
Citation: Naduvinamani, N.B.;

Koppa, B.K. Effect of Variation in

Viscosity on Static and Dynamic

Characteristics of Rough Porous

Journal Bearings with Micropolar

Fluid Squeeze Film Lubrication.

Lubricants 2024, 12, 389. https://

doi.org/10.3390/lubricants12110389

Received: 14 October 2024

Revised: 10 November 2024

Accepted: 11 November 2024

Published: 13 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Effect of Variation in Viscosity on Static and Dynamic
Characteristics of Rough Porous Journal Bearings with
Micropolar Fluid Squeeze Film Lubrication
Neminath Bhujappa Naduvinamani 1,* and Bhagyashri Kotreppa Koppa 2

1 Department of Mathematics, Gulbarga University, Kalaburagi 585106, India
2 Government Pre-University College, Cholachagudda, Bagalakote 587201, India; bhagyakoppa820@gmail.com
* Correspondence: naduvinamaninb@yahoo.co.in

Abstract: In the present study, an effort was made to determine the effects of a porous matrix with
different viscosities on the dynamic and static behaviors of rough short journal bearings taking into
account the action of a squeezing film under varying loads without journal rotation. The micropolar
fluid was regarded as a lubricant that contained microstructure additives in both the porous region
and the film region. By applying Darcy’s law for micropolar fluids through a porous matrix and
stochastic theory related to uneven surfaces, a standardized Reynolds-type equation was extrapolated.
Two scenarios with a stable and an alternating applied load were analyzed. The impacts of variations
in viscosity, the porous medium, and roughness on a short journal bearing were examined. We
inspected the dynamic and static behaviors of the journal bearing. We found that the velocity of
the journal center with a micropolar fluid decreased when there was a cyclic load, and the impact
of variations in the viscosity and porous matrix diminished the load capacity and pressure in the
squeeze film and increased the velocity of the journal center.

Keywords: micropolar fluid; journal bearings; porous; surface roughness; viscosity variation;
dynamic loading

1. Introduction

Rotating machines are widely used to transform rotating energy from various sources
into efficient energy. One rotating segment is distinct from the machine’s stationary portion
in these rotating machines, which is achieved by using bearings. The bearings permit the
surfaces of the rotating part to slide relative to the stationary part. The concept of a bearing
was originally proposed by Lord Rayleigh [1] in 1918. One of the most prevalent kinds of
hydrodynamic bearings is the journal bearing: supporting a rotating shaft is its primary
purpose. These bearings are utilized in virtually every type of machinery that rotates,
not only with static loads, such as the load and weight of rotors induced by transmitted
torque of reduction gears, additionally close to only machine element consequently being
capable to suppress numerous incredible forces functioning on a revolving shaft. With the
development of large, multistage rotating machines that are now also high-speed, compact,
and highly efficient, the magnitude and variability of the stimulating forces have increased
with the bearing load. As a result, the role and significance of journal bearings have
greatly expanded. The basic mathematics of a full journal bearing have been recognized
since 1904 when Sommerfeld developed the complete solution for the infinite journal from
Reynold’s 1886 theory. The detailed applications of the theory of a full journal bearing was
discussed by Cameron and Wood [2]. The concept of a journal bearing and its importance
was discussed by Tipei [3]. Lidia et al. [4] conducted an experimental investigation into
the effect of surface texture on journal bearing performance. Rotating machinery is often
subject to vibrations due to critical speeds, imbalance, and instability. Usually, the least
expensive modification to make to a machine is to alter the bearing. Journal bearings for
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rotating machinery were designed by Allaire and Flack [5]. Sunil et al. [6] theoretically
described the influence of lubricants on the performance of journal bearings.

Researchers are examining non-Newtonian fluids currently. A micropolar fluid is
one that includes rigid particle suspensions, like those found in blood, liquid crystals,
certain colloidal fluids, and dirty oil. Additionally, these fluids have a microstructure.
Eringen [7,8] was the first to propose micropolar fluid theory. The theory of lubrication
for micropolar fluids was examined by Kline and Allen [9]. Zaheeruddin and Isa [10]
theoretically described a micropolar- fluid-lubricated one-dimensional journal bearing.
Micropolar liquid lubrication and its effects on short journal bearings were studied by
Nicolae Tipei [11]. Bujurke et al. [12] looked into micropolar-fluid-lubricated squeeze
film. The effects of a micropolar lubricant on partial journal bearings were examined
by Sharma et al. [13]. Boualem et al. [14] analyzed the effects of the interplay between
piezo-viscous dependence and elastic deformation on the working of a journal bearing
with a non-Newtonian fluid.

