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Abstract: Twin-disc testing is crucial for understanding wheel–rail interactions in railway systems,
but the vast array of testing parameters and conditions makes data interpretation challenging. This
review presents a comprehensive analysis of the twin-disc literature experimental data, focusing on
how various parameters influence friction and wear characteristics under stationary contaminant
conditions. We systematically collected and analyzed data from numerous studies, considering
factors such as contact pressure, speed, material hardness, sliding speeds, adhesion, and a range
of contaminants. This research showed inconsistent data reporting across different studies and
statistical analyses revealed significant correlations between testing parameters and wear rates. For
sand-contaminated tests, a correlation between particle size and flow rate was also highlighted. Based
on these findings, we developed a simple predictive model for forecasting wear rates under varying
conditions. This model achieved an adjusted R2 of 0.650, demonstrating its potential for optimizing
railway component design and maintenance strategies. Our study provides a valuable resource for
researchers and practitioners in railway engineering, offering insights into the complex tribological
interactions in wheel–rail systems and a tool for predicting wear behavior.

Keywords: twin disc; railway; rail; wheel; wear

1. Introduction

The global transportation sector is undergoing a significant transformation towards
greener and more sustainable practices, with public transport systems and particularly
railways playing a critical role in this transition. As environmental concerns become in-
creasingly pressing, there is a growing emphasis on reducing the ecological footprint of
railway systems [1], including minimizing wear and damage phenomena on critical compo-
nents such as wheels, rails, and shoe/disc brakes. This reduction in wear not only extends
the lifespan of these components but also reduces the need for frequent replacements,
thereby conserving resources and lowering emissions associated with manufacturing and
maintenance. In this context, understanding and mitigating wear through efficient testing
methods becomes vital.

Effectively addressing wear issues in railway systems requires extensive testing to
understand the interactions between wheels and rails under various operating conditions.
Large-scale testing, while ideal, is often impractical due to high costs and logistical con-
straints [2–10]. As a result, small-scale testing methodologies such as twin-disc tests and pin-
on-disc tests have become invaluable tools in railway research and development [11–16].

Twin-disc tests have gained prominence due to their high proficiency in simulating the
contact conditions between wheel and rail surfaces. These tests involve two rotating discs
that mimic the wheel–rail interaction, allowing researchers to study wear and friction behav-
iors with respect to the effects of different materials [17–21], surface treatments [22–27], and
lubrication strategies [28–34] on. Twin-disc tests are especially useful for evaluating the im-
pact of various operational parameters, such as load, speed, and environmental conditions,
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on wear mechanisms [2,35]. This approach provides critical insights into how different
factors contribute to wear and how they can be mitigated through engineering solutions.

The railway industry demands rigorous testing methods to ensure the durability
and efficiency of all its components, remarkably when structurally critical. In this regard,
twin-disc tests are particularly effective, as they allow for controlled experimentation
with various materials and conditions, thus offering a detailed understanding of wear
dynamics. These tests play a crucial role in identifying optimal material pairings [19,36,37]
and lubrication methods that can significantly reduce wear rates, ultimately contributing
to more sustainable railway operations.

The Tγ/A model, developed by researchers at the University of Sheffield [2,38], has
emerged as a widely recognized approach for predicting wear in wheel–rail systems. The
model quantifies wear by considering the traction force (T), the slip (γ), and the contact
area (A), correlating these parameters with wear rates under various operational conditions.
The Tγ/A index provides a useful framework for understanding the transitions between
different wear regimes—mild, severe, and catastrophic—based on the stress and sliding
conditions present at the wheel–rail interface. This model has proven effective in mapping
wear trends for different material combinations, surface treatments, and environmental
conditions, such as contamination by sand or water. It offers a robust method for connecting
laboratory-based twin-disc test results to real-world performance, although its application
may be limited by the variability in bench configurations and the inherent complexities
of full-scale systems. While the Tγ/A model has provided significant insights into wear
prediction, ongoing research continues to refine its applicability and accuracy for more
diverse scenarios in railway operations. Rocha et al. [39] reviewed the knowledge and
methodologies developed over the past twelve years involving twin disc tribometers. Out
of 440 articles from major scientific databases, 133 were selected for analysis using the
Bibliometrix tool, identifying key research groups and networks. The study highlighted the
twin disc’s versatility in simulating railway events like friction management, operational
conditions, and evaluating new materials and surface treatments. It also describes the main
methodological strategies used in these studies, demonstrating the tool’s effectiveness in
addressing various railway research themes.

