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Abstract: The present study focuses on investigating the influence of oil and solid body temperatures
on elastohydrodynamic lubrication (EHL) film formation. Experimental and numerical simulation
methods are employed to examine three heating methods: oil and ball heating, disc heating, and entire
system heating. A preliminary comparison between the measured results and numerical simulations
confirms the impact of heating methods on film formation while validating the availability of the
numerical models. Further numerical analysis reveals that in the case of oil and ball heating, the
temperature gradient induced by differences in solid body temperatures plays a more significant role
in film formation compared to the conventional thermal-viscosity wedge effect caused by EHL film
shear. This effect is further amplified at large sliding–rolling ratios and in steel–steel contacts. The
overall film formation is primarily governed by the oil inlet temperature, whereas local film formation
characterized by a dimple shape is influenced by both thermal gradient effects and thermal-viscosity
wedge effects. This study provides valuable insights for selecting appropriate heating methods
in experiments as well as understanding how temperature differences affect film formation in
practical engineering.
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1. Introduction

The concentrated contacts encountered in mechanical components such as rolling
bearings, cam-followers, and gears commonly operate under rolling–sliding conditions
and within the regime of elastohydrodynamic lubrication (EHL). In EHL contacts, the
lubricating films experience both high normal pressure and high tangential shear rate.
The high normal pressure leads to an exponential increase in lubricant viscosity and
surface deformation, thereby providing both travel time and accommodation space for
the lubricant. The combination of high viscosity and high shear rate results in an increase
in viscous friction, which serves as one of the primary sources of heat generation within
the lubrication system. Other sources contributing to heat generation, e.g., in high-speed
rolling bearings, include the inlet reverse flow, lubricant churning in bearing cavities, as
well as friction between rolling element cages. The generated heat propagates through the
bearings, inducing alterations in the temperature field, thereby exerting an influence on the
overall performance of rolling bearings [1], the limiting speed [2], and even their service
life [3]. Therefore, the measurement of temperature rise has been widely adopted as an
important parameter in bearing tests for evaluating lubrication properties [4,5] and serves
as a failure criterion for lubricants or rolling bearings [6,7].

The temperature feedback resulting from heat generation and dissipation in the overall
system leads to a decrease in lubrication viscosity, thereby weakening the film formation
ability and influencing the rheological properties of the EHL films. To investigate the
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impact of temperature on film formation and the rheological behaviors of EHL films
under thermal effects, numerous model tests and numerical simulations were conducted
using ball-on-disc or twin disc configurations [8–11]. In the majority of studies, it is
commonly assumed that the entire system reaches a state of equilibrium, i.e., the ambient
temperatures of the glass disk, steel ball, and lubricant are equal. In experimental tests, the
steel ball was typically immersed in heated oil [10,12] or the heated oil was injected into
the contact pairs, facilitating the measurement of the film thickness or friction coefficient at
different temperatures [13,14]. Essentially, given the contact geometry, speed, load, and
with an adequate lubricant supply, the film formation is primarily determined by the inlet
lubricant viscosity, which is a function of the ambient temperature [15]. Once entering the
highly pressured contacts, the lubricant exhibits non-Newtonian behaviors such as shear
thinning [16] and thermal thinning [17]. By employing optical interferometry, the thermal-
effect-induced abnormal film feature known as the dimple was visualized under conditions
of a large sliding–rolling ratio (SRR) [18–20]. The thermal thinning effect leads to a decrease
in the friction coefficient, particularly at high loads, as the SRR increases [11,12,14,21].

In numerical simulations, extensive investigations have been conducted on the film
thickness, pressure, and temperature distributions, as well as the friction coefficient in
thermoelastohydrodynamic lubrication (TEHL) contacts [9,22–25]. The occurrence of dim-
ples in TEHL contacts was also observed [20,26,27], and the factors governing the size and
locations of these dimples were identified [18–20,28]. Remarkable dimples can be formed
under high-SRR conditions, such as during simple disc sliding or even when there is an
opposite motion between contact surfaces [20,27,29]. Although these kinematic conditions
may not be common in practical scenarios, they do provide evidence for the existence of
thermal effects and their corresponding influence on EHL formation. Recently, an infrared
microscopy technique has been developed to accurately map temperature distributions on
both bounding surfaces and throughout the thickness of EHL films [29–31].

