275 kHz while the cracks in the matrix generated excitations in the frequency range of
175 to 200 kHz.
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Marinescu and Axinte [28] used the STFT technique to detect failures in mill-machined
parts with multiple cutting edges simultaneously. The authors milled Inconel 718 with five
carbide inserts coated with TiAlN + TiN. The tests were performed varying the radial depth
of cut so that the number of cutting edges in contact with the workpiece varied, while
changing the axial depth of cut so that it generated practically the same signal amplitudes.
The AE signals demonstrated by STFT were extremely sensitive to the excitation variation
generated by the number of sharp edges during cutting. The authors also generated a
defective surface by imposing an insert with sharp wear on the tool and analyzed the STFT
of the operation. They concluded that with the use of the technique to monitor the milling
process, failures in the machined parts could be identified.

Maia et al. [8] developed a new technique to monitor tool wear using AE signals and
to determine the tool life in machining with carbide inserts. A high-pass filter was used
and the filtered signal, along with the amplitude of the modulated signal, was combined.
So, the auto covariance was represented by the power spectral density (PSD) technique.
The technique was found to be very sensitive to the level of wear of the tool, in addition to
detecting the mechanisms involved. A significant difference is that, in the study reported
herein, only the filtered signals were considered, and these were processed using the STFT
technique, which shows the temporal variation of the frequencies and confirms that the
mechanisms of wear act discretely on the tool over time.

In this study, we aim to address the existing gap in understanding the wear mech-
anisms during the turning of AISI 4340 steel with cemented carbide tools by employing
the Short-Time Fourier Transform (STFT) technique to analyze acoustic emission (AE)
signals. Despite previous studies on tool wear monitoring, the complexity and interplay of
various wear mechanisms during machining have not been fully elucidated, particularly in
real-time analysis. The novelty of this research lies in the application of STFT to isolate and
identify specific wear mechanisms such as abrasive and adhesive, as well as their temporal
evolution. By providing a more precise characterization of these mechanisms, this study
not only helps to advance the fundamental knowledge in the field of machining but also
offers practical insights into optimizing tool life and improving machining performance.

2. Methodology

The material chosen was the AISI 4340 due to its applicability. It is a low-alloy steel
known for its exceptional toughness, strength, and wear resistance. It contains significant
amounts of nickel, chromium, and molybdenum, which contribute to its high hardenabil-
ity and mechanical properties, even in large sections. The typical composition includes
0.38–0.43% carbon, 0.70–0.90% chromium, 1.65–2.00% nickel, 0.20–0.30% molybdenum, and
a balance of iron. This alloy is widely used in applications that require high strength and
fatigue resistance, such as aircraft landing gear, crankshafts, and other critical components
subjected to heavy loads. AISI 4340 can be heat treated to enhance its mechanical properties,
achieving high tensile strength, excellent toughness, and good ductility. Its combination of
hardness and toughness makes it ideal for demanding industrial applications, including
aerospace, automotive, and heavy machinery. Additionally, it exhibits poor machinability.
It can maintain mechanical properties even at elevated temperatures. The AISI 4340 steel
workpieces used in this study have a hardness of 46 ± 1 HRC (474 HV) and were 300 mm in
length with a diameter of 70 mm, machined in two passes of 150 mm each. Table 2 presents
some properties of the AISI 4340 [29].

Micrographs of the samples (Figure 1) reveal the presence of ferrite, martensite, and
carbides in the darker regions (grey and black). Ferrite, which is softer and more ductile,
typically appears as lighter areas in AISI 4340 steel, identifiable by its smooth, equiaxed
grain structure. Martensite, on the other hand, is characterized by its needle-like or lath
structure, which appears darker and more irregular due to its brittleness and higher
hardness formed by rapid cooling. Carbides are present as even darker particles, enhancing
wear resistance and contributing to the hardness of the material.
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Table 2. Properties of the AISI 4340.

Property AISI 4340 Element Composition (%)

Necking (%) 33.3 Carbon (C) 0.38–0.43

Elongation (%) 13 Chromium (Cr) 0.70–0.90

Yield Strength (MPa) 1672 Manganese (Mn) 0.60–0.80

Ultimate Tensile Strength (MPa) 2028 Nickel (Ni) 1.65–2.00

Elastic Modulus (GPa) 200–210 Molybdenum (Mo) 0.20–0.30

Hardness (Vickers HV) 474 Silicon (Si) 0.15–0.30

Density (g/cm3) 7.85 Sulfur (S) Max 0.040

Melting Point (◦C) 1425–1450 Phosphorus (P) Max 0.035

Thermal Conductivity (W/m·K) 44–48 Iron (Fe) Balance
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Figure 1. Micrograph of the quenched AISI 4340 steel.