The large number of studies has produced many results, which are difficult to use
because they are scattered across various published works. This work systematically
collects, catalogs, and organizes data from twin-disc tests conducted over the past decades,
creating comprehensive maps that facilitate easy interpretation of test types and their
characteristics. The gathered data can be utilized to predict the wear rate based on the
assessed conditions. Moreover, it facilitates identifying which test setup parameters seem
to significantly affect material performance under operating conditions.

2. Materials and Methods

Literature data from 2008 onwards for twin-disc tests with steady contaminated or
uncontaminated conditions (i.e., the same contaminant was used from test start to end or
the tests were carried out in dry conditions from the beginning to the end) were collected.
The adopted methodology follows the PRISMA checklist; Figure 1 shows the PRISMA flow
diagram. When data were in graphic form, the WebPlotDigitizer v.4.6 [40] tool was used
for the conversion to numeric data. The following fields were collected when available or
calculated when possible: authors, title, journal, nationality, year, type of contaminant used
and its characteristics (such as flow rates and size), specimen geometries (radii and thick-
ness), contact characteristics (area, pressure, adhesion coefficient, etc.), linear/rotational
and absolute/relative speeds, slip ratio, material names and their microstructure, mechani-
cal properties (initial and final hardnesses, static yield stresses and cyclic yield stresses),
various wear metrics, and depths of the layer associated with plastic flow. In order to look
for correlations and gather insights on how all the predictors interact with the wear rate,
with each other, and how data points are distributed, data will be mostly visualized via
scatter plots. Data from all fields were inspected; however, fields that showed no correlation
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with wear or damage, and were deemed unlikely to provide useful insights, are omitted to
avoid cluttering the paper with irrelevant information.
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Figure 1. PRISMA flowchart diagram for bibliographic review.

In order to formally express any possible correlation, a stepwise linear model was
carried out by setting the p-value thresholds at 0.01 and 0.02 for an F-test of the change in
the sum of squared error that results from adding or removing a term respectively. Further
model modifications were also checked out manually. The high dimensionality and high
cardinality, coupled with the strong sparsity and dispersion of the dataset, suggested not
to remove any possible outliers, as their identification would have been trembling. The
response variable of the model was defined as the wear rate k, and the predictor variables
included were Tγ/A, f (adhesion coefficient), ω (rotating speed of the sample), N f (number
of cycles of the test), contaminant type, and contact type. For each numeric variable, the
base-10 logarithm was also considered. Predictors such as static yield, cyclic yield, and
others, while being very possibly correlated with the wear rate, were excluded because of
their high undefined ratios.

3. Results

Table 1 presents the list of articles analyzed in this paper, along with selected infor-
mation such as the authors’ nationalities, year of publication, and specific test conditions,
including contact pressure, sliding speed, and contaminants. The focus is on twin-disc
experimental tests where the conditions remain constant throughout the duration of the test.
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Therefore, tests involving alternating load conditions, such as an initial dry step followed
by the introduction of friction modifiers, are excluded from consideration.

Most of the specimens used in these studies are cylindrical, with some tests using at
least one crowned specimen [20,28,41–44]. The limited use of crowned specimens can be
attributed to their higher production costs. Additionally, during the test, the transverse
radius of a crowned specimen can increase, leading to a decrease in contact pressure [45].

The sliding speed γ [%] is defined as follows [46]:

γ [%] = 200
(

RWωW − RRωR
RWωW + RRωR

)
(1)

where RW and RR are the radius of the wheel and rail samples along the rolling direction,
and ωW and ωR stand for the rotational speed of the wheel and the rail specimens.