The dimple phenomena were interpreted using an acceptable thermal-viscosity wedge
effect [26], based on both numerical simulations [20,27,29] and experimental observa-
tions [18,19,28]. According to this phenomenon, the thermal conductivity of bounding
surfaces plays a crucial role in determining dimple formation [32]. Consequently, it induces
a temperature difference between the two bounding surfaces, resulting in the establish-
ment of a viscosity gradient across the lubrication film. This implies that both TEHL
behaviors [33–35] and film traction [14,32] are influenced by the solid body temperature.
In fact, during model tests or practical engineering applications, the utilization of the
asymmetry heating method or asymmetry heating transfer process can result in significant
temperature differences between bounding surfaces. In principle, if these temperature
differences align with the establishment of a thermal-viscosity wedge effect, it will enhance
this effect; conversely, it will weaken the effect in the opposite case. The aim of this re-
search is thus to validate whether these assumptions are true through model tests and
numerical simulations.

The term ‘asymmetry heating method’ used in this study refers to a heating method
that differs from the conventional system-wide heating method, where the temperatures
of both the lubricant at the inlet zone and bounding surfaces are at equal. The heating
methods are described in the next section. The impact of heating methods on the EHL
film formation is experimentally observed. Extensive numerical simulations are conducted
to compare the influence of the temperature difference induced by heating methods on
the thermal-viscosity wedge effect and consequently the film formation. This study helps
in the comprehension of the combined impact of bounding surface temperature and the
thermal-viscosity wedge effect on film formation, as well as aids in selecting an appropriate
heating method in tests.

2. Test Apparatus and Heating Methods

Experimental investigations were conducted using an optical EHL film test apparatus
featuring a ball-on-disc configuration, as illustrated in Figure 1. The steel ball is loaded
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against a glass disc with a chromium-coated layer on the contact side. The glass disc
and steel ball are independently driven by the servo motor, enabling the attainment of
different entrainment velocities and SRRs. A dual-beam laser light source that compresses
red and green colors is incident on the contact point, forming a colorful interferogram. The
magnified image through the microscope is captured by a Charge-Coupled Device (CCD)
and stored on a computer for subsequent analysis. The film thickness and profile can be
reconstructed utilizing dedicated software DIIM-2015 [36].
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Figure 1. Schematic diagram of test apparatus and heating methods. (a) Oil and ball heating, (b) glass
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The heating approach depicted in Figure 1a involves immersing a steel ball partially
in a small oil container, with a heating rod inserted. As a result of thermal conduction,
both the oil and the immersed portion of the steel ball are heated. It is important to
note that this experimental setup lacks isolation from its surroundings, resulting in the
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glass disc being exposed to room temperature controlled by air conditions. Consequently,
this method results in higher temperatures on the surface of the ball compared to that
of the glass surface. The temperature is measured and regulated using a thermal sensor,
ensuring the maintenance of the desired oil temperature. The thermal sensor is positioned
perpendicularly to the heating rod, which is visually indicated as a red dot in Figure 1a.
The tailored heating wire is positioned on the top glass surface in Figure 1b, with a small
window reserved for the microscope lens. A cover is utilized to minimize heat dissipation
to the surroundings. This approach eliminates the need for heating components in oil,
resulting in a higher temperature of the glass surface than that of the ball surface. To ensure
uniform heating, the glass disc should rotate at a low speed during the heating process.
By combining the heating approaches depicted in Figure 1a,b, along with the utilization
of a large insulating cover, the entire system can be uniformly heated. In this heating
method, two thermal sensors are employed to measure temperatures of both the disc and
oil separately. It is anticipated that the glass disc, steel ball, and oil will attain an equal
temperature. The heating methods illustrated in Figure 1a,b are referred to as asymmetrical
heating methods, while the method shown in Figure 1c represents a symmetrical heating
method. Prior to each experiment, preheating is conducted until the desired temperature
is achieved.

