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Abstract: Tool wear prediction can ensure product quality and production efficiency during man-
ufacturing. Although traditional methods have achieved some success, they often face accuracy
and real-time performance limitations. The current study combines multi-channel 1D convolutional
neural networks (1D-CNNs) with temporal convolutional networks (TCNs) to enhance the precision
and efficiency of tool wear prediction. A multi-channel 1D-CNN architecture is constructed to extract
features from multi-source data. Additionally, a TCN is utilized for time series analysis to establish
long-term dependencies and achieve more accurate predictions. Moreover, considering the parallel
computation of the designed architecture, the computational efficiency is significantly improved. The
experimental results reveal the performance of the established model in forecasting tool wear and its
superiority to the existing studies in all relevant evaluation indices.

Keywords: tool wear prediction; one-dimensional convolution; temporal convolutional network

1. Introduction

As the backbone of the modern economy, the manufacturing industry’s production
efficiency and product quality significantly depend on tool efficiency. Tool wear directly
influences the machining precision, such as the surface roughness and dimensional stability,
thus degrading the product quality. As tool wear increases, the processing efficiency
decreases, and energy consumption increases, which can even lead to a costly production
downtime and equipment damage. Therefore, accurate and timely tool wear prediction can
ensure production continuity and quality control [1]. Nevertheless, tool wear prediction is
a complex issue influenced by many factors, such as the tool material, cutting variables (like
speed, feed rate, and cutting depth), and the kind of processing materials [2,3]. Traditional
rule-based and periodic inspection approaches cannot handle these complex variables or
adapt to rapidly changing manufacturing requirements.

Since traditional tool wear prediction approaches, which rely primarily on empirical
rules and regular physical inspections [4], are simple and feasible, achieving an accurate
real-time tool wear prediction is a challenge [5]. Subsequently, vibration [6], sound [7], and
temperature sensors [8] were utilized to monitor tool conditions in real time [9]. Although
these methods improve the monitoring accuracy, an effective data analysis method is
still required to predict the wear state. Recently, data-driven-based tool wear prediction
approaches, especially machine learning (ML) techniques, have been extensively utilized
in the literature [10]. For example, support vector machines (SVMs) and neural networks
were utilized to analyze sensor data to achieve more accurate wear predictions [11]. As
we approach the Industry 4.0 era, manufacturing has accumulated huge amounts of data,
such as machine performance, production process parameters, and tool wear rates. Feature
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engineering is an indispensable upfront step to utilize ML techniques to effectively forecast
and monitor tool wear. Li et al. presented a feature transfer learning-based tool wear
prediction approach [12], in which multi-domain features were extracted from cutting force
and vibration signals and were integrated into feature tensors for tool wear prediction [13].
However, since feature engineering is usually a manual, iterative, and time-consuming
process that needs expertise, this leads to longer projects and increased costs [14]. Simulta-
neously, effective feature engineering needs a deep understanding of data and application
domains, and a lack of relevant domain knowledge can lead to inappropriate feature
selection or transformation.

Deep learning (DL) has recently become the core of study innovation in this field [15].
Due to their unique benefits in processing time series data, recurrent neural networks
(RNNs) show significant potential in tool wear prediction. Due to their ability to retain
historical information, RNNs can effectively deal with evolving manufacturing process
data. RNNs [16] can efficiently utilize tool usage patterns, operating parameters, and
wear states to predict future wear trends. For example, Liu et al. adopted the RNN
model to analyze tool wear data under various operating situations [17]. The RNN model
successfully predicts the future wear state by learning the relation between tool wear
and the operating parameters, thus significantly improving the accuracy compared with
the traditional prediction method. An RNN was utilized to analyze complex machining
process data, including cutting forces, vibration, an electric current, and temperature. Wang
et al. extracted wear-related signal features from various machining signals and employed
Long Short-Term Memory (LSTM) for tool wear prediction [18]. Chan et al. introduced
a tool wear prediction approach utilizing a global-local LSTM network [19]. Kolář et al.
utilized the spindle drive current for tool condition monitoring [20]. Duan et al. established
a parallel DL model with mixed attention for tool wear prediction [21]. The outcomes
demonstrated the ability of RNNs to accurately identify specific situations, accelerating
tool wear prediction and recognizing complex data patterns and relationships.