Regarding the contaminants in play, the analyzed tests predominantly occur under
dry conditions. Many studies introduce the contaminant (regardless of its nature) only
after an initial dry phase once the adhesion coefficient has stabilized. In some instances,
specimens tested under dry conditions are cooled using an air jet to prevent overheating.
Beyond tests conducted in clean environments (dry, D), the contaminants studied include
liquids such as water (W) and oil (O), as well as solids like sand particles (S), alumina (Al),
leaves (L), or grease (G). These contaminants have been analyzed both individually and
in combination.

The test conditions are defined in terms of specimen dimensions, pressures, and the
contaminants used. Concerning velocities, there is variation in reporting: some researchers
specify the velocities of the specimens, while others report only the sliding speed and
average velocity. Notably, sliding speed is often expressed in terms of percentages, which
could be misleading when comparing studies with specimens of different diameters. To
address this issue, the relative sliding speeds have also been converted to absolute sliding
speeds in mm/s, ensuring a more robust comparison between different studies.

The scatter plot in Figure 2 illustrates the distribution of the experimental tests con-
cerning the nationalities of the authors and the contaminants studied. This visualization
offers a comprehensive overview of the geographic focus and the variety of contaminants
considered in the research. Numerous articles have been published without using any
contaminants, while others focus on specific contaminants. The most studied contaminants
across multiple works are sand, primarily in Italy and China, and water, which has been
investigated in Italy, Japan, China, the United Kingdom, and Canada. Other contaminants,
whether used alone or combined, have been explored in only a single article or are even
limited to a solitary experiment.
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Table 1. List of the collected papers with author’s nationalities, applied contact pressures, slip
ratio, and contact conditions (D: dry; W: water; S: sand; O: oil; G: grease; L: leaves; Al: alumina;
Ab: abrasive).