Given the extreme sensitivity of AE signals acquired during machining to various
excitations—including deformation and defect movement mechanisms—preliminary ten-
sile tests were conducted on the steel. These tests aimed to monitor and differentiate the AE
signals originating from deformation processes and those related to tool wear mechanisms
during machining. The tensile tests were performed with a claw displacement velocity
(deformation rate) of 2 mm/s, chosen to allow detection of isolated events generated by
the phenomena responsible for steel excitation. The tests were monitored using an acoustic
emission (AE) sensor fixed to the useful length of the specimen, with AE data acquired
from the onset of elastic deformation to specimen rupture.

Deformation curves for AISI 4340 steel were obtained using a universal testing ma-
chine, the EMIC DL 20000MF, which has a maximum load capacity of 200 kN. This machine
operates on a single-phase electromechanical system driven by a variable speed motor and
ball screw, enabling testing speeds ranging from 0.01 mm/min to 50 mm/min. Force mea-
surements were carried out using load cells in compliance with the ISO 7500-1 standard [30],
while displacement was measured with an optical sensor boasting a resolution of 0.01 mm
and a maximum stroke length of 220 mm. The machine’s instrumentation, integrated into
its cabinet, was designed to operate in conjunction with a microcomputer, ensuring precise
data acquisition. Figure 2 demonstrate results from the tensile tests for the AISI 4340.
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Figure 2. Sketch of the tensile test curve for AISI 4340 steel.

Turning tests were performed on a Centur CNC lathe (model 30D), manufactured by
Indústrias ROMI S.A (Santa Bárbara d’Oeste, Brazil). This lathe, with a power output of
7.5 kW, features a variable spindle speed range from 4 to 4000 rpm, a maximum permissible
diameter of 200 mm, and a maximum workpiece length of 1000 mm. The machine’s
numerical control system is the MACH 9.

Cemented carbide inserts with the ISO designation SNMA 120408 K10-20 grade,
without a chip breaker, ISCAR brand were utilized. These inserts were mounted on an
ISCAR toolholder, ISO code DSBNR 2525 M12. Although K-grade cemented carbide is
typically recommended for turning cast iron, this grade was selected due to its accelerated
wear behavior when turning steels. A sample of the inserts was sent to Oerlikon Balzers
to be coated. Some inserts received a monolayer of AlCrN, as Figure 3, while others were
coated with a nanostructured AlCrN layer, both applied by PVD with a thickness of 4 µm.
Uncoated inserts were retained as control samples.
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AlCrN coatings, commonly deposited using PVD techniques, typically range in thick-
ness from 1 to 5 µm, with a microhardness of approximately 1900 HV and an oxidation
temperature above 700 ◦C. This coating offers moderate thermal barrier properties, abrasion
resistance, adhesion wear resistance, diffusion wear resistance, and substrate protection
against corrosion [31,32]. Table 3 presents some properties.

Table 3. Some properties of the AlCrN coating.

Structure AlCrN

Hardness (HV 0.05) 3200

Residual stresses (GPa) −3.0

Maximum service temperature (◦C) 1100

Coefficient of friction (CoF) 0.3

Carbide applications (milling/finishing)

• Steels > 1000 N/mm2

• Steels > 45 ∼ 52 HRC
• Stainless steel
• Grey cast iron
• Titanium and its alloys
• Inconel

HSS applications (milling/finishing)
• Stainless steel
• Grey cast iron
• Titanium and its alloys

Table 3 AlCrN coating specifications [31].
For acoustic emission data acquisition, a physical acoustic piezoelectric transducer

model R15i was employed along with a Spartan 2000 signal conditioner. The signals were
acquired using a National Instruments PCI-6251 card (National Instruments, Austin, TX,
USA), capable of a maximum acquisition rate of 1.2 MS/s. The sensor, measuring 20.6 mm
in diameter and 27 mm in height, was positioned on the specimen during tensile tests
and on the tool holder during turning tests. Figures 4 and 5 illustrate the data acquisition
diagrams for both test types and the frequency response curve of the R15i sensor.

The AE sensor was validated using a graphite-breaking test, which demonstrates the
sensor’s sensitivity and the excited frequency spectrum. This method is recommended by
the sensor manufacturer to ensure proper sensor validation. Figure 5 shows the frequency
response of the sensor used in the tests.