The temperature range in the tests spans from t0 = 25 ◦C to 75 ◦C. The lubricant
used is FVA3, and its properties are listed in Table 1. Viscosity measurements of FVA3
are conducted at different temperatures using a rheometer (Anton Paar, MCR 302), and
the resulting data are presented in Figure 2. The viscosities at t0 = 25 ◦C, 50 ◦C, and
75 ◦C are η0 = 0.2 Pa·s, 0.05 Pa·s, and 0.0175 Pa·s, respectively. The SRR is defined as
SRR = (ud − ub)/ue, where ue = (ud + ub)/2 represents the entrainment speed.

Table 1. Properties of FVA 3.

Parameters Specification

Density at 22 ◦C, ρ0, kg/m3 875
Viscosity at 22 ◦C, η0, Pa·s 0.23

Specific heat of lubricant, c, J/kg·K 2000
Thermal conductivity of lubricant, k, W/m·K 0.14
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3. Numerical Model and Governing Equations

The numerical model used in the simulations is depicted in Figure 3. The velocities
of the steel ball and glass disc are represented as ub and ud, respectively. The calculated
domain is from xin to xout. At x = xin, the temperatures of steel and glass are tb and
td, respectively, while the inlet oil temperature is denoted as t0. The parameters for the
lubricant and the contact pair can be found in Table 2.
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Table 2. Parameters of the lubricant and contact pair.

Parameters Specification

Specific heat of oil, c, J/kg·K 2000
Density of oil, ρ, kg/m3 875

Thermal conductivity of oil, k, W/m·K 0.14
Effective modulus of steel–glass contact, E’, GPa 123.9

Specific heat of glass, cd, J/kg·K 840
Specific heat of steel, cb, J/kg·K 470

Density of glass, ρd, kg/m3 2500
Density of steel, ρb, kg/m3 7850

Thermal conductivity of glass, kd, W/m·K 0.84
Thermal conductivity of steel, kb, W/m·K 46

3.1. Temperature-Governing Equations
Using the coordinates established in Figure 3 and neglecting the thermal conduction

terms in x and y directions, the energy equation of EHL films can be written as
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where Φ is the heat dissipation item, which can be expressed as ϕ = η∗
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∂u
∂z
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The energy equations for the glass disc and steel ball can be written ascbρbub
∂t
∂x = kb

∂2t
∂z2

b

cdρdud
∂t
∂x = kd
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∂z2

d

(2)

where zb and zd lie along the z-axis direction.
On the two oil–solid interfaces, the heat flux continuity must be satisfied as
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d

∣∣∣
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= k ∂t
∂z

∣∣∣
z=0

kb
∂2t
∂z2

b

∣∣∣
zb=0

= k ∂t
∂z

∣∣∣
z=h

(3)

The lubricant boundary condition is

t(xin, y, z) = t0(uin ≥ 0) (4)

where uin represents the inlet velocity of oil. In the case of uin < 0, indicating a reverse flow region
and other boundaries, no boundary condition is required.

The boundary conditions of the glass disc and steel ball are written as{
t(xin, y, zd) = td, t(xin, y,−d) = td
t(xin, y, zb) = tb, t(xin, y, d) = tb

(5)

where d is the temperature domain of the glass disc and steel ball, in which the temperature changes
across its thickness. The thickness of d is d = 3a, where a is the Hertz contact radius.



Lubricants 2024, 12, 28 6 of 16

3.2. Non-Newtonian Rheological Model
The Eyring rheological model is used and can be expressed as [37]

η = η0

ln

(
η0

.
γ

τ0
+

√(
η0

.
γ

τ0

)2
+ 1

)
η0

.
γ

τ0

(6)

where η0 is the ambient viscosity of the lubricant, τ0 is the Eyring shear stress, and τ0 = 10 MPa.
The remaining equations, including the generalized Reynolds equation, film thickness equation,

density relation, viscosity relation, and loading balance, are consistent with those found in the
literature [37] and are not listed here.