Paper Nationality Year Contact Pressure [MPa] γ [%] Contact Condition

[47] IT 2008 700, 900, 1100, 1300 0, 0.03, 0.06 D, W

[41] IT 2015 1100, 1300, 1500 0.24, 1 D

[48] IT 2017 1100 1 D, W

[49] IT 2017 1100 0.24, 1 W

[36] IT 2018 1100 1 D, S

[45] IT JP 2023 1100 0.05 D

[37] IT 2024 900, 1100, 1300 0, 1, 3 D

[42] CN 2016 800, 950, 1000, 1070 2.38 D

[50] BR COL 2017 1100 5 D

[51] CN 2016 567 0.17, 0.91, 2.38, 3.83, 9.43 D

[33] CN 2019 1430 2 D

[20] BR 2022 3000 0.75 D

[52] UK CN 2023 1160 0.5, 1, 2, 5 D

[53] CN 2018 570 0 D

[54] ZA 2022 552, 740 2, 5, 10, 20, 27 D

[55] CN IT 2021 1100 1 D, S

[56] CN UK IT 2021 1500 1 D

[17] CN UK IT 2020 1500 0.2, 1, 5 D

[57] CN IT 2022 1100 0.4, 1, 3, 5 , 9 D, S

[58] KR 2016 1100 0, 0.1, 0.3, 0.5, 1, 1.5 D

[59] CN 2018 1500 0.5, 1.5, 3, 6, 12, 18, 25 D

[60] UK 2019 1500 1, 10, 20 D

[29] UK CA 2014 1500 0, 0.1, 0.3, 0.5, 1, 2, 5, 10, 15, 20 D, W

[61] KR 2022 1500 1.5 D

[62] KR 2019 1100 1 D

[63] SP 2019 690, 920, 1150, 1385 0.1 0.25, 0.5, 0.75, 1, 2, 5 D

[43] CN 2014 1230 1.95

W, W + S, W + Al,
W + Ab
O, O + S, O + Al,
O + Ab
L, L + S, L + Al, L + Ab

[28] CR 2015 1000 1, 3, 5, 8 D, W

[44] CN 2016 1274, 1415, 1465 2, 2.38 D

[64] UK NL 2011 1200 1, 5, 10 L + S

[65] UK CO 2019 1300 0, 0.5, 1, 1.5, 2, 3, 5, 7, 10, 15, 20 D

Figure 3 depicts the percentage of publications missing reports on specific mechanical
properties and results. Notably, properties such as the monotonic and cyclic yield strengths
of wheels and rails are frequently omitted, with rail properties being reported less often than
those of wheels. Italian researchers are prominent in defining the cyclic properties of wheel
steels. This omission may be influenced by collaboration with competitor companies, which
can affect the decision to disclose such properties. Moreover, the existing literature lacks
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results from twin-disc tests correlated with yield strength. Nevertheless, the (shear) cyclic
yield strength is traditionally employed to define the load factor necessary for predicting
the cyclic response of the material in shakedown maps [19,37,66–68].
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In contrast to tensile properties, only about 20% of the studies fail to report the initial
hardness of the specimens. However, it is unclear whether these values refer to the average
hardness specified by standards for the studied steels or the actual measured values.
Regarding the results obtained, wear rates for rails are reported less frequently than those
for wheels. Regarding wear rate measurements, some authors reported only the total
weight loss at the end of the test, others the weight loss in grams per cycle (g/cycle), and
still others in grams per meter per square millimeter (µg/m/mm2). Where missing and
possible, weight loss has been expressed in (µg/m/mm2) to ensure consistency with the
graphs we use. Finally, the adhesion coefficient is usually presented as its stabilized value,
or as a variation over the number of cycles. However, it is not always reported, with more
than 20% of papers failing to include this.

The histograms in Figure 4 depict the probability distributions of some of the most
significant harvested numeric data. The sum of the probabilities (pi) over all of the (nB) bins
does not lead to one because it relates to the whole population and not to the population
subset where each property is defined (i.e. 1 − ∑nB

i pi = UR). As previously mentioned,
mechanical properties are often overlooked in these studies.

It is a standard practice to design the wheel–rail system such that the wheel acts
as the sacrificial element, resulting in the wheel being softer than the rail. In the tests
examined, hardness ratio values (wheel to rail) less than 0.7 and greater than approximately
1.2 are rarely tested, indicating an unevenness in the tribological properties within the
wheel–rail system. Most tests are conducted with hardness ratios between 0.8 and 1.2, with
a preference for wheels that are softer than the rails. This design choice makes the wheel
the sacrificial element in the wheel–rail system, facilitating easier and more cost-effective
maintenance [2]. Notably, nearly 90% of the specimens have a diameter between 30 and
60 mm, while approximately 10% of the analyzed tests were conducted with a diameter of
300 mm, which is referenced in a single paper.

Contact pressures vary between 500 MPa and 1500 MPa, with an average value of
1100 MPa and the exception of one study testing a contact pressure of 3000 MPa. As far as
the adhesion coefficient is concerned, the histogram shows typical values for the wheel–rail
contact interaction, with most of the values being below 0.6. The wear rate values for both
wheels and rails have similar distributions even though there are more values reported for
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wheels than for rails. The base-10 logarithm was applied to the wear rates because their
values are spread across a very wide range, and the choice was corroborated by the look of
the resulting distribution.
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The scatter plot in Figure 5 provides a comprehensive analysis of the relationship
between Tγ/A (T is the adhesion force, γ is the slip ratio, and A is the contact area),
expressed in N/mm2, and k, the wear rate measured in µg/m/mm2. In order to better
identify the tests carried out with creepage (γ) approaching the pure rolling, the base-10
logarithmic scale was also adopted for the Tγ/A parameter. Each data point represents a
specific test conducted in various studies, with filled circles representing rail specimens
(R) and open triangles representing wheel specimens (W). The data points are color-coded
to match different test contaminants. The scatter plot reveals that the wear rate generally
rises for both wheel and rail specimens as the average adhesion stress (i.e., T/A) and
creepage increase. The majority of tests resulted in a Tγ/A range of approximately 0.01
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to 100 N/mm2. Different contaminants exhibit varied effects on wear rate. For instance,
tests with the addition of water as a contaminant show lower k values, even at higher
Tγ/A values, highlighting water’s potential to act as a lubricant and reducing wear rates
effectively. In contrast, the application oil combined with alumina (O Al) or other abrasives
(O Ab) resulted in a higher wear rate, confirming their foreseeable aggressive material
removal capabilities. Oil combined with sand (O S) and pure sand (S) also showed higher
wear rates, reinforcing the notion that solid contaminants, whether alone or in conjunction
with oil, exacerbate material damage. Finally, the application of sand and leaves together
led to the highest wear rate values, with a more detailed discussion of sand-contaminated
contact to follow later.
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Figure 5. Correlation between the wear rate k and Tγ/A in rail (R) and wheel (W) samples by varying
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alumina; O S: oil and sand; S: sand; W: water).