Despite its significant progress, the existing research still faces data diversity and
complexity. For example, it is challenging to perform feature extraction and feature fusion
in massive amounts of data [22]. At the same time, although RNNs perform well in tool
wear prediction, RNN models may encounter gradient disappearing or explosion when
processing long sequence data and cannot perform parallel computation, thus limiting their
application in complex scenarios and in the effective handling of long-term dependencies.

To address the challenges identified, a comprehensive model, including a multi-
channel one-dimensional convolutional neural network (1D-CNN) and a temporal con-
volutional network (TCN), is established to enhance the precision and efficiency of tool
wear state prediction. This combination overcomes the limitations of traditional machine
learning (ML) and deep learning approaches, particularly in handling large-scale data
and long-term dependencies. This combined approach can effectively capture both the
spatial and temporal features of tool wear data. The 1D-CNN component can extract
spatial features from multi-channel sensor data, while the TCN component can capture
temporal dependencies over long sequences. By employing this synergy, the model can
more accurately predict tool wear states in various machining contexts. Furthermore, the
model’s architecture is designed to facilitate parallel computation, significantly enhancing
the computational efficiency.

The rest of the current paper is structured as follows. Section 2 introduces the 1D-CNN
and TCN corresponding theories, and Section 3 introduces the established model. Section 4
describes the experimental dataset, process, and results. The relevant summary is given in
Section 5.

2. Relative Theories
2.1. One-Dimensional CNN Feature Extraction

A one-dimensional CNN [23] can automatically identify and extract key features from
time series data, which is crucial for understanding the tool wear pattern and accurately
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predicting its future state. A one-dimensional CNN comprises the convolutional, pooling,
and fully connected layers.

(1) Convolutional layer

The core part of the 1D-CNN is the convolutional layer, which can perform the
feature extraction of time series data or 1D spatial data [24]. Although the structure of
the convolutional layer is similar to traditional 2D convolution, it is specifically designed
to work with 1D data. As shown in Figure 1, these layers can capture local features and
patterns in the time series by applying different convolution kernels to the input data,
thereby extracting informative features. Accordingly, a 1D-CNN can extract complex and
informative features from the raw data.
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The 1D convolution operation for a 1D input signal can be described as follows:

y[i] = x[i]× k[i] =
M

∑
j=−M

x[i − j]× k[j] (1)

where y[i] describes the convolution operation output, M indicates the half-size of the
convolution kernel, x[i] describes a 1D signal (i is the time step), and k[j] is the convolution
kernel (j is a position in the convolution kernel).

A convolution operation is usually followed by applying an activation function ReLu
to introduce nonlinearity:

a[i] = max(0, y[i]) (2)

where a[i] indicates the output after applying the activation function.

(2) Pooling layer

Pooling layers are often employed in 1D-CNNs to alleviate the features’ dimension
and the computational cost while retaining the main feature information. The selected
maximum pooling operation reduces the data dimension by selecting the maximum value
within a specific window size. Maximum pooling can be described as follows:

p[j] = max(a[i]), for i ∈ [j × s, j × s + f ] (3)

where p[j] indicates the pooling layer output; s describes the step size, indicating the
distance that the pooling window moves in the sequence; and f indicates the size of
the pooling window. Maximum pooling selects the maximum value in the window as
its representation.

(3) Fully connected layer

The fully connected layer is placed at the end of the 1D-CNN, which helps the network
synthesize multi-dimensional features from different sensors (such as vibration, sound,
current, and cutting forces). Its operation can be described as follows:

y = W p[j] + b (4)
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where y indicates the fully connected layer output, W describes the weight matrix, and b is
a bias vector. Compared to traditional feature engineering methods, a 1D-CNN reduces the
reliance on expert knowledge and the need for manual data pre-processing. Additionally,
the pooling layer in a 1D-CNN reduces the dimension of features, thus reducing the
computational cost while preserving critical information. This makes 1D-CNNs efficient
and effective when processing tool wear data with complex time dependence.