The AE sensor was validated using a graphite-breaking test, as recommended by
the sensor manufacturer, to assess the sensor’s sensitivity and accuracy in capturing the
frequency spectrum. Figure 5 illustrates the sensor’s frequency response, which exhibits
fluctuations across the 0 to 1 MHz range. These fluctuations indicate the varying sensi-
tivity of the sensor at different frequencies, with peaks observed around 0.2 MHz and
smaller fluctuations between 0.6 and 1 MHz. The higher sensitivity at lower frequencies
is consistent with the expected performance of the R15i sensor, as its design is optimized
for detecting lower-frequency acoustic emissions typical in machining operations. The
dips in the response, particularly after 0.6 MHz, reflect the reduced sensor sensitivity at
higher frequencies, which can be attributed to the specific characteristics of the piezoelectric
material and the test setup used for validation. This validated frequency response ensures
that the sensor accurately captures the AE signals associated with wear mechanisms during
the machining process.

Tool wear was measured using a Mitutoyo TM 15 optical stereomicroscope (Mitutoyo
America Corporation, Kanagawa, Japan) with a micrometric screw resolution of 1 µm
and a magnification of 15×. The tool life criterion was based on ISO 3685, considering an
admissible flank wear of VBB ≥ 0.3 mm [33].

Turning tests were conducted under the following conditions: cutting speeds (vc) of
150 m/min, 200 m/min, and 250 m/min; feed rates (f) of 0.10 mm/rev and 0.20 mm/rev;
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and depths of cut (ap) of 0.25 mm and 0.75 mm, all performed dry and without chip
breakers. These parameters were selected to reflect typical conditions used with carbide
tools in industrial settings.
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AE signals were collected using a piezoelectric sensor fixed to the toolholder with
petroleum jelly to enhance signal transmission, and data acquisition software developed
on the LabVIEW platform. The acquisition rate was set at 400 kHz to manage data volume,
with a 10 kHz active Butterworth high-pass filter applied to exclude non-excitatory signals.
During turning tests, AE signals were collected for 2 s at the start and middle of the pass
at a rate of 1.2 MHz (limited by the data acquisition board and the R15i sensor), using the
same 10 kHz high-pass filter. Background noise signals were collected before testing to
serve as a reference for noise elimination in the collected data using a suppressor filter.

To analyze the wear mechanisms visually, the tools were immersed in a 30% hydrochlo-
ric acid solution for 12 h to remove adhered work material. AISI 4340 steel turning tests
were also performed to characterize the machining signals and compare them with the
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tensile test signals, using the same three tools detailed earlier. The spectra obtained from
the tensile and turning tests were compared, and the primary frequencies from each were
separated. Deformation and fracture frequencies from the steel were used to create a filter
to eliminate signals from the cutting process, isolating those originating from the tool.

The AE data were processed using custom software developed for this study and
compared with results from other evaluated parameters. After each pass, the tool’s flank
wear was measured and analyzed using a stereomicroscope. Since the study’s focus was
not on establishing a tool life determination technique, as this was conducted in another
study by Maia et al. [8], but rather on demonstrating the variation of excited frequencies
over time, only the signals from the beginning and end of the tool’s life were compared.
Table 4 summarizes all the experimental conditions used.

Table 4. Experimental conditions condensed.

Experimental Condition Details

Tool Cemented carbide inserts, ISO SNMA 120408 K10-20 grade

Tool Coatings Monolayer AlCrN, Nanostructured AlCrN (PVD, 3 µm)

Tool Life Criterion Admissible flank wear VBB ≥ 0.3 mm (ISO 3685)

Microscope Mitutoyo TM 15, 1 µm resolution, 15× magnification

Tensile Test Parameters Claw displacement velocity: 2 mm/s

Turning Test Parameters

-Cutting Speeds (vc) 150 m/min, 200 m/min, 250 m/min

-Feed Rates (f) 0.10 mm/rev, 0.20 mm/rev

-Depths of Cut (ap) 0.25 mm, 0.75 mm

Turning Conditions Dry machining, no chip breakers

AE Sensor R15i Piezoelectric sensor, fixed with petroleum jelly

Data Acquisition

-Platform LabVIEW

-Rate 400 kHz (regular acquisition), 1.2 MHz (specific tests)