3.3. Numerical Solutions
The numerical solution is obtained through an iterative process involving the pressure and

temperature fields. The multi-grid method is employed to solve the pressure, while the surface elastic
deformation caused by pressure is addressed using the multi-grid integration method. Additionally,
the energy equation is solved using a column scanning approach. Given that the contact region
exhibits symmetry about the X-axis, a semi-domain solution is adopted for numerical calculations.

4. Results and Discussion
4.1. Comparisons of Test Results and Simulations

The experimental interferograms and numerical pseudo-interferograms under three heating
methods are presented in Figure 4. For each heating method, the left color images represent the
experimental results, while the black and white images on the right side depict the numerical
simulation results. In all three cases, a nominal temperature of 75 ◦C is applied when heating the oil,
glass disc, or steel ball; otherwise, a nominal temperature of 25 ◦C is maintained.
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From the images in Figure 4, it is evident that as the entrainment velocity increases, the contacts
exhibit typical horseshoe EHL features. In the case of the oil and steel ball heating method (Figure 4a),
a slight dimple is observed near the outlet constriction at a speed of ue = 2048 mm/s in the experi-
mental image. On the right side of the numerical image, the dimple appears at ue = 1024 mm/s and
becomes more pronounced with increasing speed. Moreover, when the speed exceeds 1024 mm/s, an
incipient large dimple forms at the center of the contact. Both experimental and numerical images
show noticeable dimples at elevated speeds for the disc heating method. Conversely, no dimples
are observed for the entire system heating method and the numerical images closely match the
experimental results. The appearance of dimples indicates that the thermal-viscosity wedge plays a
role in local film formation.

The central film thickness of experimental measurements and numerical simulations is quanti-
tatively compared in Figure 5. Overall, the measured film thicknesses (the blue symbols are error bar)
are higher than those predicted numerically in all three cases. This discrepancy can be attributed to
the instability of temperature control during the tests. Due to heat dissipation to the surroundings, the
experimental temperatures are actually lower than nominal temperatures, causing a higher viscosity
and consequently thicker film thickness. The film thicknesses measured in Figure 5a,b approach the
numerical values at higher speeds. This observation may be attributed to the occurrence of starvation
due to high centrifugal force, despite the oil–air boundary at the inlet not being within the field of view.
Disc heating leads to more significant heat dissipation, resulting in considerably higher measured
film thicknesses even at elevated speeds. Throughout the tests, disc temperature was continuously
monitored and recorded. The actual temperatures corresponding to different speeds are presented in
Table 3. It is evident that as the speed increases, there is a substantial decrease in actual temperature.
This could potentially be due to incomplete closure of the ball and oil tank sides by a cover, allowing
air churning at high speeds which accelerates airflow and enhances heat dissipation. By utilizing the
viscosities listed in Table 3 as input parameters, the predicted film thicknesses (represented by the
green curve in Figure 5b) approach those obtained through measurement.
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ing, t0 = tb = 75 °C, td = 25 °C; (b) glass disc heating, t0 = tb = 25 °C, td = 75 °C; (c) entire system heating, 
t0 = tb = td = 75 °C. 
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According to the classical Hamrock–Dowson formula [38], the group of (η0ue) plays 
a crucial role in film formation, where the inlet ambient viscosity η0 is a key factor to de-
termine the film thickness. It should be noted that in Figure 5a, despite the significantly 
lower η0 at 75 °C compared to Figure 5b at 25 °C (see Figure 3), the film thickness in Figure 
5a remains considerable and comparable between the two cases. The underlying mecha-
nism is further discussed in the subsequent text. The results in Figure 5 substantiate the 
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Figure 5. Comparisons of the central film thickness between experimental measurement and numerical
simulation under three heating methods, pH = 0.7 GPa, SRR = 0.5. (a) Oil and steel ball heating, t0 = tb = 75 ◦C,
td = 25 ◦C; (b) glass disc heating, t0 = tb = 25 ◦C, td = 75 ◦C; (c) entire system heating, t0 = tb = td = 75 ◦C.

Table 3. Measured temperature at different speeds.