2.2. Time Convolutional Network

Since RNN often faces gradient disappearing or explosion when dealing with long
sequence data, it is difficult for the network to learn and retain long-term dependent
information. Although RNN variants, such as LSTM [25] and GRU [26], can better handle
long-term dependencies, they are still confined by inherently handling serialized data.
Therefore, TCN is adopted for time series long-term dependency modeling because it can
deal with long-term data dependency problems. TCN [27] employs causal convolution to
make predictions dependent on past and current information, but not future data. This
is particularly important in time series forecasting, where future data are unavailable
in real-world scenarios. By stacking multiple convolutional layers and using dilated
convolution, TCN effectively increases its receptive field, i.e., the range of historical data
that the model can “see”. This allows the TCN to capture long-term data dependencies
without significantly increasing the computational costs. Compared with RNNs, such as
LSTM or GRU, the convolutional operations of TCN can be more efficiently computed in
parallel because the forward propagation of the convolutional network does not depend
on the previous point in time in the sequence. This improves the efficiency of the TCN
when dealing with large-scale data. The TCN mainly comprises the causal, dilated, and
residual convolutions.

(1) Causal convolution

The main idea of causal convolution is to make the prediction dependent only on the
previous and current information in the time series analysis. This is achieved by controlling
the interaction of the convolution kernel with the input data. For a 1D input sequence x[t],
where t is the time step, causal convolution is described as follows:

y[t] =
s−1

∑
s=0

x[t − s] · k[s] (5)

where y[t] describes the convolution output at time t,k[s] is the convolution kernel, and s is
the convolution kernel index.

As presented in Figure 2, considering that the input layer’s last two nodes are xt−1
and xt, the calculated output at time t is yt, which is obtained as follows:

yt = k0 × xt + k1 × xt−1 (6)

(2) Dilated convolution

Simple causal convolution faces the conventional CNN issue; that is, the modeling
length of time is confined by the convolution kernel size [28]. In order to grasp a longer
dependency, it is necessary to stack many layers linearly. Therefore, the TCN usually
employs dilatation convolution to handle long-term dependencies in the time series data
while maintaining the model’s causality, as shown in Figure 3.
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Dilated convolution introduces intervals inside the convolution kernel to cover longer
input sequences. This allows the network to “see” and process further historical informa-
tion, capturing long-term dependencies without increasing the convolution kernel size or
the number of network layers [29]. The following relation describes the dilated convolution:

y[t] =
s−1

∑
s=0

x[t − s · d] · k[s] (7)

where d is the dilated factor, determining how the convolution kernel covers the input data.
The more significant the d value, the more input data points the convolution kernel “skips”,
allowing the network to cover a longer input sequence.

(3) Residual connections

Residual connections in the TCN improve the network’s learning ability, especially
when dealing with deep networks. Residual connections help solve gradient disappearing
in deep networks and enhance information transmission by introducing feeder lines from
the previous layer to the next.

As described in Figure 4, assuming that the input of a convolution block in a TCN is x,
and the output after applying the convolution is F(x), the residual connections’ output is
described as follows:

O(x) = Activation(x + F(x)) (8)
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Applying the residual connection to the TCN improves the model’s capability to pro-
cess long-term dependency and complex time series data, especially the residual structure,
which is particularly important in deep network construction. This improves the efficiency
and reliability of the TCN for prediction tasks for many complex time series.

3. Proposed Model

Tool wear is a complex process that considerably affects the production efficiency
and quality during manufacturing. Tool wear monitoring and management are crucial
for efficient, high-quality production. However, since tool wear cannot be predicted
immediately in the machining procedure, sensors are utilized to monitor the cutting force,
vibration, acoustic emission, and other signals in the machining procedure to forecast
tool wear indirectly. In order to meet the tool wear prediction’s precision and real-time
requirements, a CTCN model is established using the 1D-CNN and TCN. Figure 5 shows
the structure and prediction flow based on the CTCN model.

