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Abstract: The three-piece oil control ring (TPOCR), traditionally used in light-duty gasoline engines,
is becoming a viable option for heavy-duty gas and hydrogen engines due to its ability to control
lubricating oil consumption (LOC) under throttled conditions. Understanding the distribution of
oil inside the TPOCR groove, as well as the effects of rail gap and drain hole positions, is critical
for optimizing TPOCR and groove designs. In this work, a one-dimensional oil distribution model
was developed to simulate inertia-driven oil transport in the TPOCR groove. A novel approach was
proposed by first dividing the TPOCR into units composed of a pair of expander pitches. Then, the
relationship between the oil outflow rate of the unit and its oil mass was established with the help of
three-dimensional two-phase computational fluid dynamics (CFD) simulations. This relationship
was then used to model one-dimensional oil transport along the circumference of the TPOCR groove.
Incorporating the boundary conditions at the rail gaps and drain holes, this simple model can
complete computations for 10,000 cycles within a few seconds, allowing for quick the evaluation of
transient behavior and design iterations. Studies on low-load conditions show that the model, with
reasonable adjustment for the boundary conditions, can match the oil distribution patterns observed
in visualization experiments. This is the first step toward studying oil transport in the TPOCR groove
before involving the effects of gas flows.

Keywords: engine lubrication; lubricating oil consumption (LOC); three-piece oil control ring
(TPOCR); computational fluid dynamics (CFD); numerical model

1. Introduction

In internal combustion engines, oil control rings play a crucial role in controlling
the oil supply and significantly impacting lubricating oil consumption. TPOCRs have
been widely adopted in modern engines due to their efficient oil control and reduced oil
consumption. Although the use of TPOCRs has become prevalent, research on this topic
remains notably lacking.

The oil control ring shown in Figure 1 consists of three components, the upper rail,
expander, and lower rail. Each ring has a gap for ease of installation, and these gaps serve as
critical paths for oil transport. The upper and lower rails create a barrier to regulate the oil
flow, while the expander functions as a spring, providing tension force to the rails to seal the
ring/liner interface. The function of the top ring is to control high pressure gas entering the
ring pack. The oil control rings regulate the oil supply to the top two rings and control the
oil film thickness on the liner [1–4]. The second ring acts as a buffer, providing secondary
control for both oil and gas. In addition to controlling the upward oil flow, the oil control
ring is a favorable path for the release of the oil after performing the lubrication function
in the upper regions. The release function of the oil control ring is largely accomplished
through the drain holes inside the oil control ring groove [5–7].
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Figure 1. Sample piston (left) and three-piece oil control ring (right). 

A critical parameter for both oil leakage into the ring pack and its release is the oil 
accumulation inside the oil control ring groove, as it determines the oil boundary condi-
tions along the leakage and release paths. There are three main oil leakage paths in the oil 
control ring: (1) the upper rail gap, (2) the ring/liner interface, and (3) the groove itself. 
The extent of oil leakage from these regions is directly influenced by the amount of oil 
accumulated in the groove. 

The upper rail gap is the most direct path for oil to reach the upper region. Under 
zero blowby conditions, significant oil leakage can occur through this gap, as noted in 
[8,9]. When oil accumulation reaches a certain level, oil bridging may occur, causing oil to 
adhere to the liner and leak through the ring/liner interface. Additionally, oil can also leak 
through the upper flank between the upper rail and the oil control ring groove. 

The primary source of oil to the oil control ring is through the lower rail gap. While 
drain holes are intended to release oil from the groove, under certain conditions, they can 
also act as a source of oil. Another source of oil to the oil control ring groove is the upper 
flank between the upper rail and the oil control ring groove. Oil can accumulate above the 
upper rail during up-scraping, and this oil may transfer to the piston. 

These processes, illustrated in Figure 2, demonstrate that the amount of oil leakage 
is heavily dependent on the oil accumulation inside the groove. Therefore, developing a 
model to estimate the oil accumulation in the groove is crucial. However, the understand-
ing of oil accumulation in the oil control ring groove is still very limited. Previous studies 
on TPOCR oil transport and its effect on LOC showed that the level of LOC increases 
during the transition from low to high load conditions [10,11]. Operating under the blow-
by separation line (low load) conditions leads to high LOC, with oil accumulation in the 
TPOCR groove tending to be higher at low loads and low engine speeds [9]. 

 
Figure 2. Oil leakage mechanism [9]. 

Figure 1. Sample piston (left) and three-piece oil control ring (right).

A critical parameter for both oil leakage into the ring pack and its release is the oil
accumulation inside the oil control ring groove, as it determines the oil boundary conditions
along the leakage and release paths. There are three main oil leakage paths in the oil control
ring: (1) the upper rail gap, (2) the ring/liner interface, and (3) the groove itself. The extent
of oil leakage from these regions is directly influenced by the amount of oil accumulated in
the groove.