The overlapping distribution of wheel and rail data suggests that similar wear mecha-
nisms might affect both components under certain conditions, underscoring the necessity
of optimizing material selection and treatment for both wheels and rails. This observation
is crucial for railway engineers looking to design systems that balance wear rates between
wheels and rails to maximize longevity and minimize maintenance costs.

Figure 6 shows the dry (D) experiments only while differentiating the cylindrical and
crowned specimens. Notably, these results indicate that crowned specimens exhibit wear
behavior consistent with that of cylindrical specimens and the color scale highlights that the
correlation between k and γ is very strong, making the slip ratio the prevailing parameter
within the reported Tγ/A range. As the sliding speed increases, the frictional heating
becomes more intense, leading to higher surface temperatures that can soften materials, pro-
mote oxidation, and accelerate wear [2,69]. Additionally, faster sliding speeds can induce
shifts in wear mechanisms, with adhesive and abrasive wear dominating at low speeds,
while oxidative or thermal wear becomes more prevalent at higher speeds [37,38]. Increased
sliding velocity also heightens mechanical stresses, contributing to plastic deformation and
microfracture formation, further accelerating surface degradation [47].
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Figure 6. Comparison between cylindrical (C) and elliptical (E) contact. Dry contact conditions only.

Figure 7 illustrates the adhesion coefficient as a function of the type of contaminant
and sliding speed. In dry contact tests, those with lower sliding speeds typically exhibit an
adhesion coefficient below 0.4, whereas tests conducted at higher sliding speeds generally
show values between 0.4 and 0.7. Some experiments with medium sliding speeds report
adhesion coefficients greater than 0.8. Remarkably, elliptical contact tests revealed lower
adhesion coefficients despite the higher creepage levels used during testing, meaning
that higher contact pressure is making up for the low adhesion coefficient to keep Tγ/A
consistent with cylindrical specimens. This effect seems even more prominent when the
contact is water-contaminated.
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When examining the tests involving sand and water as individual contaminants, a sim-
ilar trend is observed: the adhesion tends to increase with higher slip ratios. This behavior
can be explained by the role these contaminants play in modifying the contact mechanics.
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For sand, its abrasive nature can lead to increased surface roughness and mechanical
interlocking, which elevates the adhesion coefficient as sliding speed increases [28,36,70].
When water is involved instead, there is an initial lubrication effect at lower speeds, which
is increasingly lacking at higher speeds due to hydrodynamic effects causing the water
to not effectively separate the contact surfaces anymore [56]. Analyzing other contami-
nants proves to be more challenging due to the limited data available, as only a single
test is reported for each of the remaining conditions. Nonetheless, the data suggest that
the presence of solid contaminants, such as abrasive particles, alumina, or sand, when
combined with leaves or liquid contaminants like oil and water, increases the adhesion
coefficient. This is likely due to the dual effects of solid particles creating mechanical
interlocking and liquids affecting the lubrication regime. The abrasive nature of solids can
create micro-scratches on the surfaces, increasing adhesion, while the liquids can vary from
acting as a lubricant to facilitating abrasive action, depending on the speed and loading
conditions [28,56]. Finally, even if few observations are available, it is particularly notewor-
thy that grease consistently exhibits the lowest adhesion coefficient of all the contaminants
available within the collected data. Grease acts as a highly effective lubricant by forming a
thick film that separates the contact surfaces and reduces both the contact adhesion and the
surface deformation [28,60].