(1) A multi-channel 1D-CNN extracts features from the time series signals gathered using
the sensor. Subsequently, the multi-feature integration is achieved by combining the
feature maps derived from various convolution branches.

(2) The extracted features in step (1) are fed into the TCN network for long-term depen-
dency modeling to learn time series features corresponding to tool wear features.

(3) In the end, a mapping relation between high-dimensional features and tool wear
values is established through the fully connected layer to realize tool wear prediction.
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4. Experimental Study
4.1. Dataset

In order to evaluate the established CTCN’s effectiveness, the PHM2010 tool wear
dataset was adopted for verification [30]. The PHM2010 tool wear dataset can be down-
loaded from https://phmsociety.org/phm_competition/2010-phm-society-conference-
data-challenge/ (accessed on 1 December 2023). Figure 6 presents the PHM2010 data
experimental setup. Under dry milling conditions, a high-speed CNC machine tool was
utilized to test a three-edge ball-end mill with stainless steel (HRC-52) as the workpiece
material. The spindle speed was 10,400 RPM, the sampling frequency was 50 KHz, the
feed speed was 1555 mm/min, and the Z-axis and Y-axis cutting depths were 0.2 mm and
0.125 mm, respectively.

Table 1 shows the test equipment. The tool was milled along the X-axis direction
during the test and removed after each milling. After each milling operation, the tool
wear behind the three cutters was measured using a LEICA MZ12 microscope, recorded as
flute1–3, and the wear measurement accuracy was 10−3 mm. Finally, a total of three cutters
were tested under the same experimental conditions, designated C1, C4, and C6, and
315 cutting tests were performed on each cutter. Finally, 315 datasets and the corresponding
wear values of three blades were collected for each cutter. The C1, C4, and C6 datasets
recorded the full life cycle of the cutter wear. Figure 7 shows the trend of the three-blade
wear for each cutter. For safety reasons, the maximum value of the three blades is chosen
as the final wear label.

https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/
https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/
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Table 1. Model of the experimental equipment.

Equipment Type

CNC milling machine Roders Tech RFM760
Dynamometer Kistler 9265B

Charge amplifier Kistler 5019A
Acoustic emission sensor Kistler AE sensor

Cutters 3-flute ball carbide milling cutters
Data acquisition card DAQ NI PCI 1200

Abrasion measuring apparatus LEICA MZ12 microscope
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4.2. Data Study and Preprocessing

During the tool wear experiment, each experiment covers three stages: tool feed,
stable cutting, and tool retraction. Since the signal is relatively stable in the stable cutting
stage, the signal collected from the tool can effectively reflect the degree of tool wear. As
presented in Figure 8, the generated signals often need clarification during the tool feed
and retraction stages. They cannot accurately represent the relation between the tool wear
and the signal. Therefore, the unstable signal points of 3% before and after the start and
end of each cut were excluded to enhance the data quality and the accuracy of the analysis.
Considering the difference in the data scale between the original signals, this study adopted
the Z-Score normalization to standardize the signal data to alleviate the effect of various
signal scales. This step creates data with a uniform scale and distribution before entering
the network model, thus improving the consistency and accuracy of the model when
processing different signals.
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4.3. Experimental Setup

Under the PyTorch framework, the CTCN model was programmed, and the NVIDIA
GeForce RTX 3090 GPU was utilized to perform the learning process. The CTCN model was
trained for 100 rounds, and the learning rate was chosen as 0.0001. In order to enhance the
model’s generalization ability, L2 regularization terms were incorporated into the training
process. Additionally, the Adam optimizer, which adjusts and optimizes the parameters
through a backpropagation mechanism, was employed to minimize the loss effectively.