The upper rail gap is the most direct path for oil to reach the upper region. Under
zero blowby conditions, significant oil leakage can occur through this gap, as noted in [8,9].
When oil accumulation reaches a certain level, oil bridging may occur, causing oil to adhere
to the liner and leak through the ring/liner interface. Additionally, oil can also leak through
the upper flank between the upper rail and the oil control ring groove.

The primary source of oil to the oil control ring is through the lower rail gap. While
drain holes are intended to release oil from the groove, under certain conditions, they can
also act as a source of oil. Another source of oil to the oil control ring groove is the upper
flank between the upper rail and the oil control ring groove. Oil can accumulate above the
upper rail during up-scraping, and this oil may transfer to the piston.

These processes, illustrated in Figure 2, demonstrate that the amount of oil leakage
is heavily dependent on the oil accumulation inside the groove. Therefore, developing a
model to estimate the oil accumulation in the groove is crucial. However, the understanding
of oil accumulation in the oil control ring groove is still very limited. Previous studies on
TPOCR oil transport and its effect on LOC showed that the level of LOC increases during
the transition from low to high load conditions [10,11]. Operating under the blow-by
separation line (low load) conditions leads to high LOC, with oil accumulation in the
TPOCR groove tending to be higher at low loads and low engine speeds [9].
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To better understand and predict these phenomena, numerous physical models have
been devised with the aim of predicting gas flow and oil transport in the piston ring
pack [12–17]. Tian [14] developed a TPOCR model by coupling the ring dynamics and
lubrication to study friction, asperity contact, and oil transport between rails/grooves,
rails/liners, and rails/expanders. The model assumes that the third land pressure is
constant, and the region between the rails and groove is filled with oil. To accurately
predict oil transport through the rail/groove clearance, Zhang [15] employed two-phase
mass-conserved fluid sub-models for the oil/gas flow through the rail/groove clearance.
While the oil transport in the contact regions in these models can be accurately described
by the Reynolds equation, a more sophisticated method is required for non-contact regions,
such as the oil flow below the lower rail, through the gaps, and inside the groove. Fang [16]
conducted a study on oil transport using CFD followed by the development of simplified
models and correlations to predict oil flow rates in two non-contact regions: (1) below
the oil control ring in the space between the skirt chamfer and the liner; and (2) the space
between the piston ring pack and the liner. This study provides an appropriate oil dynamic
pressure boundary condition at the outer entrance of the clearance between the lower rail
and its groove. To accurately model oil transport across TPOCR, Riken Corporate [17]
developed models for the TPOCR motion in the groove and the oil transport behavior using
the Computer Aided Engineering (CAE) method. The model consists of two parts: (1) the
TPOCR motion model; and (2) the oil transport model. The TPOCR motion model calculates
the three-dimensional ring motion and torsional deformation using Finite Element Analysis
(FEA). The oil transport model is a two-phase flow CFD model that utilizes the ring motion
from TPOCR motion, taking an arbitrary two-dimensional cross-section to calculate oil
leakage to the third land. These models have been verified by experimental results and show
good agreement. It is important to note that all these models are two-dimensional models
that only consider oil transport in the radial and axial directions on piston lands and/or oil
control ring grooves. However, oil distribution along the circumferential direction in the
groove is critical for accurately estimating oil leakages through the TPOCR and determining
the optimal arrangement of the drain holes, which are highly related to oil consumption.

This work aims to develop a fast oil distribution model for predicting oil distribution
along the circumferential direction within the oil control ring groove. Initially, CFD analysis
was applied to study oil transport in the TPOCR groove and establish a correlation between
oil accumulation and the flow rate. This correlation was then used in the development
of a one-dimensional model to predict the oil distribution along the groove. The model’s
accuracy was validated through comparison with CFD results for short-term simulations,
and further validated against experimental results to assess its long-term performance.

The paper is organized as follows. Section 2 describes the experimental setup and
observations. Section 3 details the CFD simulation settings. Section 4 outlines the proposed
oil redistribution model and presents the results. Section 5 provides a parametric study of the
model, analyzing the effects of various factors, and the conclusion is presented in Section 6.

2. Two-Dimensional LIF Experiment
2.1. Setup

For the observation of oil transport in the ring pack, the 2D Laser Induced Fluores-
cence technique (2D-LIF) was applied to an optical single-cylinder prototype engine. The
engine originated from a four-cylinder port injection PSA product engine with 3 cylinders
deactivated on the cylinder head. A custom-made engine liner with a sapphire window on
the thrust side was applied to observe oil transport. The choice of sapphire was made as it
has a similar thermal expansion coefficient as steel, the material that made up the rest of
the liner, in order to provide good sealing and comfortability when fired up. Located at the
middle of the thrust side, the window was 12 mm wide and 98.5 mm long and counted for
16 degrees of the whole circumferential direction given the 86.6 mm bore. Figure 3 shows
the optical liner and the overall test engine setup. A detailed description of the engine
running parameter can be found in Table 1.
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Table 1. Engine specifications.