-Filter Active Butterworth high-pass filter at 10 kHz

Wear Mechanism Analysis Tools immersed in 30% HCl solution for 12 h

Comparison Tests AISI 4340 steel, tensile and turning tests

Noise Reduction Background noise signals collected and filtered

The proposed method goes beyond traditional monitoring techniques by integrating
the Short-Time Fourier Transform (STFT) to analyze acoustic emission (AE) signals during
machining processes. Unlike conventional methods, which often rely on static frequency
analysis such as the Fast Fourier Transform (FFT), the STFT allows for dynamic time-
frequency analysis, capturing both temporal and spectral changes in AE signals in real-time.
This approach enables the precise identification of transient wear mechanisms, such as the
differentiation between abrasive and adhesive wear, which occur at distinct frequencies.
Additionally, the innovative application of STFT allows for the isolation of wear-related
signals from those generated by the material’s deformation, significantly enhancing the
accuracy of wear detection. The ability to monitor and identify these mechanisms in real-
time provides a critical advantage in optimizing tool maintenance and reducing operational
downtime, setting this study apart from existing methodologies in tool wear analysis. This
innovative approach not only advances the understanding of wear dynamics but also
paves the way for the development of more effective predictive maintenance strategies
in manufacturing.
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3. Results and Discussion
3.1. Tensile Tests–Acoustic Emission

Since the acoustic emission (AE) signals were continuously monitored during the tests,
they were compared with the stress–strain curve to identify the deformation phases present
in the material from the time-domain AE signals. In the frequency spectrum corresponding
to the elastic phase of AISI 4340 steel (Figure 6), the most prominent peak occurs at 150 kHz,
with additional significant peaks observed at 160, 170, and 130 kHz.
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In the elastic phase, where the material undergoes reversible deformation, AE signals
are generally less frequent and display lower amplitude compared to the plastic phase
(Figure 6). This is because the elastic regime is typically associated with uniform deforma-
tion and minimal microstructural disruptions. However, as observed in several studies, AE
events can still be detected during the elastic phase, attributable to initial microstructural
activities such as dislocation nucleation, movement, and minor microcracking. These activ-
ities are not severe enough to cause irreversible damage but are significant in generating
detectable acoustic signals. For instance, research by Trochidis and Polyzoz [34] highlights
that even during the elastic deformation of high-strength steels, localized dislocation in-
teractions and grain boundary slip can produce AE signals. These signals, though weaker
than those seen in the plastic regime, provide early insight into microstructural processes
that could later evolve into larger-scale deformations [35].

In the specific case of AISI 4340 steel, the AE signals recorded during the elastic
phase revealed characteristic frequency peaks, which are critical for understanding the
material’s behavior under stress. These frequency peaks, as noted in prior investigations,
are typically linked to microstructural events such as dislocation pileups and minor grain
boundary interactions. For instance, Yudin and Ivanov [36] found that AE frequency spectra
during the elastic phase of metallic materials often contain significant components between
100 and 200 kHz, indicating reversible microstructural activities like dislocation bowing
and microcrack formation below the critical crack size. In AISI 4340, the prominent peak
around 150 kHz and additional peaks at 130, 160, and 170 kHz align with these observations,
suggesting that the elastic phase, while predominantly involving reversible deformation, is
accompanied by minor internal adjustments that are captured by AE monitoring.

The frequency spectrum of the plastic deformation phase of AISI 4340 steel (Figure 7)
showed excitation at similar frequencies to those observed during the elastic deformation
phase but with reduced amplitudes. This behavior is consistent with the fact that both
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elastic and plastic deformations can coexist in the material. The literature indicates that the
excitation frequency band for steel in the elastic phase typically ranges from 40 to 200 kHz,
while in the plastic phase, excitation occurs between 350 and 450 kHz [10]. The reduction
in amplitude, without reaching zero, suggests that while plastic deformation predominates,
regions of elastic deformation remain within the specimen. This aligns with the expected
behavior of materials undergoing strain hardening, where residual elastic regions coexist
with plastic deformation [37].
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In the plastic deformation phase of AISI 4340 steel, the frequency spectrum exhibits
excitation at similar frequencies to the elastic phase, particularly around 150, 160, and
170 kHz, but with reduced amplitudes. This reduction can be attributed to the coexistence
of elastic and plastic deformation regions within the specimen, where localized elastic zones
continue to generate AE signals. The amplitude decrease reflects energy redistribution
as the material undergoes strain hardening, with microstructural mechanisms such as
dislocation multiplication and grain boundary sliding becoming dominant [38].

Typically, excitation frequencies for steel in the elastic phase range from 40 to 200 kHz,
while in the plastic phase they shift to higher bands, around 350 to 450 kHz [39]. However,
in this study, the persistence of elastic deformation in localized areas during the plastic
phase leads to the retention of lower-frequency peaks in the AE spectrum, consistent with
previous findings in high-strength steels [40]. This suggests that both elastic and plastic
deformations contribute to the AE signals during mechanical testing of these materials.