4.4. Evaluation Index

The evaluation index can assess the model performance. In order to assess the CTCN
model’s correlation efficiency, the mean absolute error (MAE), root mean square error
(RMSE), determination coefficient (R2), and mean absolute percentage error (MAPE) were
selected as assessment indices, as shown in Equations (9)–(12). The MAE is the average of
the absolute error between the predicted and actual values. The RMSE is the square root of
the MSE, providing an error measure on the same scale as the actual value. R2 measures
the ability of the model to describe the variables, i.e., how well the model fits the data. A
value of R2 closer to 1 reveals the better fitting of the model. The MAPE is the magnitude of
the prediction error relative to the actual value. It calculates the mean ratio of the absolute
value of the difference between the predicted and actual values to the actual one.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (9)
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(11)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (12)

where n indicates the number of samples, and yi and ŷi describe the actual and predicted
values of the ith sample, respectively.

4.5. Experimental Setup and Model Parameter Adjustment

The current test was performed using the PHM tool wear dataset, and the cross-
validation strategy outlined in Table 2 was employed for model training and evaluation.
The experiment process was divided into three groups, each adopting training and test-
ing stages.

Table 2. Training and testing set settings.

Training Set Testing Set

c4 c6 c1
c1 c6 c4
c1 c4 c6

This experiment established the CTCN model using the model parameters presented
in Table 3. The model’s parameters can be calculated as shown below.

Table 3. CTCN model parameters.

Layer Kernel Shape Output Shape

Layer1.CNN.Conv1d [7, 64, 9] [32, 64, 1024]
Layer2.CNNConv1d [64, 64, 5] [32, 64, 512]
Layer3.CNN.Conv1d [64, 128, 3] [32, 128, 258]
Layer4.TCN.Conv1d / [32, 7, 130]
Layer5.TCN.Chomp1d / [32, 7, 129]
Layer6.TCN.Conv1d / [32, 1024, 129]
Layer7.TCN.Chomp1d / [32, 1024, 129]
Layer8.Linear [1024, 1] [32, 129, 1]

4.6. Experimental Results and Discussion
4.6.1. Experimental Results

Figure 9 shows the experimental results, where the predicted and actual tool wear
curves are indicated in blue and red, respectively, and the red histogram represents their
difference. The experimental results indicate the compatibility of the predicted curve with
the actual curve. Table 4 shows the evaluation indices corresponding to the three groups
of experiments.
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Table 4. Ablation results.

Models Datasets

C1 C4 C6

MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE

CNN 3.609 6.476 0.946 0.035 5.201 8.131 0.955 0.052 4.423 6.388 0.981 0.033
TCN 2.551 5.198 0.965 0.024 5.273 8.729 0.942 0.048 6.834 9.271 0.961 0.047

CTCN 2.031 3.553 0.983 0.019 2.744 6.151 0.974 0.027 2.415 4.274 0.991 0.018

4.6.2. Ablation Experiment

The ablation experiments were designed to demonstrate the model’s effectiveness
and superiority. Experiments 1 and 2 employed the CNN and TCN models, respectively,
with the same parameters as the CTCN model. Figures 10 and 11 present the experimental
results of the CNN and TCN models, respectively. Table 4 shows the evaluation indices for
different models.
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The MAE, RMSE, and MAPE values of the CTCN model were lower than those of
the other comparison models. In contrast, the R2 values were higher than those of the
comparison models in a similar group, reaching 98.38%, 97.48%, and 99.17%, respectively.
The CNN mainly extracts local features from multi-channel sensor data. Additionally, its
powerful spatial feature extraction capability helps the model identify and capture critical
patterns during tool wear. These characteristics are crucial to understand and predict the
tool wear process and are essential for the subsequent time series analysis.

The CNN-extracted features are then input into the TCN. The TCN can deal with
the time dependence of these features, considering the tool wear process’s time-varying
behavior. The dilated causal convolution structure of the TCN helps the model capture
long-term time series dependencies without losing causality. Accordingly, the model can
make accurate wear predictions based on current and historical data and reveal the wear
development trend.

The established model can effectively take advantage of the sensor data’s spatial
properties (captured using a CNN) and temporal properties (processed using a TCN). The
ablation experiments show that combining a TCN with a CNN significantly improves
the model’s overall performance, especially the prediction accuracy and the ability to
understand time-dependent relationships. This demonstrates the unique and complemen-
tary roles of CNNs and TCNs in the established model and their synergies in processing
complex time series data.