Engine Characters

Type Spark Ignition 4 Valves
Bore 86.6 mm

Stroke 88.0 mm
Displacement 0.511 L

Max specific power 37.3 kW/L@5400 RPM
Max specific torque 80 Nm/L@4200 RPM

Lubricant SAE 0W20

A specific dye was mixed with the lubricant oil which can be induced to fluorescence
using a laser. The oil was stored in an external reservoir and was fed into and extracted
out from the engine through two recirculating pumps. In addition, due to the sensitivity
of the fluorescence signal to temperature, a temperature control device was applied in the
oil circulation loop to feed the oil into the engine at 50 ◦C ± 1 ◦C. An Photron SA-X2 high-
speed camera was used to capture the video through the optical window and allowed for
the observation of oil transport in the ring pack and skirt region. The maximum resolution
of the camera is 1024 × 1024 pixels focused on a 12 mm ×12 mm square area. The highest
frame rate that can be achieved without sacrificing resolution is 12,500 fps, converting to
around one frame per crank angle at 2000 RPM. Figure 4 shows an optical image from
the high-speed camera, where the brighter part means a thicker oil film thickness and the
darker part indicates less oil. A detailed description of the 2D-LIF engine setup and optical
theory can be found in [18].

Specifically, two camera operations were defined, namely high-speed control and low-
speed control. The high-speed camera control can record the path of the piston moving up
and down starting from the intake TDC. The slow-speed camera control records one frame
per engine cycle at a chosen CA position. This can make the piston appear stationary in the
video and can be used for analyzing the oil flow pattern’s change over longer time scales.
The laser, high-speed camera, and engine operation were controlled and synchronized
through the FPGA system.

The piston and ring pack was chosen as a barrel-shaped top ring with a positive
twist, a second ring with a Napier hook chamfer design on the outer diameter (OD), and
a modern low-tension TPOCR. The top ring gap was pinned in the center of the optical
window for better observation.
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Figure 4. Oil transport during BDC.

2.2. Observation

Figures 4 and 5 illustrate the behavior of oil transport during the transition between
the piston’s downward and upward movements, and vice versa. As the piston reaches the
bottom dead center (BDC), driven by the downward inertial force, the oil in the pitch with
higher thickness hits the lower rail, forming a puddle. When the piston starts its upward
motion, with the downward inertial force, the oil in the expander spreads out to neighboring
units and forms a flattened film, as illustrated in Figure 4. Conversely, at the top dead center
(TDC), the oil similarly hits the upper rail, forming a puddle, and upon the downward motion,
the oil redistributes between the adjacent pitches and forms a flattened film, as depicted
in Figure 5. An additional note is that the oil bridging from the piston to the liner occurs
when the piston moves toward the BDC and the TDC. In the areas with bridged oil, the
trailing rail becomes fully flooded and, thus, increases the oil leakage through the rail/liner
interface locally. The higher the oil accumulation inside the TPOCR groove is, the earlier
the bridging occurs with a longer duration. Increasing the upper rail leakage from the liner,
caused by higher oil accumulation through oil bridging, is one of the main reasons to increase
the understanding of the oil accumulation inside the TPOCR groove. There are two driving
forces for the redistribution and accumulation pattern inside the oil ring groove, namely
inertia and bridging. The observations shown in Figures 4 and 5 are the combined results
of the two forces mentioned above. Figure 6 is an illustration showing the effects separately.
Currently, there is no numerical study of this distribution process within the groove. Therefore,
developing a numerical study and a predictive model for oil distribution in the oil control
ring groove is essential for advancing our understanding and improving the overall design.
This work is focused on the inertia effect, which is always present, in contrast to the gas flow
effect, which is only effective locally and during certain periods of a cycle.
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3. CFD Simulation

To investigate the oil transport mechanisms within the oil control ring groove, three-
dimensional simulations were conducted using Ansys Fluent (Version 2024R2), a commer-
cial CFD software widely used in industrial applications. The simulations employed the
Volume of Fluid (VOF) model to capture the interface between the oil and gas phases [19].
Figure 7 illustrates the three-dimensional computational domain, which includes the lower
gap and the oil control ring groove.
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In these CFD simulations, the clearance between the oil control ring rail/land and the
liner was ignored due to its negligible size compared to other dimensions, as it was not the
primary focus of this study. To optimize computational efficiency, the model was simplified
to include only a segment consisting of 16 pairs of pitches. This reduction was considered
sufficient for analyzing the slow oil transport process along the groove.

The mesh for the CFD simulations, depicted in Figure 8, was generated using Ansys
Meshing. A polyhedral mesh was chosen for its superior accuracy in representing complex
geometries, offering better resolution of geometric features, and conforming well to the
simulated object. The mesh size was set to 100 µm around the gap and 200 µm away from
the gap.