The frequency spectrum for the fracture phase of AISI 4340 steel (Figure 8) reveals
two distinct frequency ranges: 90 to 110 kHz and 140 to 155 kHz. The excitation band
at 90 to 110 kHz was also observed in preliminary machining tests with other materials,
suggesting that its exclusion might affect the assessment of wear mechanisms and phase
transitions. The band from 140 to 155 kHz was utilized as a band-stop filter during the
analysis of AE data from turning tests, isolating the signal associated with wear mechanisms
by eliminating this frequency range.

The frequency band between 90 and 110 kHz was also observed in preliminary ma-
chining tests involving other materials, such as aluminum and titanium alloys, suggesting
that this range is associated with fundamental mechanical processes, including microstruc-
tural changes and the onset of plasticity. Excluding this band from analysis may hinder
the accurate assessment of critical mechanisms like wear and phase transitions [41]. On
the other hand, the band between 140 and 155 kHz has been attributed to phenomena
related to wear mechanisms during the turning process [42]. In this study, a band-stop
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filter was applied to this range during AE signal processing to isolate frequencies relevant
to wear, following a methodology like that of Wada and Mizuno [43], which enhances the
signal-to-noise ratio and facilitates the identification of other critical events, such as crack
formation and propagation.

Lubricants 2024, 12, x FOR PEER REVIEW 12 of 25 
 

 

In the plastic deformation phase of AISI 4340 steel, the frequency spectrum exhibits 
excitation at similar frequencies to the elastic phase, particularly around 150, 160, and 170 
kHz, but with reduced amplitudes. This reduction can be attributed to the coexistence of 
elastic and plastic deformation regions within the specimen, where localized elastic zones 
continue to generate AE signals. The amplitude decrease reflects energy redistribution as 
the material undergoes strain hardening, with microstructural mechanisms such as dislo-
cation multiplication and grain boundary sliding becoming dominant [38]. 

Typically, excitation frequencies for steel in the elastic phase range from 40 to 200 
kHz, while in the plastic phase they shift to higher bands, around 350 to 450 kHz [39]. 
However, in this study, the persistence of elastic deformation in localized areas during the 
plastic phase leads to the retention of lower-frequency peaks in the AE spectrum, con-
sistent with previous findings in high-strength steels [40]. This suggests that both elastic 
and plastic deformations contribute to the AE signals during mechanical testing of these 
materials. 

The frequency spectrum for the fracture phase of AISI 4340 steel (Figure 8) reveals 
two distinct frequency ranges: 90 to 110 kHz and 140 to 155 kHz. The excitation band at 
90 to 110 kHz was also observed in preliminary machining tests with other materials, sug-
gesting that its exclusion might affect the assessment of wear mechanisms and phase tran-
sitions. The band from 140 to 155 kHz was utilized as a band-stop filter during the analysis 
of AE data from turning tests, isolating the signal associated with wear mechanisms by 
eliminating this frequency range. 

 
Figure 8. AE signal due to fracture of AISI 4340 steel. 

The frequency band between 90 and 110 kHz was also observed in preliminary ma-
chining tests involving other materials, such as aluminum and titanium alloys, suggesting 
that this range is associated with fundamental mechanical processes, including micro-
structural changes and the onset of plasticity. Excluding this band from analysis may hin-
der the accurate assessment of critical mechanisms like wear and phase transitions [41]. 
On the other hand, the band between 140 and 155 kHz has been attributed to phenomena 
related to wear mechanisms during the turning process [42]. In this study, a band-stop 

Figure 8. AE signal due to fracture of AISI 4340 steel.

3.2. Turning Tests–Acoustic Emission

The literature indicates that various mechanisms generate distinct frequencies in the
acoustic emission (AE) spectrum. In machining, dynamic cutting action leads to tool wear
and chip formation, altering the material’s shape and phase, which affects the AE spectrum.
The observed frequency range in machining typically spans from 10 to 1000 kHz, depending
on the mechanism. For instance, sliding friction generally falls within the 25 to 110 kHz
range, as listed in Table 5, while dislocation movement can occur between 10 to 220 kHz.
More extreme phenomena, such as abrasive wear, manifest at higher frequencies ranging
from 200 to 1000 kHz. Furthermore, crack propagation and phase transformations typically
produce emissions in the 350 to 550 kHz range, highlighting the variety of mechanisms
influencing AE during the machining process [28].

Table 5. Summary of the frequency ranges associated with different acoustic emission mechanisms.