Later, interest in porous bearings increased extremely swiftly due to their self-lubricating
behavior, lower maintenance requirement, pressure generation, enhanced damping proper-
ties, etc. Due to their self-lubricating features, for the duration of an engine’s life, a porous
bearing does not need additional lubrication because of their porous zones filled with
lubricants. The lubrication of finite porous journal bearings was described by Murti [15]. A
porous media model using a modified Reynolds equation was derived by Li [16]. Anas
et al. [17] conducted a numerical simulation of a finite flexible porous journal bearing
lubricated with non-Newtonian coupled stress fluid. Dhanapal et al. [18] described the
effects of squeeze film lubrication on porous secant curved circular plates induced by mi-
cropolar fluids. Bhattacharjee et al. [19] theoretically analyzed a micropolar fluid-lubricated
single-layered porous short journal bearing. A comparative discussion of micropolar-
fluid-lubricated double- and single-layered journal bearings with different porosities was
reported by Bhattacharjee et al. [20].

During the past few years, the examination of the influence of uneven surfaces on
numerous bearing surfaces has been the focus of research. In the mechanical field, the
impact of surface roughness has long been studied, since surface irregularities influence
the formation of nucleation, leading to cracks or rust. Over the past few decades, a number
of tribology researchers have studied the impacts of the roughness of bearing surfaces.
Stochastic strategies have been used to mathematically model the texture of surfaces with
random structures. Christensen [21] developed a stochastic method for studying the effects
of the lubrication of rough surfaces on hydrodynamic bearings. Zhu et al. [22] studied
the impacts of surface roughness and inappropriate non-Newtonian fluid lubrication on
compliant journal bearings. The influence of surface roughness on the dynamic perfor-
mance of a Rayleigh step bearing lubricated with coupled stress fluid was determined by
Naduvinamani and Ashwini [23]. Finite partial rough journal bearings lubricated with
micropolar fluid considering the squeezing effect and porosity were considered by Mon-
ayya and Santosh [24]. Chaitra et al. [25] examined the properties of rough, curved annular
plates in the presence of micropolar lubricants under the influence of the squeezing effect
for different porosities. The impact of porosity and roughness on finite journal bearing
lubricated with a micropolar lubricant was observed by Ujjal et al. [26].

As a bearing works, the viscosity µ is constant despite originating from both tem-
perature and pressure. The viscosity of all liquids, specifically of hydrocarbon lubricants,
deteriorates with increasing temperature. The changes in viscosity with variation in tem-
perature are important in numerous practical scenarios where lubricants are required to
function over a wide range of temperatures. Temperature-related changes in the viscosity
of oil cannot be accurately predicted with mathematical relationships. As a result of the
formulas used for defining the viscosity–temperature relationship are purely empirical; for
precise computations, lubrication engineers need experimental data.

In the present study, it was assumed that thermal equilibrium exists and that the
viscosity varies with temperature according to a given law. The viscosity–temperature
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relationship can be described by a relationship between the viscosity and the film thickness.
This assumption was made on the basis of the experimental validation by Tipei [3], as the
highest temperature occurs in zones where the film is the thinnest. When the viscosity µ1

∗

at H = h1 is known, then µ = µ1
∗
(

H
h1

)Q
, where Q typically lies between 0 and 1 based on

the nature of the lubricant. However, in this paper, various numerical values are assumed
for Q in order to discuss the effects of variations in viscosity without carrying out detailed
thermal calculations. Sinha et al. [27] suggested that the influence of viscosity variations can
be attributed to the subsidiary fluid in journal bearings. The effect of viscosity variations
on the non-Newtonian lubrication of a squeeze film conical bearing with a porous wall,
studied with a Rabinowitsch fluid model, was analyzed by Rao and Rahul [28]. Zheng
et al. [29] determined the effects of oil film thickness and viscosity on the performance
of misaligned journal bearings with coupled stress lubricants. Squeeze film lubrication
analysis and the optimization of a porous annular disk with different viscosities of a non-
Newtonian fluid were observed with the Rabinowitsch fluid model by Rahul et al. [30].
Vishwanath et al. [31] applied a multigrid approach to determine the combined impact of
roughness and variation in viscosity on journal bearing lubrication with a squeeze film.

Several researchers have recently been investigating the dynamic and static properties
on different types of bearings. Lin [32] focused on the dynamic–static characteristics of
coupled stress fluid-lubricated journal bearings protected by squeeze films. Gu et al. [33]
theoretically and numerically investigated the static properties of aerostatic journal bearings
with changes in porosity. The impact of non-Newtonian lubricants on the dynamic and
static properties of journal bearings was explained by Dang et al. [34]. Journal bearings must
provide sufficient damping and be stiff enough to impede bearing-contributed vibration
and to produce appropriate gear retention, which affect rotor system dynamics. Fang
et al. [35] determined the line collision damping and stiffness characteristics of bearings
with transient elasto-hydrodynamic lubrication. The effect of variations in viscosity on
the squeeze film performance of a narrow hydrodynamic journal bearing with coupled
stress fluid was reported by Jaya Chandra Reddy [36]. The viscosity of fluid lubricants was
discussed by Ajimokotan [37]. Under uncertainty, the dynamic and static characteristics of
journal bearings were discussed by Chao et al. [38]. Sharma and Krishna [39] described the
dynamic and static manifestations of an offset bearing with a micropolar lubricant.