This study focuses on inertia-driven flow, deliberately excluding the effects of gas flow.
Consequently, no pressure difference was considered within the groove. The computational
domain was defined by the following boundary conditions:

1. Pressure Inlet/Outlet: This was applied to the lower gap during down/up strokes,
with the pressure set at 1 bar.

2. Pressure Inlet/Outlet: This was applied to the outlet during up/down strokes, with
the pressure set at 1 bar.

3. Symmetry: This was applied to the surface adjacent to the lower gap.
4. Moving surface: This was applied to the liner, with the velocity determined based on

engine speed.
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In the simulation, the lubricant was introduced through the lower gap during down
strokes and expelled during up strokes. The inlet volume fraction was set to 0.1, represent-
ing a 10 µm oil film on the liner below the TPOCR. The piston was used as the reference
frame; therefore, the piston liner velocity was defined as the inverse of the piston’s in-
stantaneous velocity. A contact angle of 45◦ was assigned to all solid wall surfaces. The
simulation started from the top dead center position and spanned 20 engine revolutions,
ensuring comprehensive oil distribution to regions beyond the gap.

3.1. Oil Distribution Model

While there used to be many different types of expanders, the ES-80 type expander
has gradually become the most popular type. As shown in Figure 1 and referenced in the
SAE piston ring-grooves standard [20], the expander exhibits an alternating pattern along
its circumference. A pitch with the horizontal bar on the top is followed by one on the
bottom. Due to the space occupied by the horizontal bar, oil accumulation between the
two adjacent pitches differs. Consequently, when the inertia shifts direction, the pitch with
a higher accumulation experiences earlier oil movement. This movement, driven by inertia,
varies between pitches. For this reason, we divided the expander into units with each unit
composed of two pitches, as illustrated in Figure 9. During the transition from upstrokes to
downstrokes, oil in the left pitch with an expander exceeds that in the right pitch without
an expander. As the inertial force shifts upward, oil from the lower rail begins to move to
the upper rail. Once the oil puddle reaches the upper rail, it disperses laterally from the left
pitch to the right pitch, eventually reaching equilibrium. At equilibrium, the right pitch
holds more oil than the left pitch. Conversely, when the inertial force shifts downward,
the oil flows from right pitch back to the left pitch. By considering these upward and
downward forces together, the oil flows both upstream and downstream, as illustrated
in Figure 10. The outflow rate from each unit is a function of the oil volume it contains,
the engine speed, the oil density, and the oil viscosity. This relationship can be expressed
as follows:

Q(V, E, µ) =
aρVbEcd f lank

µd

where Q represents the oil outflow rate from a unit, ρ denotes the oil density, V denotes
the oil volume in a unit, E stands for the engine speed, d f lank denotes the depth of the
flank, and µ denotes the oil viscosity. The parameters a, b, c, and d, are obtained by fitting
the CFD results. The outflow rate Q depends on the oil volume, engine speed, oil density,
and viscosity, characterizing the flow to both upstream and downstream units. This form
was chosen to capture the effects of key parameters on the oil flow rate: the oil volume,
density engine speed, and ring groove size positively correlated with the flow rate, while
oil viscosity, which resists flow, has a negative correlation.
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The net flow rate for uniti is derived as follows:

• The upstream net flow rate between uniti and uniti−1

Q
(
Vn

i−1, E, µ
)
− Q(Vn

i , E, µ)

• The downstream net flow rate between uniti and uniti+1

Q
(
Vn

i+1, E, µ
)
− Q(Vn

i , E, µ)

Therefore, the total net flow for uniti is the combination of the upstream and down-
stream net flows:

Net f low f or uniti = Q
(
Vn

i−1, E, µ
)
− 2Q(Vn

i , E, µ) +
(
Vn

i+1, E, µ
)

The oil distribution model, describing the change in oil volume within a unit, can be
formulated as follows:

Vn+1
i = Vn

i + ∆t
(
Q
(
Vn

i−1, E, µ
)
− 2Q(Vn

i , E, µ) + Q
(
Vn

i+1, E, µ
))

+ ∆t
(

Qi==lower gap

)
where Vn+1

i represents the oil volume in uniti at time step n + 1, and ∆t is the time for
1 engine revolution. The lower gap acts as the primary oil source for this model, with the
amount of oil assumed to be constant. The drain holes serve as outlet boundary conditions,
allowing oil to exit the groove. By fixing the oil volume at a specific value at the drain holes,
the modeling results closely align with the experimental observations.

3.2. Fitting CFD Results

The oil flow rate through the boundary and the oil mass in each unit were calculated
from CFD simulations. The simulation result at crank angle 3590◦ is shown in Figure 11.
The yellow regions represent the oil volume fractions.
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Figure 11. CFD simulations after 3590◦ crank angles.

To determine the average effect of oil transport within one engine revolution, the oil
flow rate and oil volume were averaged over each revolution. However, after performing
the averaging, the flow rate across the boundary between units represented the net flow. To
correlate the outflow and oil volume, further data processing was required.