Figure 8 isolates the water-contaminated tests and shows the relationship between
the wear rate and Tγ/A by highlighting variations in liquid flow rate and slip rate with
different markers and colors, respectively. While tests are limited in number, it seems
that the wear rate increases, especially for higher slip values of 5% and 10% as the slip
rate increases, represented by the shift from blue to pink hues. This suggests a positive
correlation between slip rate and wear, confirming that increased slip contributes to higher
material wear. On a side note, the three points showing very low wear rates might appear
as outliers, but it is not trivial to assess whether this is the case or not when considering
data sparsity, numerosity, and dispersion. With all this being considered, there also seem to
be limited to no consequences for a significant change in the liquid flow rate. In fact, there
is no clear evidence of correlation between the liquid flow rate and the wear rate despite
the 2 orders of magnitude difference in flow rate (filled marker for 360 mL/min and hollow
ones for 6 ml/min). It is highly likely that the viscosity of water and its ability to form a
stable film are related [71,72]. With the flow rates studied, this regime was probably reached.
However, proving this conclusively is challenging due to the machine’s configuration.
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Table 2 shows how the various authors applied sand contaminants and which kind of
sand they employed. Figure 9a,b illustrate the relationship between Tγ/A and the wear
rate of wheels and rails in tests conducted with sand. These tests analyze the influence of
various added contaminants, sand flow, average grain size, and the hardness of the test
specimens. While one might expect specimen hardness to be closely related to wear rates,
our results show no clear correlation between material hardness and wear rate. Additionally,
plotting against the hardness ratio also provided no insights. This is likely due to variations
in other experimental conditions across different tests that were not tracked or disclosed.
However, tests with leaves and sand (L S) show markedly higher wear rates compared
to those with sand (S) alone (Figure 9a). This increase in wear is primarily attributed to
two factors: the L S tests involve one of the highest flow rates, and the materials used
have among the lowest hardness values. The high flow rate likely intensifies the abrasive
action, while the low hardness exacerbates susceptibility to wear [73]. Excluding the sand
and leaves tests in Figure 9b, we can state that there are no significant differences in wear
between the various contaminants examined. Despite this, we can draw the following
conclusions: at equal flow rates, larger grain sizes imply a lower number of particles are
being released, and very big grains likely have a higher chance of bouncing away rather
than getting crushed and passing through the contact surface. This is consistent with
findings from Mazzù et al. [74], who observed that larger particles have a reduced effect
on ratcheting and abrasion, as they are less likely to remain in the contact zone and be
crushed. On the other hand, smaller grain sizes increase the number of particles that pass
through the contact surface, leading to higher abrasion. Moreover, smaller particles have a
higher likelihood of becoming embedded in the softer specimen, further contributing to
wear by acting as an abrasive agent until they are eventually released. This behavior was
highlighted in the computational analysis of solid contaminants, where smaller particles
caused deeper surface damage and intensified wear [70,73,74].

Lubricants 2024, 12, x FOR PEER REVIEW 12 of 19 
 

 

Table 2. Simulated environmental conditions on the twin disc with sand contaminant. 

Paper  Contaminant Flow Rate  Average Dimension [μm] Type of Sand 

[64] LS 441 180, 450, 825, 1225 
SiOଶ max 96% (pit South Germany, 
river in the Netherlands) 

[36] S 9 27.5 SiOଶ max 86% (commercial sand) 
[57] S 0.96 35, 270 SiOଶ Gobi sand, desert sand 
[55] S 0.012, 0.06, 0.12, 0,18, 0.24 24, 210 SiOଶ Gobi sand, desert sand 
[43] W S, O S, L S 10 900 Quartz 

 
Figure 9. Evolution of wear rate based on Tγ/A for specimens exposed to sand contaminants, con-
sidering (a) specimens’ hardness and contaminant and (b) sand flow rate and average particle di-
mension.  

Figure 9. Cont.



Lubricants 2024, 12, 382 12 of 18

Lubricants 2024, 12, x FOR PEER REVIEW 12 of 19 
 

 

Table 2. Simulated environmental conditions on the twin disc with sand contaminant. 