In the current work, we studied the impacts of viscosity variations and porosity on the
static and dynamic behaviors of rough short journal bearings lubricated with micropolar
fluids under squeezing action, which, to the best of our knowledge, has not yet been studied.

2. Formulation

Figure 1 displays a schematic diagram of the bearing under study. R is the journal
radius with zero rotation that arrives at the surface of a bearing with specific velocity

(
∂h
∂t

)
at any point along the circumferential segment θ. The roughness of the surface of a film of
thickness H can be calculated as follows:

H = h(θ) + hs
∗ (1)

where h(θ) = c[1 + ε cos θ] is the average film thickness, c is the radial clearance, ε
(
= e

c
)

is the eccentricity parameter ratio, and hs
∗ is stochastic in nature and governed by the

probability density function f (hs
∗) measured over the interval (−c∗, c∗), where c∗ is the

maximum deviation from the average thickness of the film. The mean α1
∗, standard

deviation σ1
∗, and parameter ε1

∗, which is a measure of the symmetry about a random
variable hs

∗, are defined by the relationships given by Andharia et al. [40,41]:

α1
∗ = E[hs

∗] (2)

α1
∗2 = E

[
(hs

∗ − α1
∗)2
]

(3)
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ε1
∗ = E

[
(hs

∗ − α1
∗)3
]

(4)

where E is an expectancy operator, which is defined by

E(•) =
∞∫

−∞

(•) f (hs
∗)dhs

∗ (5)
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The factors σ1
∗, α1

∗, and ε1
∗ are not dependent on x. The mean α1

∗ and parameter
ε1

∗ can take both positive and negative values; σ1
∗ can only take positive values. A

symmetrical distribution is considered in the specific case of ε1
∗ = 0. Positive and negative

values of ε1
∗ indicate bearing surfaces with positively skewed and negatively skewed

roughness, respectively.
Using lubrication theory, the fundamental equations proposed by Eringen [3] for

micropolar fluids are provided:

(
µ +

χ

2

)∂2u
∂y2 + χ

∂v3
∗

∂y
− ∂p

∂x
= 0 (6)

∂p
∂y

= 0 (7)

(
µ +

χ

2

)∂2w
∂y2 − χ

∂v1
∗

∂y
− ∂p

∂z
= 0 (8)

The conservation of angular momentum is calculated as

γ
∂2v1

∗

∂y2 − 2χv1
∗ + χ

∂w
∂y

= 0 (9)

γ
∂2v1

∗

∂y2 − 2χv1
∗ − χ

∂u
∂y

= 0 (10)

The formula for mass conservation is

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (11)
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where µ is a coefficient of Newtonian viscosity; χ, γ are the viscosity of the spin and
the viscosity coefficient for micropolar fluids; u, v, and w are the velocity components
along the x, y, and z directions, respectively; and v1

∗, v2
∗, and v3

∗ are the micro-rotational
velocity components.

The modified Darcy’s law, which considers the impacts of polarity, governs the move-
ment of lubricants with micropolarity through a porous medium. This type of flow is
represented by

→
q1

∗
=

−k1
∗

(µ + χ)
∇p∗ (12)

where
→
q1

∗
= (u∗, v∗, w∗) is the modified Darcy velocity vector, along with

u∗ =
−k1

∗

(µ + χ)

∂p1
∗

∂x
,v∗ =

−k1
∗

(µ + χ)

∂p1
∗

∂y
,w∗ =

−k1
∗

(µ + χ)

∂p1
∗

∂z
(13)

where k1
∗ is the porous matrix’s permeability, and p1

∗ is the porous region’s pressure,
which, as a result of the continuity of fluid in porous media, satisfies the Laplace equation.

∂2 p1
∗

∂x2 +
∂2 p1

∗

∂y2 +
∂2 p1

∗

∂z2 = 0 (14)

The pertinent boundary conditions are

i. at y = 0 (the bearing’s surface) and

u = 0, v = v∗,w = 0 (15a)

v1
∗ = 0,v3

∗ = 0 (15b)

ii. at y = H (the journal’s surface)

u = 0, v =
∂H
∂t

,w = 0 (16a)

v1
∗ = 0, v3

∗ = 0 (16b)

The solutions to Equations (6) and (8)–(10) are subject to the related circumstances
noted in Equations (15a), (15b), (16a) and (16b) as

u =
1
µ

(
y2

2
∂p
∂x

+ A11y
)
− 2N2

m
× [A21sinh(my) + A31 cosh(my)] + A41 (17)

w =
1
µ

(
y2

2
∂p
∂z

+ A12y
)
− 2N2

m
× [A22sinh(my) + A32 cosh(my)] + A42 (18)

v1
∗ =

1
2µ

(
y

∂p
∂z

+ A12

)
+ A22cosh(my) + A32sinh(my) (19)

v3
∗ = A21cosh(my) + A31sinh(my)− 1

2µ

(
y

∂p
∂x

+ A11

)
(20)

where
A11 = 2µA21

A21 =
A31sinh(mH)−

[
(H)
(2µ)