To extract the outflow through the boundary from the net flow, the first empty unit
(uniti+1) in the groove must be identified. Since there was no outflow from uniti+1 to uniti,
the outflow of uniti to uniti+1 could be calculated by the oil volume change in uniti+1. The
outflow of uniti−1 could then be obtained by subtracting the net flow of uniti from the
outflow of uniti. This procedure was applied iteratively to obtain the outflow for all other
units. An illustration of this process is shown in Figure 12. By compiling all the data, the
coefficients a, b, c, and d in Equation 1 could be obtained.
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Figure 12. Concept of oil distribution model.

4. Result
4.1. CFD Result

The oil volume and outflow rate at an engine speed of 1000 RPM are shown in
Figures 13 and 14. It can be seen that, except for unit0, the oil transports slowly along the
groove, with the oil only reaching unit8 after eight cycles. unit0 displays a clear periodic
pattern due to its proximity to the lower gap, where oil can flow in and out quickly. The
oil flow rate through the boundary fluctuates without a clear pattern, making it unreliable
for establishing a correlation for oil transport within the groove. Therefore, unit0 and unit1
were excluded from the analysis when building the correlation for oil transport.

Figures 15 and 16 present the oil volume and outflow rate after data processing,
showing clearer trends. It can be clearly seen that both the oil volume and oil outflow
rate gradually increase, although the rate of growth slows over time. Figure 17 shows the
correlation between the oil accumulation and mass flow rate through the boundary. Each
line depicts the change in oil accumulation and mass flow rate for each unit over time. The
dots represent the amount of oil and flow rates for each revolution. The dots near the lower
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left correspond to the initial stages of oil accumulation, while those toward the upper right
reflect data after more engine revolutions. The proposed equation effectively reflects the
behavior observed in the CFD results. The derived regression equation is as follows:

Q(V, E) = 0.002
ρV1.40E1.86d f lank

µ0.38
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The equation reveals that the correlation between the oil accumulation and flow rate
is nonlinear and exhibits a trend stronger than linear. This means that the oil outflow rate
increases more rapidly than the oil volume. In cases of low oil volume, there is not enough
oil to move from one pitch to its neighbors. Additionally, when only a thin oil film is
present, significant capillary forces can further restrict oil transport.

The relationship between engine the speed and flow rate is also nonlinear and has a
more pronounced impact than oil volume. The correlation for different engine speeds is
shown in Figure 18. Oil transport is more stable at lower engine speeds, as indicated by the
dots aligning well with the regression results. In contrast, at higher engine speeds, the dots
spread more widely, indicating greater instability. Nevertheless, the proposed method can
still effectively capture these trends.
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4.2. Comparison of CFD and Oil Distribution Model

To validate the oil distribution model and ensure accuracy in predicting oil distribution
within the groove, the model was compared against CFD results through simulations
replicating CFD settings. A model comprising 14 units was constructed for this purpose,
excluding units 0 and 1 as they are adjacent to the lower gap and do not represent typical
oil transport behavior in the groove. The boundary conditions of this simplified model
used the mass flow rate of unit 1 derived from CFD results. The simulations covered
20 revolutions to be compared with the CFD results.

Figures 19 and 20 illustrate the comparison of the modeling results with CFD outcomes
at engine speeds of 1000 RPM and 5000 RPM, respectively. The findings demonstrate
that the oil distribution model closely aligns with the CFD results, indicating that oil
accumulation increases rapidly initially and slows after several engine revolutions. This
behavior can be explained by the oil distribution model, where the oil volume in a unit is
determined by the outflow from the unit and the inflow from its neighboring unit. Units
with less oil receive more from their neighbors, gradually reducing the differences in oil
volume until equilibrium is reached, at which point there is no oil exchange between
the units.
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m·s ).

Figure 21 shows the comparison of CFD results and the prediction from the oil dis-
tribution model across various engine speeds and viscosities, with an R2 value of 0.97,
indicating a high degree of correlation. Additionally, the oil distribution model takes
just a few seconds to complete the calculation, making it significantly more efficient than
CFD simulations.
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4.3. Comparison of Oil Distribution Model and Experiment Results

The primary objective of this model is to predict oil distribution over several thou-
sand engine revolutions, a task unfeasible with CFD due to computational limitations.
Consequently, CFD cannot be used to verify the oil distribution model developed here
for long-term predictions; instead, experimental results must be used for validation. To
compare with experimental results, a model replicating the experimental setup was de-
veloped. The oil control ring used in the experiment comprised 101 units with four drain
holes on the piston. Observations during the experiments indicated that the oil control ring
could rotate along the circumferential direction, and in this study, the rotation speed was
approximately 2000 revolutions for the ring to complete one full rotation [9]. This rotational
effect, which significantly impacts oil distribution in the groove, was incorporated into
the model. The oil density was 800 kg

m3 and the viscosity was 0.016 kg
m·s . The oil inflow

through the lower gap was assumed to be a 20 µm oil film on the skirt, representing a
typical thickness for demonstration purposes in the model. Oil entered the groove through
the lower gap primarily when it was within the skirt regions, and only a 1 µm oil film was
considered on the liner when the lower gap was outside these regions. Parametric studies
were conducted and are provided in the next section to explore the dependency of the oil
accumulation on the thickness of the oil film passing by the piston skirt.