Paper  Contaminant Flow Rate  Average Dimension [μm] Type of Sand 

[64] LS 441 180, 450, 825, 1225 
SiOଶ max 96% (pit South Germany, 
river in the Netherlands) 

[36] S 9 27.5 SiOଶ max 86% (commercial sand) 
[57] S 0.96 35, 270 SiOଶ Gobi sand, desert sand 
[55] S 0.012, 0.06, 0.12, 0,18, 0.24 24, 210 SiOଶ Gobi sand, desert sand 
[43] W S, O S, L S 10 900 Quartz 

 
Figure 9. Evolution of wear rate based on Tγ/A for specimens exposed to sand contaminants, con-
sidering (a) specimens’ hardness and contaminant and (b) sand flow rate and average particle di-
mension.  

Figure 9. Evolution of wear rate based on Tγ/A for specimens exposed to sand contaminants, consid-
ering (a) specimens’ hardness and contaminant and (b) sand flow rate and average particle dimension.

Table 2. Simulated environmental conditions on the twin disc with sand contaminant.

Paper Contaminant Flow Rate Average Dimension [µm] Type of Sand

[64] LS 441 180, 450, 825, 1225 SiO2 max 96% (pit South Germany,
river in the Netherlands)

[36] S 9 27.5 SiO2 max 86% (commercial sand)

[57] S 0.96 35, 270 SiO2 Gobi sand, desert sand

[55] S 0.012, 0.06, 0.12, 0,18, 0.24 24, 210 SiO2 Gobi sand, desert sand

[43] W S, O S, L S 10 900 Quartz

4. Statistical Investigation

The stepwise linear regression could explain most of the variance with a simple linear
model over a log-log scale as per Equation (2):

log10 k = a1 log10
Tγ

A
+ a2, C (2)

where a1 is fixed and a2, C takes on different values depending on the contaminant type
(some contaminants were excluded due to their limited number of observations). This
model led to an adjusted coefficient of determination R2

adj of 0.650 and a root mean squared
error (RMSE) of 0.449 over a total of 365 observations. The estimates and standard deviation
of the parameters are reported in Table 3. Figure 10 shows the scatter plots for dry, sand,
water, and leaves combined with sand and grease with the regression line(s) and the
confidence limits according to Equation (2).
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Table 3. Regression parameters for wear rate model (Equation (2)).

Parameter Name Estimate Standard Deviation

a1 0.508 0.030

a2, C|dry 0.531 0.035

a2, C|grease −0.91 0.26

a2, C|leaves+sand 1.74 0.10

a2, C|sand 0.239 0.079

a2, C|water −0.64 0.13
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Figure 10. Scatter plots showing the relationship between specific wear rate k and Tγ/A under
different conditions. Each plot includes data points (orange circles), a regression line (solid black),
and 90% confidence limits (dashed lines).

While three data points alone are not statistically robust, the inclusion of the grease
points highlights a good agreement with the other contaminants, as noticeable in Figure 10,
and is also consistent with the selection strategy discussed in Section 2: within a 10-year
window and under constant contaminant conditions from test start to end. Although
the dry data dominate the regression due to the larger sample size, the overall slope still
accommodates all contaminant types, with each contaminant category only leading to
significant changes in the intercept. Separate regression trials focused on dry conditions or
other specific data subsets, without falling back to datasets comparable to single papers,
were also performed but yielded no additional insights.

Adding two more parameters can improve the model accuracy by a limited amount,
reaching a coefficient of determination R2

adj of 0.691 and a root mean squared error (RMSE)
of 0.422 over the same number of observations. This model includes the linear and quadratic
terms for rotational speed, as per Equation (3) and Table 4.

log10 k = b1 log10
Tγ

A
+ b2, C + b3ω + b4ω2 (3)
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Table 4. Regression parameters for wear rate model (Equation (3)).

Parameter Name Estimate Standard Deviation

b1 0.511 0.029

b2, C|dry 2.62 0.41

b2, C|grease 1.31 0.48

b2, C|leaves+sand 3.97 0.42

b2, C|sand 2.31 0.41

b2, C|water 1.43 0.42

b3 −0.012 0.002

b4 16.2 × 10−6 2.5 × 10−6

As one can imagine, due to data sparsity, dimensionality, and cardinality, the stepwise
linear regression can soon lead to overfitting, with this four-parameter model already being
harder to interpret and possibly using additional parameters to explain the variance of
possible outliers, small clusters of data or simply showing non-causal correlation.

