Behavior of Lubricated Bearings in Electric Circuits
Author Contributions
Funding
Conflicts of Interest
References
- Furtmann, A.; Poll, G. Evaluation of Oil-Film Thickness along the Path of Contact in a Gear Mesh by Capacitance Measurement. Tribol. Online 2016, 11, 189–194. [Google Scholar] [CrossRef]
- Furtmann, A. Elektrisches Verhalten von Maschinenelementen im Antriebsstrang. Ph.D. Thesis, Universität Hannover, Hannover, Germany, 2017. [Google Scholar]
- Gemeinder, Y. Lagerimpedanz und Lagerschädigung bei Stromdurchgang in Umrichtergespeisten Elektrischen Maschinen; Ingenieurwissenschaftlicher Verlag: Bonn, Germany, 2016. [Google Scholar]
- Radnai, B.; Gemeinder, Y.; Kiekbusch, T.; Sauer, B.; Binder, A. Schädlicher Stromdurchgang. Untersuchung des Schädigungsmechanismus und der Zulässigen Lagerstrombelastung von Wälzlagern in E-Motoren und Generatoren Verursacht Durch Parasitäre Hochfrequente Lagerströme; FVA-Heft 1127, Forschungsvorhaben Nr. 650 I: Frankfurt, Germany, 2016; p. 1127. [Google Scholar]
- Prashad, H. Tribology in Electrical Environments; Tribology and interface engineering series, Bd. 49; Elsevier: Amsterdam, The Netherlands, 2006; Tribology online (11) 2 S; pp. 189–194. [Google Scholar]
- Schirra, T. Phänomenologische Betrachtung der Sensorisch Nutzbaren Effekte am Wälzlager–Einfluss Unbelasteter Wälzkörper auf Die Elektrische Impedanz. Dr.-Ing.-Dissertation, Technische Universität Darmstadt, Darmstadt, Germany, 2020. [Google Scholar]
- Schirra, T.; Martin, G.; Puchtler, S.; Kirchner, E. Electric Impedance of Rolling Bearings—Consideration of Unloaded Rolling Elements. Tribol. Int. 2021, 158, 106927. [Google Scholar] [CrossRef]
- Kukla, S.; Buchhorn, N.; Bender, B. Design of an axially concave pad profile for a large turbine tilting-pad bearing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 479–488. [Google Scholar] [CrossRef]
- Cangioli, F.; Livermore-Hardy, R.; Pethybridge, G.; Mermertas, U.; Stottrop, M.; Bender, B. Experimental Investigation and Numerical Modelling of a Large Heavily-Loaded Tilting Pad Journal Bearing with Polymer Lined Pads. In Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 10A: Structures and Dynamics, Virtual, Online, 21–25 September 2020; ASME: New York, NY, USA, 2020; p. V10AT25A037. [Google Scholar] [CrossRef]
- Stottrop, M.; Bender, B. Mechanical and Thermal Deformation Analysis of a Large Polymer Lined Tilting Pad Journal Bearing. In Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 9A: Structures and Dynamics—Aerodynamics Excitation and Damping; Bearing and Seal Dynamics; Emerging Methods in Design and Engineering, Virtual, Online, 7–11 June 2021; ASME: New York, NY, USA, 2021; p. V09AT24A006. [Google Scholar] [CrossRef]
- Harder, A.; Kirchner, E. Untersuchung der Sensorischen Eigenschaften von Gleitlagern; Dresdner Maschinenelemente Kolloquium 2019; Sierke Verlag: Dresden, Germany, 2019; pp. 533–542. [Google Scholar]
- Stottrop, M.; Engels, A.; Weißbacher, C.; Bender, B. Experimental Investigation of a Large Tilting-Pad Journal Bearing with a Direct-Bonded Sub-Millimeter PEEK Lining. In Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 11A: Structures and Dynamics—Aerodynamics Excitation and Damping; Bearing and Seal Dynamics, Boston, MA, USA, 26–30 June 2023; ASME: New York, NY, USA, 2023; p. V11AT22A008. [Google Scholar] [CrossRef]