Figures 22–24 illustrate the oil distribution in the oil control ring groove at different
stages. The x-axis represents the piston’s position, while the y-axis indicates oil accumula-
tion in the groove, quantified as the ratio of empty space filled with oil.

Lubricants 2024, 12, x FOR PEER REVIEW 14 of 23 
 

 
Figure 22. Oil accumulation in the oil control ring groove after 300 engine revolutions. 

 
Figure 23. Oil accumulation in the oil control ring groove after 800 engine revolutions. 

 
Figure 24. Oil accumulation in the oil control ring groove after 1300 engine revolutions. 

Figure 22 shows oil distribution in the groove after 300 engine revolutions, where the 
lower gap is outside the skirt region, resulting in minimal oil entering the groove. Figure 
23 displays the modeling results after 800 revolutions, where the lower gap aligns with 
the skirt region, providing a more substantial oil source from the lower gap and, thus, 
greater oil accumulation in the groove. Once the lower gap passes the skirt region, the oil 
accumulation in the groove decreases as the oil disperses and drains out through the drain 
holes, as illustrated in Figure 24. 

In the experiments, the oil distribution could only be observed through the observa-
tion window. For comparison between experimental and modeling results, the oil accu-
mulation at the center of the skirt was analyzed. Figure 25 provides an illustration and an 
example photo, showing the location of each component of the TPOCR. In the figure, the 
brighter regions represent lubricating oil, while the black areas indicate empty space. The 
picture was taken at a 76° CA intake stroke where the inertial force changed direction. 

Figure 22. Oil accumulation in the oil control ring groove after 300 engine revolutions.

Figure 22 shows oil distribution in the groove after 300 engine revolutions, where
the lower gap is outside the skirt region, resulting in minimal oil entering the groove.
Figure 23 displays the modeling results after 800 revolutions, where the lower gap aligns
with the skirt region, providing a more substantial oil source from the lower gap and, thus,
greater oil accumulation in the groove. Once the lower gap passes the skirt region, the oil
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accumulation in the groove decreases as the oil disperses and drains out through the drain
holes, as illustrated in Figure 24.
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Figure 24. Oil accumulation in the oil control ring groove after 1300 engine revolutions.

In the experiments, the oil distribution could only be observed through the observation
window. For comparison between experimental and modeling results, the oil accumulation
at the center of the skirt was analyzed. Figure 25 provides an illustration and an example
photo, showing the location of each component of the TPOCR. In the figure, the brighter
regions represent lubricating oil, while the black areas indicate empty space. The picture
was taken at a 76◦ CA intake stroke where the inertial force changed direction. Thus, it
represents an accumulated effect of the upward inertial force that pushed the oil leveled
inside the groove to the upper flank. Since the 2D-LIF technique only allows for observation
at a shallow depth behind the window, with the oil level flat, it can be used to represent the
oil accumulation in the whole volume. Based on that, a computer vision tool was applied
to detect the brightness in the videos and quantify the oil accumulation level. Detailed
information about this method has been discussed in previous studies [9]. Although there
is no linear relationship between oil accumulation and brightness, this method serves as
the best estimation to quantitatively compare the oil accumulation inside the groove.

Since the exact amount of oil cannot be measured directly, computer vision techniques
were employed to quantify the oil volume. Brightness was used as a proxy for the amount
of oil in the oil control ring groove.

Figure 26 shows a result from the experiment conducted at 2000 RPM under low load
conditions, where the effect of gas flow is minimal. As the oil control ring rotates, the
oil source from the lower gap also rotates. The region adjacent to the lower gap tends
to accumulate more oil, resulting in less oil in the remaining regions. Experimentally,
it was observed that when the lower gap is within the observation window, local oil
accumulation increases, as reflected by a rise in intensity increase, with about 80% to 90%
of the oil control ring groove filled with oil. Once the lower gap moves past the observation
window, the oil accumulation level recovers as well as the measured brightness intensity,
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and approximately 50% of the oil control ring groove is filled with oil. Based on these
observations, the boundary condition at the drain hole is assumed to be the same oil
occupation observed in the experiment when the lower rail gap is away.
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Figure 26. Experimental observation of oil accumulation.