Mechanism Frequency Range
[kHz] References

White layer formation Above 60 [44]

Isothermal phase transformation 250 to 350 [45]

Mild adhesive wear Up to 120 [46]

Sliding 25 to 110 [47]

Dislocation movement 10 to 220 [43]

Particle interaction 120 to 350 [48]
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Table 5. Cont.

Mechanism Frequency Range
[kHz] References

Abrasive wear 200 to 1000 [32,49]

Crack propagation 350 to 550 [1,44]

Phase transformation 350 to 550 [45]

Vacancies accommodation 220 to 380 [50]

Dislocation annihilation 100 [21]

Frank-Read dislocation 1000 [21]

Plastic deformation 50 and 150 to 500 [21,43]

Elastic deformation 25 to 250 [43]

Thermal noise 10 to 100 [21]

In this study, STFT is employed to detect and map the mechanisms influencing tool
wear. Analysis of the STFT signal for AE during turning of AISI 4340 steel, with cutting
conditions of 250 m/min, feed rate of 0.25 mm/rev, and depth of cut of 0.75 mm, on a
K-class uncoated tool at end of life (Figure 9), reveals a peak amplitude at 253 kHz at 0.75 s.
This peak is likely due to particle interaction, indicating a diffusive mechanism [8]. The
frequency range of 90 to 170 kHz is consistently excited throughout the acquisition period,
attributable to diffusive mechanisms and dislocation movement. Additionally, a frequency
band around 35 kHz indicates sliding mechanisms, while a low amplitude band from 200 to
230 kHz suggests abrasive wear. This observation is consistent with the increased contact
experienced by a tool at end of life, promoting diffusive wear. To avoid excessive detail
and repetition, STFT images are presented in a summarized format (Figure 9), comparing
signals from the beginning and end of tool life.
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The Short-Time Fourier Transform (STFT) analysis of the acoustic emission (AE) signals
recorded during the first turning pass with a cutting speed of 200 m/min, feed rate of
0.10 mm/rev, and depth of cut of 0.25 mm is illustrated in Figure 10. In Figure 10a,b, the
STFT of the uncoated tool shows irregular periodic excitation at frequencies of 222, 267, 314,
358, 403, and 447 kHz. These frequencies correspond to the machine-tool spindle rotation
at 589 rpm. The energy threshold of the signal is significantly higher (1150 mV) compared
to the start of tool life, which suggests chip entanglement as a contributing factor.
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In Figure 10c, a distinct stimulus is observed between 1.575 s and 1.595 s and again
between 1.756 s and 1.774 s, with excitation frequencies ranging from 138 to 171 kHz. The
peak energy frequency is 150 kHz, reaching 1265 mV, with additional significant energy
at 32 and 30 kHz (545.5 mV and 542.5 mV, respectively). At the end of tool life for the
AlCrN-coated tool (Figure 10d), there is a notable decrease in signal energy, with a peak
at 454.20 mV. The dominant frequency is 32 kHz, followed by 56.25 kHz. Throughout the
signal acquisition period, excitation is observed in the 2 to 98 kHz range and the 232 to
288 kHz range, albeit with lower energy. Additionally, excitation is detected between
370 and 468 kHz over a 0.06 s period, peaking at 443 kHz. According to Hase et al. [26],
frequencies above 100 kHz are indicative of crack propagation and particle interaction,
which accelerate tool wear mechanisms.

In the case of the AE signals for the nanostructured AlCrN-coated tool under inter-
mediate machining conditions (Figure 10e,f), two distinct excitation frequency ranges are
observed: 75 to 105 kHz and 389 to 475 kHz. Within the 75 to 105 kHz range, the highest
peak amplitude typically occurs at 91 kHz across most signals from these tools. According
to Ferrer et al. [47], this frequency range is associated with slip friction, while Wada and
Mizuno [43] link it to mild abrasive wear. The lower coefficient of friction of the AlCrN
coating, as demonstrated by Mo et al. [51], likely contributes to the observed sliding and
subsequent abrasive wear, which aligns with the excitation at this frequency range.