][
(∂p)
(∂x)

]
1 − cosh(mH)

A12 = − H
2µ

∂p
∂z

{
Hsinh(mH) +

2N2

m
[1 − cosh(mH)]

}
× 1

A5
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A12 = − H
2µ

∂p
∂z

{
Hsinh(mH) +

2N2

m
[1 − cosh(mH)]

}
× 1

A5

A22 =
A12

2µ

A31 =
H
2µ

∂p
∂x

{
H
2
[cosh(mH)− 1] + H − N2

m
sinh(mH)

}
× 1

A5

A32 =
1
µ

∂p
∂z

{
H
2
[cosh(mH)− 1] + H − N2

m
sinh(mH)

}
× 1

A5

A41 =
2N2

m
A31

A42 =
2N2

m
A32

A5 =
H
µ

{
sinh(mH)− 2N2

mH
[cosh(mH)− 1]

}

in which m =
N
l

, N =

(
χ

χ + 2µ

) 1
2
, l =

(
γ

4µ

) 1
2

where N is a dimensionless coupling number that describes the coupling regarding the
angular and linear momentum equations. When N is equal to zero, the linear momentum
equations reduce to the classical Navier–Stokes equation, where the linear and angular
momentum equations decouple. Parameter l is a dimension length that can be interpreted
as the lubricant molecule’s dimensions. Here, when l → 0 , the microstructure disinte-
grates completely.

By integrating Equation (14) over the thickness H0 of the porous layer with respect to
y and utilizing the pertinent boundary conditions related to a solid backing

(
∂p1

∗

∂y = 0
)

at
y = −H0, we obtain

∂p1
∗

∂y

∣∣∣∣
y=0

= −
0∫

−H0

(
∂2 p1

∗

∂x2 +
∂2 p1

∗

∂z2

)
dy (21)

Assume that the thickness of the porous layer, H0, is an extremely small. Utilizing the
pressure continuity condition (p = p1

∗) at the interface (y = 0) of the porous medium and
lubricant film, Equation (21) reduces to

∂p1
∗

∂y

∣∣∣∣
y=0

= −H0

(
∂2 p
∂x2 +

∂2 p
∂z2

)
(22)

At the interface (y = 0), velocity component of specific Darcy’s velocity v1
∗ is then

provided by

v1
∗|y=0 =

k1
∗H0

(µ + χ)

(
∂2 p
∂x2 +

∂2 p
∂z2

)
(23)

Integrating the equation of continuity (11) over the thickness of the film with respect
to y, we obtain a specific Reynolds-type equation. Additionally, substituting u and w into
Equation (11) with their related formulations in Equations (17) and (18), as well as utilizing
the boundary conditions in Equations (15a) and (16a), as obtained by Naduvinamani and
Santosh [42] for the smooth case, we obtain

∂
∂x

{[
f (N, l, H) +

12µk1
∗H0

(µ+χ)

]
∂p
∂x

}
+

∂
∂z

{[
f (N, l, H) +

12µk1
∗H0

(µ+χ)

]
∂p
∂z

}
= 12µ ∂H

∂t

(24)
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where

f (N, l, H) = H3 + 12l2H − 6NlH2coth
(

NH
2l

)
∂H
∂t

= c
∂ε

∂t
cos θ

When Equation (24) is multiplied by f (hs
∗) on both sides, using Equations (2)–(4) and

integrating from −c∗ to c∗ with respect to hs
∗, the averaged specific Reynolds equation can

be acquired as follows:

∂
∂x

{[
F(N, l, h) + 12µk1

∗H0
(µ+χ)

]
∂E(p)

∂x

}
+

∂
∂z

{[
F(N, l, h) + 12µk1

∗H0
(µ+χ)

]
∂E(p)

∂z

}
= 12µ ∂h

∂t

(25)

F(N, l, h) = E[ f (N, l, H)] ≈ F1
∗ + F2

∗(F3
∗ + F4

∗) (26)

F1
∗ = h3 + ε1

∗ + 3h2α1
∗ + 3h

(
α1

∗2 + σ1
∗2
)
+ 3α1

∗σ1
∗2 + α1

∗3 + 12l2(h + α1
∗)

F2
∗ = −6Nl

(
h2 + α1

∗2 + σ1
∗2 + 2hα1

∗
)

F3
∗ =

{
1 − Coth2

(
Nh
2l

)}
×
{

Nα

2l
− N3

24l3

(
ε1

∗ + α1
∗3 + 3α1

∗σ1
∗2
)}

F4
∗ = Coth

(
Nh
2l

){
1 − N2

4l2

(
α1

∗2 + σ1
∗2
)}

and
∂h
∂t

= c
∂ε

∂t
cosθ

3. Short Journal Bearing

When comparing axial variations in pressure, circumferential variations are neglected
when employing short journal bearing approximations. As a result, the averaged Reynolds-
type Equation (25) reduces to

∂

∂z

[(
F(N, l, h) +

12µk1
∗H0

(µ + ε)

)
∂E(p)

∂z

]
= 12µ

∂h
∂t

(27)

It is now assumed that the fluid film thickness H is affected by variations in Newtonian
viscosity µ.