To compare experimental and modeling results, Figure 27 presents the modeling result
of oil accumulation at the center (180 degrees). The observed pattern closely matches the
experimental findings, demonstrating that the model accurately represents oil distribution
in the groove with adequate boundary conditions. Although the boundary condition was
adjusted to align with the experimental setup, this insight can guide the development of
accurate boundary conditions for the drain hole in future studies.
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5. Parametric Study

The oil distribution model was applied to simulate various scenarios, including the
oil film thickness, the engine speed, the oil viscosity, and the number and arrangement
of drain holes. The maximum oil accumulation in the groove was used as the metric for
analyzing oil accumulation, as it directly influences the extent of oil leakage through the oil
control ring.

5.1. Comparison of Different Oil Film Thickness

The oil film thickness determines the amount of oil flowing into the groove through
the lower rail gap during the engine’s downstroke. The oil inflow rate can be estimated
using the following equation:

Qoil =
h·wgap·Lstroke·E

60

where Qoil is the oil inflow rate, h is the oil film thickness, wgap is the gap width (0.377 mm),
Lstroke is the stroke length (88 mm), and E represents engine speed (2000 RPM). This study
considers four drain holes, with the arrangement as shown in Figure 22. The results reveal
that a thicker oil film on the liner allows more oil to flow into the groove, leading to greater
oil accumulation. The highest oil accumulation occurred between revolutions 750 to 1000,
1750 to 2000, and 2750 to 3000, corresponding to when the lower gap enters the skirt region.
Figure 28 presents these results.
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5.2. Comparison of Different Engine Speeds

Figure 29 illustrates the effect of engine speed on oil accumulation, with the oil film
thickness set at 20 µm. The results demonstrate that as the engine speed increases, less oil
accumulates in the groove.
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5.3. Comparison of Different Number of Drain Holes

There is currently limited research on the arrangement of drain holes. This section
examines the impact of varying numbers and configurations of drain holes. To explore the
effect of the number of drain holes on oil accumulation, scenarios with 1, 2, 4, and 6 drain
holes were compared. In all cases, the drain holes were placed on the pin side, which is
the most common configuration. Figure 30 shows the placement of the drain holes. The
modeling results, depicted in Figure 31, indicate that the number of drain holes significantly
affects oil accumulation. As the number of drain holes increases, oil accumulation in the
groove decreases. This occurs because, under low load conditions, inertial forces are the
primary mechanism driving oil out of the groove. With more drain holes, additional exit
paths are provided for the oil, thereby reducing oil accumulation.
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5.4. Comparison of Different Four-Drain-Hole Arrangements

This section compares two distinct four-drain-hole arrangements, as shown in
Figure 32. The first design, which is the most common, places the drain holes near the
skirt edge, while the second design distributes them uniformly along the pin side. The
results, presented in Figure 33, show that oil accumulation is lower when the drain holes
are located near the skirt edge. This is based on the assumption that oil accumulation in the
groove remains constant. Additionally, since the primary oil source comes from the skirt
region, placing the drain holes near the skirt edge restricts oil flow to that area. In contrast,
when the drain holes are uniformly distributed along the pin side, the oil spreads over a
wider area, allowing more space for accumulation.
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5.5. Comparison of Different Viscosity

To evaluate the effect of oil viscosity, three different viscosities were compared:
0.0008 kg

m·s , 0.0036 kg
m·s , and 0.016 kg

m·s . The results, shown in Figure 34, demonstrate that oil
accumulation increases with higher viscosity and decreases with lower viscosity. Higher
viscosity oils spread more slowly along the groove, leading to greater accumulation.

Lubricants 2024, 12, x FOR PEER REVIEW 19 of 23 
 

 
Figure 33. Effect of drain hole arrangement on oil accumulation. 

5.5. Comparison of Different Viscosity 
To evaluate the effect of oil viscosity, three different viscosities were compared: 

0.0008 ୩୫∙ୱ, 0.0036 ୩୫∙ୱ, and 0.016 ୩୫∙ୱ. The results, shown in Figure 34, demonstrate that oil 
accumulation increases with higher viscosity and decreases with lower viscosity. Higher 
viscosity oils spread more slowly along the groove, leading to greater accumulation. 

 
Figure 34. Effect of viscosity on oil accumulation. 

5.6. Comparison of Different Rotation Speeds 
In this section, various ring rotation speeds were tested to evaluate their effect on oil 

accumulation. The ring rotation speed is defined as the number of engine revolutions re-
quired for the oil control ring to complete one full rotation. Five different rotation speeds 
were considered, ranging from 2500 revolutions/rotations to 30,000 revolutions/rotations. 
Since the simulation involved 3000 engine revolutions, the case of 30,000 revolutions/ro-
tation represents a stationary ring. As shown in Figure 35, the oil accumulation remains 
at a constant level in this scenario, where the inflow and outflow are balanced. In contrast, 
when the ring rotation speed is set to 2500 revolutions/rotation, two and a half peaks were 
observed. This is because, in this case, the lower gap starts from the position at 180 de-
grees, and as the ring completes one rotation, the lower gap enters the skirt region twice, 
resulting in higher oil accumulation. 

Figure 34. Effect of viscosity on oil accumulation.