4.6.3. Model Comparison

Since the PHM2010 tool wear dataset has become the benchmark dataset for many
relevant scholars to perform experiments, several models using the PHM2010 dataset were
selected for comparison to demonstrate the CTCN model’s superiority. Table 5 presents the
relevant assessment indices of various models under the PHM2010 dataset.

After a comprehensive performance comparison using the same dataset, the results
indicate the superiority of the established model to other models in each evaluation index.
This highlights the advantage of the established model in understanding and analyzing
tool wear data, especially when dealing with complex data structures and variable data
characteristics. Due to its unique algorithm design and efficient data processing strat-
egy, this model stands out in competitive comparisons, demonstrating its potential in
practical applications.
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Table 5. Comparison results of different models.

Models Datasets

C1 C4 C6

MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE

SSAE-BP [31] 12.00 13.53 0.91 / 12.44 14.62 0.93 / 7.29 10.08 0.94 /
Parallel-CNN [32] 3.89 5.54 / / 4.53 5.27 / / 3.52 4.90 / /

CBLSTM [33] 7.5 10.8 / / 6.1 7.1 / / 8.1 9.8 / /
PGGM [34] 4.3 5.0 / / 8 9.6 / / 5.9 13.9 / /

MFPBM [35] 4.2 4.9 / / 5.8 7.1 / / 4.4 5.8 / /
PRes–SBiLSTM [36] 4.7 8.5 / / 5.6 7.9 / / 4.7 5.9 / /

CGRU [37] 3.32 5.33 0.962 / 4.95 7.43 0.962 / 4.45 6.47 0.974 /
CTCN 2.031 3.553 0.983 0.019 2.744 6.151 0.974 0.027 2.415 4.274 0.991 0.018

5. Conclusions

The current work combines multi-channel 1D-CNN with TCN models to establish a
tool wear prediction model and verifies the tool wear prediction capability of the CTCN
model. The model performs excellently in various evaluation indices, such as RMSE
and MAPE. Compared with existing forecasting models, the established model provides
higher precision and stability when dealing with complex datasets. The model outperforms
the single CNN or TCN model in many experiments, and the following conclusions can
be obtained:

(1) A 1D-CNN can effectively extract the 1D signal features, which can efficiently describe
the tool wear state.

(2) Due to the dilated causal convolution structure of the TCN, long-term time series
dependencies can be effectively captured without losing causality. Accordingly, the
model can make accurate wear predictions based on current and historical data and
reveal the development trend.

(3) This study demonstrates that combining a CNN and TCN can significantly improve
tool wear prediction. A CNN’s powerful feature extraction ability, combined with the
efficient time series analysis of a TCN, helps the model effectively capture complex
tool wear patterns.

The training and testing datasets for the CTCN model were specifically tailored to the
conditions and environment of high-speed milling machining obtained from high-speed
CNC machining centers. Therefore, the applicability of the CTCN model in tool wear
prediction is mainly limited to similar high-speed milling scenarios such as those in the
training data environment. Due to different mechanical properties, cutting parameters,
and operating conditions in turning and grinding machining processes, these variations
may degrade the tool wear prediction by the CTCN model in these scenarios. Since each
machining method exhibits unique tool wear patterns and influencing factors, training
and adapting the model using specific datasets from each machining process are necessary
to enhance its prediction accuracy and generalization ability. Consequently, although the
CTCN model may provide an excellent tool wear prediction for high-speed CNC milling
machining, its predictive capability might be constrained when applied to other scenarios,
such as turning and grinding. Further customization and optimization are necessary to
adapt to these scenarios’ specific requirements and conditions.

In future work, we will apply our model to larger and more diverse datasets, further
validating its generalization and robustness, especially in different manufacturing environ-
ments and with more varied tool wear. Additionally, the model interpretation should be
improved. As a future work, the interpretability of the model should be enhanced so that
users can better understand the internal logic of the model’s predictions.
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