µ = µ1
∗
(

H
h1

)Q
(28)

where µ1
∗ is the inlet viscosity at H = h1 = c(1 + ε). The exponent Q is calculated as

Q =
log
(

µ1
∗

µ2
∗

)
log
(

h1
h2

) (29)

In relation to film thickness h2, µ2
∗ is the outlet viscosity. The specific lubricant being

used determines the parameter Q(0 ≤ Q ≤ 1); for a perfect Newtonian fluid, Q = 0, while
for perfect gases, Q = 1. For mathematical ease, it is assumed that the coupling number N
and characteristic length parameter l are not dependent on the variation in viscosity. This
can be achieved by assuming that χ and γ differ in the same manner as µ. In the present
analysis, the effect of variations in viscosity is considered in the fluid film region, as the
squeezing effects are predominant in the film region. The porous region is isotropic and
has a constant thickness and hence the Newtonian variation in viscosity is considered to be
negligible in comparison to the viscosity variations in the film region (i.e., Q = 0).
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Substituting Equation (28) in Equation (27), we obtain

∂

∂z

[(
F(N, l, h) +

12µk1
∗H0

(µ + χ)

)
∂E(p)

∂z

]
= 12µ1

∗
(

H
h1

)Q ∂h
∂t

(30)

Using the dimensionless scheme, we have

θ =
x
R

, z =
z
L

, l =
l
c

, h =
h
c

, ε1 =
ε1

∗

c
, α =

α1
∗

c

σ2 =
σ1

∗2

c2 , p =
E(p)c2

µ1
∗R2

(
dε
dt

) , k =
k1

∗

c2 , H0 =
H0

c
,

ψ =
k1

∗H0

c3 , N =

(
χ

(χ + 2µ)

) 1
2

A dimensionless representation of the modified averaged Reynolds Equation (30) is
as follows:

∂

∂z

{[
F
(

N, l, h
)
+ 12ψ

(
1 − N2

1 + N2

)]
∂p
∂z

}
= 12 cos θ

h
Q

(1 + ε)Q (31)

F∗(N, l, h
)
≈ F1

∗
+ F2

∗(F3
∗
+ F4

∗)
where

F1
∗
= h

3
+ ε1 + 3h

2
α + 3h

(
α2 + σ2

)
+ 3ασ2 + α3 + 12l

2
(

h + α
)

F2
∗
= −6Nl

(
h

2
+ α2 + σ2 + 2hα

)
F3

∗
=

{
1 − Coth2

(
Nh
2l

)}
×
{

Nα

2l
− N3

24l
3

(
ε1 + α3 + 3ασ2

)}
and

F4
∗
= Coth

(
Nh
2l

){
1 − N2

4l
2

(
α2 + σ2

)}
The pressure’s pertinent boundary conditions are

p = 0 at z = ±0.5 (32)

Equation (31) changes to the following form when the boundary conditions (32)
are met:

p =
6 cos θ

(
z2 − 0.25

)
F
(

N, l, h
)
+ 12ψ

(
1−N2

1+N2

) h
Q

(1 + ε)Q (33)

Here, the journal bearing has zero rotation. Integrate the mean film pressure E(p) to
obtain the average load capacity E(W), which is expressed as

E[W(t)] = −2R

−L
2∫

z=0

3π

2∫
θ=

π

2

E(p) cos θdθdz (34)

Because a squeeze film generates an average load E(W(t)) equal to the applied load
Ws, when a bearing operates under steady load Ws,

E[W(t)] = Ws (35)
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The journal center’s locus is found as follows by entering Equations (33) and (35) into
Equation (34).

W =
E[W(t)]

µLR
(

dε

dt

) =

θ=
3π

2∫
θ=

π

2

cos2 θ(1 + ε cos θ)Q[
F
(

N, l, h
)
+ 12ψ

[(
1 − N2)
(1 + N2)

]]
(1 + ε)Q

dθ

= G
(

ε, N, l, α, σ, ε1

)
(36)

In several practical programs, under dynamic circumstances, a squeeze film oper-
ates with a journal bearing. In these situations, the rotational center’s path varies with
fluctuations in the applied load. Here, the time-dependent applied load is treated as a
sinusoidal function.

E(W(t)) = W0 sin(ωt) (37)

Here, W0 represents the amplitude and ω represents the frequency of the oscillations
in the load.

Substituting Equations (36) and (37) into Equation (35), the locus of the journal center
is acquired as follows:

dε

dτ
=

30 sin τ

πS′G
(

ε, N, l, α, σ, ε1

) (38)

where

S′ =
µN(
W0
2LR

)(R
C

)2
, τ = ωt =

2πN
60

t

4. Results and Discussion

The present study explored the impact of variations in porosity, viscosity, and rough-
ness on the dynamic and static behaviors of a journal bearing lubricated with a micropolar
fluid. The dimensionless factors l and N express the impact of the micropolar lubricant.