Lubricants 2024, 12, 394 19 of 22

5.6. Comparison of Different Rotation Speeds

In this section, various ring rotation speeds were tested to evaluate their effect on oil ac-
cumulation. The ring rotation speed is defined as the number of engine revolutions required
for the oil control ring to complete one full rotation. Five different rotation speeds were
considered, ranging from 2500 revolutions/rotations to 30,000 revolutions/rotations. Since
the simulation involved 3000 engine revolutions, the case of 30,000 revolutions/rotation
represents a stationary ring. As shown in Figure 35, the oil accumulation remains at a
constant level in this scenario, where the inflow and outflow are balanced. In contrast,
when the ring rotation speed is set to 2500 revolutions/rotation, two and a half peaks were
observed. This is because, in this case, the lower gap starts from the position at 180 degrees,
and as the ring completes one rotation, the lower gap enters the skirt region twice, resulting
in higher oil accumulation.
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5.7. Comparison of Different Amounts of Oil in the Drain Holes

The drain holes are assumed to contain a constant amount of oil, as previously ob-
served from the experimental results. Simulations were conducted with varying amounts
of oil in the drain holes to understand how this affects oil accumulation in the groove.
Since the drain hole is the only exit in this model, if a specific amount of oil is applied, that
condition sets the minimum oil accumulation level in the groove, as shown in Figure 36.
It was also observed that when a larger amount of oil (80%) is present in the groove, the
peak accumulation is smaller, indicating faster oil spreading, leading to a more uniform oil
layer. In contrast, when the oil amount in the drain hole is lower (5%), the peak accumula-
tion is higher, suggesting slower oil spreading and an increased likelihood of forming oil
concentration in the groove. However, these observations assume that the amount of oil in
the drain holes remains constant. Further simulations are necessary to accurately model
oil transport through the drain holes and develop a more realistic representation of the
drain hole.
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6. Conclusions

This work introduced a novel one-dimensional oil distribution model for predicting
oil accumulation in the TPOCR groove. The model effectively simulates oil distribution
over several thousand engine revolutions, providing insights into oil behavior in the
groove that would be computationally prohibitive to achieve with CFD simulations. By
segmenting the TPOCR into units and leveraging CFD-derived correlations, the model
captures inertia-driven oil transport along the groove.

The key findings from this research include the following:

1. Model Efficiency: The model computes oil distribution for 10,000 engine revolu-
tions within seconds. This rapid computation allows for the quick evaluation of oil
distribution under varying conditions and facilitates an iterative design process.

2. Accurate Prediction: Comparisons with CFD simulations demonstrate the model’s
ability to replicate observed oil distribution in the oil control ring groove with an
assumption of a fixed oil volume at the drain holes.

3. Experimental Validation: The model was partially validated against experiments
conducted under low load conditions at 2000 RPM. It was shown that with a proper
oil exit boundary condition at the drain holes, the calculated oil accumulation patterns
can match the observation accurately. As such, our future work will engage further
fluid analysis and CFD to derive the boundary condition based on physics.

4. Parametric Study: The effects of oil film thickness, engine speed, and the arrangement
of drain holes on oil accumulation were examined. A thicker oil film leads to higher
oil accumulation. At higher engine speeds, less oil accumulates in the groove. Ad-
ditionally, oil accumulation decreases as the number of drain holes increases. The
arrangement of drain holes also influences oil accumulation, with placement closer
to the skirt helping to reduce oil accumulation in the groove. Oil viscosity also has a
significant impact, with higher viscosity leading to increased oil accumulation.

In conclusion, the one-dimensional oil distribution model developed in this study
provides a tool for analyzing and predicting oil distribution in the TPOCR groove. The
model’s efficiency and accuracy in simulating long-term oil distribution offer essential
insights for optimizing TPOCR designs and enhancing engine lubrication strategies. Future
improvements should focus on incorporating more realistic boundary conditions for drain
holes and gaps. Additionally, integrating the effects of gas flow into the model could further
enhance its applicability to real-world scenarios. Lastly, while the oil distribution model
predicts oil distribution along the groove, the TPOCR models, such as the ones developed
by Zhang and Tian [14,15], capture ring dynamics and oil transport within contact regions.
Combining these models is expected to provide a more comprehensive understanding of
oil transport mechanisms.
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Nomenclature

2D-LIF 2D Laser Induced Fluorescence
BDC Bottom Dead Center
CAE Computer Aided Engineering
CFD Computational Fluid Dynamics
FEA Finite Element Analysis
FPGA Field-Programmable Gate Array
LOC Lubricating Oil Consumption
TDC Top Dead Center
TPOCR Three-piece oil control ring
d f lank Depth of flank
E Engine speed
h Oil film thickness
i Unit number
Lstroke Stroke length
n Current time step
O Oil outflow rate
µ Oil viscosity
ρ Oil viscosity
V Oil volume
wgap Lower gap width
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