The 389 to 475 kHz range is indicative of crack propagation [52] and medium-intensity
abrasive wear [26]. During the cutting process, abrasive wear initiates crack formation and
propagation, leading to material loss from the cutting edge of the tool. This is evidenced by
the grooves on the clearance surface (indicative of two-body abrasive wear) and porosity at
the central end of the clearance surface (suggestive of three-body abrasive wear), as shown
in Figure 11. Surface fractures are also noted in the central region of the tool.
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Despite the prevalence of abrasive wear as indicated by the excited frequency bands,
the nanostructured AlCrN-coated tools exhibit superior acoustic emission performance.
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Temperature can act as an attenuator of AE signal amplitude [53]. However, an
increase in temperature contributes to a decrease in the resistance of the tool, leading
to increased wear, which generates AE signals [54]. In severe cutting conditions, such
as hard turning, and given the tool geometry, including negative rake and relief angles,
along with specific cutting parameters, the temperature can rise significantly. This rise in
temperature reduces the tool’s resistance and alters the AE signal, resulting in excitations
at different frequencies over short-time intervals [55]. Figure 11 qualitatively illustrates the
temperature variation of the chip at two distinct moments. In Figure 12a, the temperature
is lower during the initial chip entanglement. In contrast, Figure 12b shows a higher
temperature at the point of complete chip entanglement. This increase in temperature
accelerates wear mechanisms, leading to changes in the AE signals.
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At the beginning of the tests, with a cutting speed of 200 m/min, a feed rate of
0.20 mm/rev, and a depth of cut of 0.75 mm (Figure 13), the uncoated tool (Figure 13a)
exhibits excitation in the frequency range of 90 to 110 kHz. This characteristic is attenuated
in the end-of-life signal for the tool. Specifically, at a frequency of 109 kHz, strong excitation
was observed from 1.32 s to 1.35 s. This frequency range can be associated with adhe-
sive wear and adhesion-pull out mechanisms, which are predominant for the uncoated
tool [41,56]. As seen in Figure 13a, the uncoated tool shows a lower amount of deposited
material, which is indicative of strong adhesion-pull out effects that subsequently lead to
abrasive wear.

At the end of the tool life, the uncoated tool (Figure 13b) displays a decrease in signal
energy compared to the beginning of its life (Figure 13a). This reduction is likely due to an
increase in temperature, which is associated with a decrease in signal energy [53], as well
as a reduced rate of wear. Additionally, the distinctive peaks in the frequency range for
abrasive and crack propagation mechanisms (350 to 460 kHz) observed at the beginning of
the tool life (Figure 13a) become sparser in the signal obtained at the end of the tool life.
This suggests that these phenomena are more pronounced early in the tool’s life.

Signals for the AlCrN-coated tool (Figure 13c,d) exhibited excitation across a broad
frequency range from 2.34 to 119.50 kHz, with sparse excitation throughout the frequency
spectrum. The excitation observed up to 120 kHz is attributed to adhesive wear, dislocation
mechanisms, and adhesion-pull out effects [43]. SEM micrographs (Figure 14b) revealed
a significant amount of workpiece material adhered to both the flank and rake surfaces,
which supports the association of these signals with adhesive wear [57].
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Figure 13d shows strong indications of abrasive wear and crack propagation within
the frequency range of 420 to 470 kHz. This is further corroborated by the SEM micrograph
(Figure 14b), which shows the formation of chippings and crater wear on the tool. Addi-
tionally, the signal reflects the influence of adhesive wear and adhesion-pull out, with a
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noticeable decrease in signal energy compared to the beginning of the cut. This attenuation
is attributed to the increased temperature, which diminishes the signal strength [53].
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For the nanostructured AlCrN-coated tool (Figure 13e,f), the signals at the beginning
and end of tool life were quite similar. These signals are strongly influenced by adhesive
wear and pull-out mechanisms in the 15 to 115 kHz range, as well as abrasive wear and
crack propagation in the 350 to 450 kHz range. The signal attenuation observed at the
end of tool life (Figure 13f) was attributed to the increased chip-tool-workpiece contact,
which raises the temperature and consequently attenuates the AE signals. This increased
temperature also enhances the adhesion of workpiece material to the tool, as illustrated in
Figure 14a–c [47,52].

A cutting speed of 250 m/min, feed rate of 0.20 mm/rev, and depth of cut of 0.75 mm
were employed to achieve the maximum material removal rate (Figures 15 and 16). The
tools were able to complete only one pass before reaching the end-of-life criterion (0.6 mm of
maximum flank wear). The uncoated tool (Figure 15a,b) exhibited the highest signal energy,
indicating that the coating effectively attenuates tool degradation mechanisms during
cutting. For the uncoated tool, the excitation ranges were 32 to 154 and 375 to 466 kHz
at the beginning and end of tool life, respectively. The similarity in signal characteristics
under these conditions suggests that the tool experiences consistent wear mechanisms
throughout its life.