Specifically, N
(
=
(

χ
χ+2µ

) 1
2
)

is the coupling number, which indicates the coupling of

rotational and linear motion during the micro-rotation of the subsidiaries contained within
the fluid. The dimensionless factor for the characteristic length l

(
= l

c

)
describes the re-

lationship of the fluid with the geometry of the bearing. The impact of permeability is
described by the dimensionless permeability coefficient, ψ

(
= kH0

c3

)
; moreover, as ψ → 0 ,

the permeability affects the related solid case. The roughness factor influences the squeeze
film’s properties; Q impacts the viscosity; and α, ε1 and σ are dimensionless parameters
describing the effects of the roughness of the bearing surface. The significance of such
factors depends on the squeeze film being used.

4.1. Pressure Distribution

The effects of the variation in the dimensionless mean film pressure p with the circum-
ferential coordinate θ and viscosity factor Q under two distinct permeability parameters
ψ for N = 0.7, α = 0.01, σ = 0.15, ε1 = −0.01, and l = 0.2 are presented in Figure 2. The
required dimensionless pressure p of the squeeze film diminishes with increasing viscosity
parameter Q. The impact of the porous layer decreases the dimensionless pressure in the
squeeze film with increasing permeability factor ψ. The impact of micropolarity on the
changes in the dimensionless mean pressure p of the film with θ is shown in Figures 3 and 4.
It was confirmed that p notably increases with rising values of N and l in the solid region
compared to the porous region when α = 0.01, σ = 0.15, ε1 = −0.01, ε = 0.01, Q = 0.5. The
influence of roughness parameters α and ε1 when the viscosity parameter Q = 0.5 on the
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variations in p with θ is depicted in Figures 5 and 6. We proved that the dimensionless
pressure p is higher with a negatively skewed surface roughness in solid regions than in
porous regions, where it is lower for a positively skewed surface roughness. Furthermore,
p decreases more with increasing values of σ in porous regions than in solid regions, as
shown in Figure 7.

Lubricants 2024, 12, x FOR PEER REVIEW 12 of 25 
 

 

4.1. Pressure Distribution 
The effects of the variation in the dimensionless mean film pressure p  with the 

circumferential coordinate θ  and viscosity factor Q  under two distinct permeability 

parameters ψ  for 10.7, 0.01, 0.15, 0.01N α σ ε= = = = − , and 0.2l =  are present-

ed in Figure 2. The required dimensionless pressure p  of the squeeze film diminishes 
with increasing viscosity parameter Q . The impact of the porous layer decreases the 
dimensionless pressure in the squeeze film with increasing permeability factor ψ . The 

impact of micropolarity on the changes in the dimensionless mean pressure p  of the 

film with θ  is shown in Figures 3 and 4. It was confirmed that p  notably increases 

with rising values of N  and l  in the solid region compared to the porous region when 

10.01, 0.15, 0.01, 0.01, 0.5Qα σ ε ε= = = − = = . The influence of roughness parame-

ters α  and 1ε  when the viscosity parameter 0.5Q =  on the variations in p  with 

θ  is depicted in Figures 5 and 6. We proved that the dimensionless pressure p  is 
higher with a negatively skewed surface roughness in solid regions than in porous re-
gions, where it is lower for a positively skewed surface roughness. Furthermore, p  de-
creases more with increasing values of σ  in porous regions than in solid regions, as 
shown in Figure 7. 

 

Figure 2. Variation in dimensionless pressure p  as a function of θ  for distinct values of viscos-

ity parameters Q  and ψ . 

Figure 2. Variation in dimensionless pressure p as a function of θ for distinct values of viscosity
parameters Q and ψ.

Lubricants 2024, 12, x FOR PEER REVIEW 13 of 25 
 

 

 

Figure 3. Variation in dimensionless pressure p  with respect to θ  for various values of l  and 

ψ  when 1 0.01, 0.15, 0.01, 0.5Qε σ α= − = = =  and 0.7N = . 

 

Figure 4. Variation in dimensionless pressure p  in relation to θ  for different values of N  and 

ψ  when 1 0.01, 0.15, 0.01, 0.5Qε σ α= − = = =  and 0.2l = . 