Velocity (mm/s) 32 64 128 256 512 1024 1500 2048

Temperature of disc (◦C) 68 64 56 52 46 43 40 40

According to the classical Hamrock–Dowson formula [38], the group of (η0ue) plays a crucial
role in film formation, where the inlet ambient viscosity η0 is a key factor to determine the film
thickness. It should be noted that in Figure 5a, despite the significantly lower η0 at 75 ◦C compared to
Figure 5b at 25 ◦C (see Figure 3), the film thickness in Figure 5a remains considerable and comparable
between the two cases. The underlying mechanism is further discussed in the subsequent text. The
results in Figure 5 substantiate the applicability of the numerical model for predictions and lend
support to the subsequent analysis.

4.2. Numerical Simulation of Oil and Solid Body Temperatures on EHL Film Formation
To investigate the influence of oil and body temperatures on EHL films numerically, Figure 6

illustrates the variations in central film thickness with entrainment speed under different SRRs. The
temperatures of both the oil and contact bodies are set according to the experimental heating methods
employed. To facilitate comparisons between the curves under different conditions, the linear–linear
scale is employed instead of the log–log scale. In Figure 6a, where the oil and ball temperatures exceed
that of the disc surface, an artificial temperature gradient is induced across the oil film, consequently
resulting in a viscosity gradient as well. The term ‘temperature gradient’ is specifically employed in
subsequent analysis to differentiate it from the conventional thermal viscosity wedge mechanism that
occurs spontaneously due to oil shear, thereby describing the mechanism resulting from temperature
differences between the contacting bodies. It should be noted that this situation differs from the
thermal viscosity wedge mechanism, wherein the disc surface temperature is higher than that of the
ball surface. The external imposed temperature gradient acts as a counteractive mechanism against
the thermal effect generated by the film itself, even becoming the dominant factor governing film
formation. The higher the SRR, particularly at elevated speeds, the higher the overall film thickness.
This is attributed to thick oil being entrained into the contacts by the disc surface due to its lower
temperature while thin oil is entrained by the hot ball surface. According to the definition of the
SRR, a larger value indicates a faster disc surface speed and greater entrainment of thick oil into the
contacts, thus contributing significantly to film formation. Furthermore, the oil temperature in this
case is obviously higher than that depicted in Figure 6b, resulting in a much lower inlet viscosity. This
unfavorable condition inhibits the establishment of an EHL film, which emphasizes the profound
influence of the external temperature gradient on film formation.
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Figure 6. Effect of oil and temperatures on film thickness under different SRRs, pH = 0.7 GPa. (a) Oil
and steel ball heating, t0 = tb = 75 ◦C, td = 25 ◦C; (b) glass disc heating, t0 = tb = 25 ◦C, td = 75 ◦C;
(c) entire system heating, t0 = tb = td = 75 ◦C.

In Figure 6b, it is evident that a lower oil temperature enables a higher inlet oil viscosity,
which dominates the overall establishment of film thickness. Despite the imposition of an external
temperature gradient and alignment with the conventional thermal-viscosity wedge mechanism,
where the temperature of the glass disc surface is higher, no obvious differences are recognized
among the curves at the three SRRs. This can be mainly attributed to the lower ball speed than that
of the glass surface at SRR = 0.3 and SRR = 0.5, with even lower speeds associated with higher SRR
values. The reduced ball speed weakens the entrainment effect of thick oil into contacts, thereby
reducing the significance of the thermal-viscosity wedge effect.

In the case of Figure 6c, a significant reduction in film thickness is observed due to the low
viscosity of the inlet oil and the absence of an external temperature gradient. Only a regular thermal-
viscosity wedge effect induced by in-contact shear is generated. This results in a higher oil viscosity
near the steel surface but lower viscosity near the glass surface. This thermal-viscosity wedge effect
is further enhanced by a higher SRR, thereby contributing to film formation to some extent.