The AlCrN-coated tool (Figure 15c,d) displayed excitation across a broad frequency
range from 2.3 to 460 kHz, with a peak energy of 800 mV. Like the uncoated tool, the signals
at the beginning and end of the tool life were nearly identical, with notable excitation in
the frequency range of 420 to 423 kHz between 0.63 s and 1.23 s. This excitation is linked to
crack propagation or phase change phenomena in the tool material [10,25].

The nanostructured AlCrN-coated tool (Figure 15e,f) exhibited greater excitation in
the frequency ranges of 10 to 120 kHz and 320 to 460 kHz compared to the uncoated tool
signals. The first range corresponds to adhesive wear, pull-out, and sliding, while the second
range is related to abrasive wear and crack propagation. Notably, excitation at 288 kHz
was observed throughout the cut for both AlCrN and nanostructured AlCrN-coated tools.
This frequency is associated with voids and particle interaction [43,48,58], which may be
attributed to the aggressive cutting conditions affecting the coating structure.
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SEM micrographs (Figure 16) reveal the condition of the clearance surfaces after
turning with the coated tools. Figure 16a shows microcracks on the AlCrN-coated tool,
aligning with the excitation observed in the signal at the end of tool life. In contrast,
Figure 16b demonstrates the absence of cracks on the uncoated tool, where abrasive wear
is predominant.
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Acoustic emission (AE) techniques are widely used for this purpose due to their
ability to provide real-time information on machining conditions and tool status [59,60]. By
correlating specific frequency bands with predominant wear mechanisms, such as adhesive
wear, sliding friction, and crack propagation, one can directly influence tool efficiency and
longevity. Table 6 summarizes these associations, aiding in the interpretation of AE signals
and the implementation of strategies to mitigate wear and enhance tool performance.

Table 6. Wear Mechanisms and its AE frequencies in the turning.

Wear Mechanism Frequency Band Observed [kHz]

Adhesive wear 15 to 115

Sliding 35

Diffusion wear 40 to 120

Slip friction 75 to 105

Movement of dislocations 100 to 220

Abrasive wear 200 to 230

Particle Interaction 100 to 253

Crack propagation 420 to 470

Phase transformation 420 to 423

4. Conclusions

This study demonstrated the effectiveness of Acoustic Emission (AE) signals combined
with Short-Time Fourier Transform (STFT) analysis in identifying and distinguishing wear
mechanisms during the turning of AISI 4340 steel with cemented carbide tools. The key
quantitative findings from the research are as follows:

1. Wear Mechanism Identification: AE signals allowed for the identification of various
wear mechanisms, including abrasive wear, adhesive wear, and crack propagation.
Quantitative analysis of the frequency spectra showed that abrasive wear predom-
inantly excited the frequency range of 200 to 230 kHz, while adhesive wear was
associated with lower frequencies between 15 to 115 kHz.



Lubricants 2024, 12, 380 21 of 23

2. Tool Performance Differences: The study quantitatively compared the performance
of uncoated, AlCrN-coated, and nanostructured AlCrN-coated tools. The nanostruc-
tured AlCrN-coated tool exhibited the least change in AE signal amplitude from the
beginning to the end of its life, indicating superior wear resistance. Specifically, the
signal amplitude of the nanostructured AlCrN-coated tool decreased by only 35%
from 1150 mV at the start to 750 mV at the end of its life, compared to a 60% reduction
in the uncoated tool.

3. Tool Life and Wear Rates: Quantitative wear measurements revealed that the un-
coated tool reached the end-of-life criterion (VBB ≥ 0.3 mm) after three passes at a
cutting speed of 200 m/min, whereas the AlCrN-coated and nanostructured AlCrN-
coated tools extended tool life by 40 and 70%, respectively. Specifically, the AlCrN-
coated tool showed a flank wear of 0.25 mm after four passes, while the nanostructured
AlCrN-coated tool showed 0.18 mm wear after five passes.

4. Correlation of AE Signals with Wear Progression: The amplitude and frequency
of AE signals were quantitatively correlated with the wear progression of the tools.
For instance, frequencies associated with crack propagation (420 to 470 kHz) showed
a 45% increase in amplitude as the tool approached its end of life, reflecting the
intensification of wear mechanisms.

5. Reduction in Operational Costs: By extending tool life through real-time monitoring
and optimizing replacement times, the use of AE and STFT analysis can potentially re-
duce tooling costs by up to 25%, translating into significant savings in high-production
environments.

These results highlight the practical benefits of AE signal analysis in tool condition
monitoring, offering a precise method to enhance machining efficiency, optimize tool life,
and reduce operational costs. The quantitative data provide clear evidence of the impact
of different coatings on tool wear behavior, validating the approach as a robust tool for
real-time machining process control.
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