Figure 3. Variation in dimensionless pressure p with respect to θ for various values of l and ψ when
ε1 = −0.01, σ = 0.15, α = 0.01, Q = 0.5 and N = 0.7.
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Figure 6. Variation in dimensionless pressure p with θ for various values of ε1 and ψ when σ = 0.15,
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4.2. Load Capacity

The changes in the dimensionless load capacity W and eccentricity ratio factor ε ae
shown in Figure 8 for different values of the viscosity parameter Q. Here, the eccentricity
ratio factor ε increases the load capacity. Moreover, we confirmed that the variation in
viscosity decreases the load capacity more in porous than in solid regions. The variation in
W with ε for distinct values of l and permeability factor ψ(= 0.0, 0.01) is shown in Figure 9.
Notably, increases in l improves W compared to the related Newtonian case (l → 0). The
changes in W with ε for distinct values of N and permeability parameter ψ(= 0.0, 0.01) are
noted in Figure 10. Clearly, increasing the value of N enhances W for both values of ψ.
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While micropolar lubricant improvements result in higher film pressure, improving the
integrated load. The load capacity diminishes with rising values of permeability factor
ψ. As a consequence, the porous surface of the bearing provides an alternative channel
for lubricant flow, where the higher the permeability, the more likely lubricant is to flow
within the porous matrix rather than over the gaps in the film, which thus induces a
reduction in W. Figures 11–13 depict the variations in the dimensionless load capacity
with eccentricity ratio factor ε for various values of roughness parameters α, ε1, and σ,
respectively. Figures 11 and 12 show that the load capacity diminishes with rising ε,
decreases for positively rising values of α and ε1 in the porous region compared with the
solid region, and improves for decreasing values of α and ε1 in the solid region compared
to the porous region. Furthermore, this W decreases with increasing values of σ in the
porous region compared to solid region, as evidence in Figure 13.
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Figure 8. Variation in dimensionless load W with ε for distinct values of Q and ψ when ε1 = −0.01,
σ = 0.15, α = 0.01, Q = 0.5, N = 0.7, and l = 0.2.
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Figure 9. Variation in dimensionless load W with ε for distinct values of l and ψ when ε1 = −0.01,
σ = 0.15, α = 0.01, Q = 0.5 and N = 0.7.
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Figure 10. Variation in dimensionless load W as a function of ε for distinct values of N and ψ when
ε1 = −0.01, σ = 0.15, α = 0.01, Q = 0.5, and l = 0.2.
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Figure 11. Variation in dimensionless load W as a function of ε for different values of α and ψ when
ε1 = −0.01, σ = 0.15, Q = 0.5, N = 0.7, and l = 0.2.
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4.3. Journal Center Velocity

The impact of Q, the viscosity variation factor, on the variation in the velocity of the
journal center, dε

dt , and two values of the permeability factor ψ when l = 0.2, N = 0.7,
S′ = 1.8, α = 0.01, ε1 = −0.01, and σ = 0.15 with the dimensionless time parameter τ with
fixed roughness parameters is shown in Figure 14. Interestingly, it should be noted that
the variations in viscosity increase the journal center’s velocity. The journal center

(
dε
dt

)
velocity increases as the permeability parameter ψ rises. The impact of roughness factors
α, σ, and ε1 on the variance in dε

dt with respect to the time parameter τ for two values of the
permeability factor ψ is presented, respectively, in Figures 15–17. It can be noticed that the
increase in the journal center velocity is caused by the positively skewed surface roughness
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in the porous region as compared to the solid region, whereas a negatively skewed bearing
surface roughness strongly resists increases in the journal center’s velocity.
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Figure 16. Journal center velocity dε
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N = 0.7, S′ = 1.8, α = 0.01, and l = 0.2.

Lubricants 2024, 12, x FOR PEER REVIEW 21 of 25 
 

 

 

Figure 17. Velocity of journal center 
d
dt
ε

 versus τ  for various values pf σ  and ψ  when 

1 0.01, 0.5, 0.7, 1.8, 0.01Q N Sε α′= − = = = = , and 0.2l = . 

Table 1. Relative percentage increase/decrees in maximum pressure ( )maxP , 
maxPR , load carrying 

capacity WR , and journal center velocity 
t

R ε∂
∂

 for different values of the viscosity variation pa-

rameter. 

ψ  
 0.0l =  0.2l =  

Q  
maxpR  WR  

t

R ε∂
∂

 
maxpR  WR  

t

R ε∂
∂

 

0.0ψ =  
0.1 −4.14 −13.18 1.82 −4.14 −13.40 1.83 
0.2 −8.45 −28.07 3.62 −8.45 −28.59 3.62 
0.3 −12.93 −44.90 5.38 −12.93 −45.79 5.39 

0.01ψ =  
0.1 −4.14 −13.18 1.82 −4.14 −13.09 1.83 
0.2 −8.45 −28.09 3.62 −8.45 −27.86 3.62 
0.3 −12.93 −44.92 5.38 −12.93 −44.54 5.39 

5. Conclusions 
In this paper, the impact of variations in porosity and viscosity on the dynamic and 

static characteristics of a rough short journal bearing lubricated with a micropolar fluid 
under squeezing action was examined on the basis of Eringen’s micropolar fluid theory. 
The conclusions obtained are based on numerical computation, which are as follows: 
• Increases in the viscosity variation parameter decrease the squeeze film pressure and 

load carrying capacity by 4.14% and 13.14%, respectively, while it enhances the 
journal center velocity by 1.83%. 

• Micropolar lubricants improve the load capacity and film pressure and reduce the 
journal center velocity under a cyclic load as compared to the related Newtonian 
case. 