To comprehensively investigate the influence of the inlet oil temperature and temperature
difference on film formation, Figure 7 further compares the film thickness under three heating
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methods. It is evident that regardless of oil and ball heating, disc heating, or entire system heating,
the overall film thickness significantly decreases compared to the case where t0 = tb = td = 25 ◦C.
In Figure 7a, under a fixed disc temperature of 25 ◦C, the temperatures of the oil and steel ball
increase. The observed variations in curves depend on the inlet ambient viscosity determined
by the oil temperature. However, in Figure 7c under similar inlet ambient viscosities, there is a
sharp reduction in film thickness to lower magnitudes. This confirms the effect of the temperature
gradient on countering the decrease in film thickness induced by oil heating. Furthermore, increasing
temperature differences will enhance this gradient effect and slow down the reduction in film
thickness. In Figure 7b, both inlet ambient viscosity and heat transfer from the disc primarily
determine the film thickness, since the impact of the temperature gradient effect is less significant, as
shown in Figure 6b.
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Figure 7. Heating methods on film thickness under different SRR = 0.5, pH = 0.7 GPa. (a) Oil and
steel ball heating, (b) glass disc heating, (c) entire system heating.

In the above analysis, the nominal inlet ambient viscosity is used to describe its contribution
to film formation. In fact, the actual inlet ambient is different from the nominal one due to the heat
transfer to the oil. To observe the temperature distributions at the inlet region and in the contacts,
Figure 8 illustrates the temperature profiles in the middle layer of the film on the Y = 0 section. Three
distinct entrainment speeds are chosen to represent low, moderate, and high velocities. Again, three
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heating methods and three SRRs are employed. Prior to oil entrainment into the contact region,
variations in temperature along the X direction differ depending on the heating method employed.
In Figure 8a, a decreasing trend followed by an increasing trend is observed due to higher oil
temperatures compared to those of the disc surface. Heat transfer occurs from the oil to the disc body
until reaching a final equilibrium state. With increasing speed, there is a shift in position towards
the contact region for the location of minimal temperature. The opposite temperature variations
observed in Figure 8b can be attributed to the reverse heat transfer occurring from the disc to the
oil. In Figure 8c, a constant oil temperature is maintained due to the absence of any heat exchange
between the oil and solid surfaces. Since the inlet ambient viscosity determines the film formation
and the pressure begins to establish in the inlet convergent gap, the actual oil temperatures are listed
in Table 4 to show the influence of heat transfer. It can be seen that in the case of t0 = tb = 75 ◦C and
td = 25 ◦C, the oil temperature ranges from 55.39 ◦C to 69.60 ◦C for all speeds, which is lower than
the nominal temperature of 75 ◦C due to the heat transfer to the disc surface. From Figure 3, it is
evident that viscosity decreases within the range of 55.39 ◦C to 75 ◦C, with corresponding values
ranging from 37.5 mPa·s to 15 mPa·s. When t0 = tb = 25 ◦C and td = 75 ◦C, the oil temperature ranges
from 33.05 ◦C to 45.69 ◦C, with the corresponding viscosity ranging from 125 mPa·s to 75 mPa·s,
which is much higher compared to the case of t0 = tb = 75 ◦C and td = 25 °C, but a similar film
thickness magnitude as the case of t0 = tb = 75 ◦C and td = 25 ◦C is maintained. This confirms that
the temperature gradient effect plays crucial a role in establishing the film thickness in the case of oil
and ball heating. No obvious temperature change is found in the case of entire system heating, where
the low ambient viscosity results in a low film thickness.
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Figure 8. Profiles of temperature in the middle layer of the film on Y = 0 section at three speeds 
under different SRRs, pH = 0.7 GPa. (a) Oil and steel ball heating, t0 = tb = 75 °C, td = 25 °C; (b) glass 
disc heating, t0 = tb = 25 °C, td = 75 °C; (c) entire system heating, t0 = tb = td = 75 °C. 

  

Figure 8. Profiles of temperature in the middle layer of the film on Y = 0 section at three speeds under
different SRRs, pH = 0.7 GPa. (a) Oil and steel ball heating, t0 = tb = 75 ◦C, td = 25 ◦C; (b) glass disc
heating, t0 = tb = 25 ◦C, td = 75 ◦C; (c) entire system heating, t0 = tb = td = 75 ◦C.
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Table 4. Oil temperatures at inlet region, SRR = 0.5.