In fact, while still adhering to the p-value thresholds, one could even push the model
further and land on seven parameters over five predictors (log10(Tγ/A), the rotating speed

of the sample ω, the logarithmic number of cycles log10

(
N f

)
, contaminant type and contact

type) as per Equation (4) and Table 5. This approach led to an R2
adj of 0.709 and an RMSE of

0.411 over 345 observations but renders the interpretation even trickier and can most likely
be labeled as overfitting, unless proven wrong.

log10 k = c1 log10
Tγ

A
+ c2, C + c3,C + c4 + c5 log10 N f + c6 ω + c7 ω log10 N f (4)

Table 5. Regression parameters for wear rate model (Equation (4)).

Parameter Name Estimate Standard Deviation

c1 0.533 0.03

c2, C|dry 0 0

c2, C|grease −1.22 0.24

c2, C|leaves+sand 2.02 0.15

c2, C|sand −0.375 0.069

c2, C|water −1.14 0.12

c3, C|cylindrical 0 0

c3, C|elliptical −0.44 0.10

c4 −10.7 1.5

c5 2.17 0.31

c6 0.0233 0.0034

c7 −0.00440 0.00067

5. Conclusions

This review investigates twin-disc testing parameters for railway applications, focus-
ing on how variables such as test pressure, speed, material hardness, and sliding velocity
impact adhesion and wear characteristics under stationary contaminant conditions. By
analyzing a vast collection of experimental data, this review elucidates the effects of dif-
ferent contaminants, including oil, grease, sand, and water, on wear mechanisms. The
findings highlight the significant influence of contaminant type and flow rate, with certain
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contaminants like sand and leaves causing higher wear rates due to their specific properties.
Additionally, the study demonstrates that grain sizes and sand flow rates correlate with
varying wear behaviors. A predictive model developed from gathered data offers reliable
forecasts of wear rates under diverse conditions. This work serves as a valuable resource
for understanding the complex interactions in twin-disc systems, ultimately aiding in
the optimization and design of railway components to enhance durability and reduce
maintenance needs.

This comprehensive analysis of twin-disc testing parameters for railway applications
has yielded several important insights:

• The study successfully consolidated and analyzed a vast array of experimental data, provid-
ing a unified resource for understanding the complex interactions in wheel–rail tribology.

• Contaminant type and flow rate significantly influence wear mechanisms, with combi-
nations like sand and leaves causing particularly high wear rates.

• For sand contamination, larger grain sizes and higher flow rates were found to corre-
late with distinct wear behaviors, highlighting the importance of considering particle
characteristics in wear predictions.

• A predictive model developed from the collated data demonstrated good accuracy
(R2adj = 0.650) in forecasting wear rates under diverse conditions, offering a valuable
tool for railway engineers.

• The study revealed gaps in reporting practices, particularly regarding the mechanical
properties of test specimens, highlighting areas for improvement in future research.

These findings have significant implications for the optimization of railway compo-
nents and maintenance strategies. By providing a deeper understanding of how various pa-
rameters influence wear and adhesion, this work enables more informed decision-making
in material selection, component design, and maintenance scheduling. The predictive
model offers a practical tool for estimating wear rates under specific operating conditions,
potentially reducing the need for extensive physical testing.

In conclusion, while the current study has provided valuable insights into the wear
behavior of wheel–rail systems using twin-disc testing and the Tγ/A model, several limita-
tions remain. One key limitation is that most twin-disc tests are designed to investigate
specific conditions, such as a particular load, sliding speed, or contaminant type. As a
result, many combinations of parameters—especially those involving varying load ranges,
contact pressures, or environmental contaminants—are underrepresented in the available
data. This lack of comprehensive testing across a broader spectrum of operating conditions
can limit the generalizability of the findings to real-world scenarios, where complex and
dynamic interactions occur simultaneously.

Future research should focus on expanding the range of test conditions, particularly by
including combinations of loads, speeds, and environmental factors that more accurately
represent in-service conditions. Additionally, the development of more advanced wear
models that account for microstructural changes, temperature effects, and contact pressure
distribution would improve predictive accuracy.
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