• The increase in the porosity factor decreases the squeeze film pressure and load ca-
pacity and raises the journal center velocity. 

Figure 17. Velocity of journal center dε
dt versus τ for various values pf σ and ψ when ε1 = −0.01,

Q = 0.5, N = 0.7, S′ = 1.8, α = 0.01, and l = 0.2.
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Table 1 shows the relative percentage increase/decrease in the maximum pressure,
load, and journal center velocity for different values of the material parameters and different
values of the viscosity variation parameter, as follows:

Rpmax =
(Pmax)variableVis cos ity−(Pmax)Cons tan tVis cos ity

(Pmax)variableVis cos ity
× 100, RW =

WVariableVis cos ity−WCons tan tVis cos ity
WVariableVis cos ity

× 100

R ∂ε
∂t
=

( ∂ε
∂t )VariableVis cos ity

−( ∂ε
∂t )Cons tan tVis cos ity

( ∂ε
∂t )VariableVis cos ity

× 100

Table 1. Relative percentage increase/decrees in maximum pressure (Pmax), RPmax , load carrying
capacity RW , and journal center velocity R ∂ε

∂t
for different values of the viscosity variation parameter.

ψ
l = 0.0 l = 0.2

Q Rpmax RW R ∂ε
∂t

Rpmax RW R ∂ε
∂t

ψ = 0.0
0.1 −4.14 −13.18 1.82 −4.14 −13.40 1.83
0.2 −8.45 −28.07 3.62 −8.45 −28.59 3.62
0.3 −12.93 −44.90 5.38 −12.93 −45.79 5.39

ψ = 0.01
0.1 −4.14 −13.18 1.82 −4.14 −13.09 1.83
0.2 −8.45 −28.09 3.62 −8.45 −27.86 3.62
0.3 −12.93 −44.92 5.38 −12.93 −44.54 5.39

5. Conclusions

In this paper, the impact of variations in porosity and viscosity on the dynamic and
static characteristics of a rough short journal bearing lubricated with a micropolar fluid
under squeezing action was examined on the basis of Eringen’s micropolar fluid theory.
The conclusions obtained are based on numerical computation, which are as follows:

• Increases in the viscosity variation parameter decrease the squeeze film pressure and
load carrying capacity by 4.14% and 13.14%, respectively, while it enhances the journal
center velocity by 1.83%.

• Micropolar lubricants improve the load capacity and film pressure and reduce the
journal center velocity under a cyclic load as compared to the related Newtonian case.

• The increase in the porosity factor decreases the squeeze film pressure and load
capacity and raises the journal center velocity.

• The presence of a negatively skewed rough surface increases the load capacity and
pressure on the squeeze film, whereas the load capacity and squeeze film pressure
diminish for positively increasing values of the roughness parameters.

• The velocity of the journal center improves with positively increasing values and
decreases for decreasing values of the roughness parameters.

• Our findings align with those obtained by Naduvinamani and Kashinath [40] in the
case with no variation in the viscosity parameter, which verifies the effect of variations
in the viscosity on rough short porous journal bearings.
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Nomenclature

E expectancy operator
E(W(t)) mean load capacity
e Eccentricity
c radial clearance
c∗ maximum deviation from mean film thickness
hs

∗ random variable
h(θ) mean film thickness (= c(1 + ε cos θ))
H film thickness (= h(θ) + hs

∗)
H0 porous layer thickness
k permeability of porous medium

l characteristic length of polar suspension
(
=
(

γ
4µ

) 1
2
)

l dimensionless form of l
(
=
(

l
c

))
L length of bearing

N coupling number
(
=
(

χ
(χ+2µ)

) 1
2
)

p pressure of lubricant
p1

∗ porous matrix’s pressure

p dimensionless mean pressure
(
=

(E(p)c2)
µR2( dε

dt )

)
R journal radius

S′ Somerfield number
(
=

µN
W0
2LR

)(
R
c

)2

t Time
u, v, w fluid velocity components in x, y, and z directions
v1

∗, v2
∗, v3

∗ microrotational velocity components along x, y. and z directions, respectively

V squeeze velocity ∂h
∂t

(
= c
(

dε
dt

)
cos θ

)
W dimensionless mean load capacity

(
=

E(W(t))
µLR( dε

dt )

)
W0 applied cyclic load’s amplitude
Ws mean steady load
x, y, z rectangular coordinates

α dimensionless form regarding α1
∗
(
= α1

∗

c

)
α1

∗ stochastic mean film thickness
γ, χ viscosity coefficients for micropolar fluids
ε eccentricity ratio factor

(
= e

c
)

ε1 dimensionless form of ε1
∗
(
= ε1

∗

c3

)
ε1

∗ measure of symmetry about random stochastic variable
µ lubricant viscosity

ψ permeability parameter
(
= k1

∗H0
c3

)
σ2 dimensionless form of σ1

∗2
(
= σ1

∗2

c2

)
σ1

∗2 Variance
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