Nominal Temperature
Conditions (◦C) @ Speed

Actual Oil
Temperature (◦C)

@ X = −3.0

Actual Oil
Temperature (◦C)

@ X = −1.5

Actual Oil
Temperature (◦C)

@ X = −1.0

t0 = tb = 75, td = 25
@ ue = 32 mm/s 57.29 67.10 69.60

t0 = tb = 75, td = 25
@ ue = 256 mm/s 55.39 62.77 68.99

t0 = tb = 75, td = 25
@ ue = 1750 mm/s 68.49 59.79 66.43

t0 = tb = 25, td = 75
@ ue = 32 mm/s 42.94 33.05 30.58

t0 = tb = 25, td = 75
@ ue = 256 mm/s 45.69 37.93 32.37

t0 = tb = 25, td = 75
@ ue = 1750 mm/s 41.42 44.51 41.95

t0 = tb = td = 75
@ ue = 32 mm/s 75.00 75.00 75.00

t0 = tb = td = 75
@ ue = 256 mm/s 75.00 75.02 75.09

t0 = tb = td = 75
@ ue = 1750 mm/s 75.11 75.45 76.27

After the oil enters the contacts, it becomes evident that the overall temperature of the oil
film increases with both entrainment speed and SRR. At SRR = 0, where no shear is imposed on
the film, the temperature remains relatively constant except in cases involving glass disc heating
(ue = 1750 mm/s). In Figure 7b, at ue = 1750 mm/s, the decrease in temperature can be attributed to
the high thermal conductivity of steel and the limited time for heat transfer from the glass surface to
the oil. With a given speed, an increase in SRR leads to an enlargement of ∆u (the speed difference
between bounding surfaces), resulting in a rise in temperature. For instance, at SRR = 0.5, an increase
in entrainment speed also amplifies ∆u, as shown in Table 5, which contributes to an elevation
in temperature.

Table 5. Speeds and speed differences under different SRRs.

SRR ue (mm/s) ud (mm/s) ub (mm/s) ∆u (mm/s)

0 32 32 32 0
0 256 256 256 0
0 1750 1750 1750 0
0 2500 2500 2500 0

0.3 32 36.8 27.2 9.6
0.3 256 294.4 217.6 76.8
0.3 1750 2012.5 1487.5 525
0.3 2500 2875 2125 750
0.5 32 40 24 16
0.5 256 320 192 128
0.5 1750 2187.5 1312.5 875
0.5 2500 3125 1875 1250

In the above observations and discussions, the thermal-viscosity wedge effect induced by
in-contact shear is not prominently observed, due to the relatively small value of the SRR, which
is also evident from Figure 4 where only a slight dimple appears. To investigate the influence
of the thermal-viscosity wedge effect on film formation, Figure 9 presents the film thickness at
SRR = 1.0 under three heating methods, with the corresponding results at SRR = 0.5 indicated by
dashed lines. It is observed that when employing an entire system heating approach that mainly
relies on a pure thermal-viscosity wedge effect, the resulting film thickness exceeds that obtained
at SRR = 0.5. This suggests that higher values of SRR enhance the thermal-viscosity wedge effect.
However, when using disc heating, there is almost no change in film thickness as the SRR increases
from 0.5 to 1.0, indicating that a greater amount of thin lubricant is entrained into the contacts by
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the disc to counterbalance any positive effects arising from thermal viscosity wedging. In contrast,
a larger value of SRR leads to a significant increase in film thickness as a greater amount of thick
lubricant is drawn into contact with the low-temperature discs.
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Figure 9. Variations in film thickness with speed at different oil and solid temperatures, pH = 0.7 GPa,
SRR = 1.0.

Figure 10 illustrates the profiles of oil temperature and the corresponding film at SRR = 1.0.
Similar trends are observed as in Figure 8, where the temperature increases in the contacts with
speed due to the increase in ∆u. At low speed (ue = 32 mm/s), film thickness corresponds to inlet oil
temperature; lower inlet temperatures result in higher film thicknesses. As the speed increases to
ue = 1024 mm/s, the entire system heating method yields the lowest film thickness due to the highest
inlet temperature. Although the disc heating method has the lowest inlet temperature, its film
thickness is similar to that of the oil and ball heating method. Furthermore, for the entire system
heating case, the film profile cannot maintain a parallel shape, as seen at ue = 32 mm/s, but presents
a concave shape instead. In the case of oil and ball heating, an obvious central dimple shape forms
due to the external thermal gradient effect. At elevated speeds (ue = 2500 mm/s), the central dimple
shape becomes more pronounced for the entire system heating case, indicating an enhancement
in the thermal-wedge effect. Despite possessing higher inlet temperatures than the disc heating
method, oil and ball heating produces the highest film thickness with a remarkable dimple, indicating
a significant temperature gradient effect.
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In practical applications, steel is the predominant material used for mechanical components
such as rolling bearings. If the contact body made of glass material is replaced with steel and uses
the corresponding steel parameters (Cd = 470 J/kg·K, ρd = 7850 kg/m3, and E′ = 226 GPa), Figure 11
illustrates the variations in film thickness with speed under the same conditions shown in Figure 9. It
is evident that when oil and ball heating occur, there is a significant increase in film thickness to high
values, indicating a more pronounced temperature gradient effect. Similarly, an obvious increase in
film thickness is observed in the disc heating case, suggesting that the temperature gradient effect
also plays an important role in steel–steel contacts. However, when the entire system heats up, the
film thickness decreases due to more efficient heat dissipation and the absence of thermal-viscosity
edge formation. In practical engineering cases, temperature differences between contact surfaces
may commonly arise from various factors such as asymmetrical system cooling or other sources. The
findings demonstrate that the presence of a temperature difference, particularly when the cooler
surface moves faster, exerts an obvious influence on both film formation and subsequent lubrication
state, as well as rheological behaviors of EHL films.
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5. Conclusions
The motivation for this study originates from the ball-on-disc experimental observations, where

an oil and ball heating method was employed. It was discovered that the film thickness deviates from
the traditional linear distribution predicted by the Hamrock–Dowson equation. Further analysis
reveals that the temperature difference between the contact surfaces significantly influences these
results. This observation inspired us to design three different heating methods to investigate how
temperature differences affect film formation, with a subsequent comparison of test results against
numerical simulations. To gain deeper insights into the underlying mechanisms induced by the
temperature difference, extended numerical simulations were conducted under various oil and solid
body temperature conditions, while also considering the influence of SRR on the results. The main
conclusions are as follows:

(1) To investigate the impact of oil and body temperatures on film formation, three heating
methods were employed in both experiments and numerical simulations: oil and ball heating, disc
heating, and entire system heating. Overall, the measured film thicknesses were higher than those
obtained from numerical results due to heat transfer to the surroundings. Both cases demonstrate the
influence of heating methods on film formation as well as the validity of the numerical model.

(2) The numerical results demonstrate that in the case of oil and ball heating, the temperature
gradient induced by the temperature difference between the disc and ball plays a crucial role in film
formation, significantly surpassing the conventional thermal-viscosity wedge effect. This effect is
further enhanced at high SRR or in steel–steel contacts. However, when it comes to disc heating, the
temperature gradient is not prominent, due to the ineffective entrainment of thick oil to the contacts
by the ball surface, resulting in a nearly constant film thickness at different SRRs.

(3) The overall film formation is primarily governed by the oil inlet temperature, which deter-
mines the ambient viscosity at the inlet. Meanwhile, the local film formation, characterized by a
dimple shape, is influenced by both the thermal gradient effect and thermal-viscosity wedge effect.

(4) The results suggest that the selection of the heating method in experiments should be
conducted with caution, or alternatively, strict control over temperature conditions is necessary to
ensure the integrity of test results. Temperature variations commonly occur in practical components,



Lubricants 2024, 12, 28 15 of 16

which can impact both film formation and the rheological properties of lubricating films. Future
research will investigate the effects of oil and solid body temperatures on EHL film rheology.
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