- Baszenski, J.T.; Jacobs, G.; Lehmann, B.F.; Kauth, K.; Kratz, K.-H.; Gemmeke, T. Sensorintegrierende Gleitlager–Energieautarkes, temperaturbasiertes Zustandsüberwachungssystem. In Proceedings Gleit- und Wälzlagerungen 2023: 15. VDI-Fachtagung: Gestaltung–Berechnung–Einsatz: 13. und 14. Juni 2023, Schweinfurt Maininsel/Fachlicher Träger: VDI-Gesellschaft Produkt- und Prozessgestaltung, Fachbereich Getriebe und Maschinenelemente, Seiten/Artikel-Nr: 381-402; VDI Verlag GmbH: Dusseldorf, Germany, 2023; ISBN 978-3-18-092415-1. [Google Scholar]
- Schaeffler Monitoring Services. Condition Monitoring Praxis; Vereinigte Fachverlage: Mainz, Germany, 2019. [Google Scholar]
- Randal, R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jardine, A.K.S.; Lin, D.; Banjevic, B. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Plöger, D. Modulation der Zahneingriffsschwingungen von Planetengetrieben. In Forschungsberichte Mechatronische Systeme im Maschinenbau; Shaker Verlag, Technische Universität: Darmstadt, Germany, 2020; ISBN 978-3-8440-7196-2. [Google Scholar] [CrossRef]
- Holm-Hansen, B.T.; Gao, R.X. Vibration Analysis of a Sensor-Integrated Ball Bearing. J. Vib. Acoust. 2000, 122, 384–392. [Google Scholar] [CrossRef]
- Mehringskötter, S.; Preusche, C. Consideration of Variable Operating States in a Data-Based Prognostic Algorithm. In Proceedings of the 2019 IEEE Aerospace Conference, Yellowstone Conference Center, Big Sky, MT, USA, 2–9 March 2019. [Google Scholar]
- Lei, Y.; He, Z.; Zi, Y. A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst. Appl. 2008, 35, 1593–1600. [Google Scholar] [CrossRef]
- Akpudo, U.E.; Hur, J.W. A feature fusion-based prognostics approach for rolling element bearings. J. Mech. Sci. Technol. 2020, 34, 4025–4035. [Google Scholar] [CrossRef]
- Lei, Y. Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2016; ISBN 9780128115343. [Google Scholar]
- Arabnia, H.R.; Daimi, K.; Stahlbock, R.; Soviany, C.; Heilig, L.; Brüssau, K. Principles of Data Science; Springer, Schweiz: Stuttgart, Germany, 2020; Volume 1. [Google Scholar] [CrossRef]
- Gao, R.X.; Holm-Hansen, B.T.; Wang, C. Design of a mechatronic bearing through sensor integration. In Proceedings of the SPIE 3518, Sensors and Controls for Intelligent Machining, Agile Manufacturing, and Mechatronics, Boston, MA, USA, 17 December 1998. [Google Scholar] [CrossRef]
- SKF. Sensor Bearing Units. 2018. Available online: https://www.skf.com/de/products/rolling-bearings/engineered-products/sensor-bearing-units (accessed on 9 January 2024).
- Schaeffler VarioSense—Modular Sensor Bearings. 2019. Available online: https://www.schaeffler.de/de/news_medien/mediathek/downloadcenter-detail-page.jsp?id=87412994 (accessed on 26 January 2024).
- Bauer, T.; Rottmann, A.; Glöckner, P. Smart Bearings zur Überwachung des Lagerzustandes in Triebwerken. In Proceedings Gleit- und Wälzlagerungen 2023: 15. VDI-Fachtagung: Gestaltung–Berechnung–Einsatz: 13. und 14. Juni 2023, Schweinfurt Maininsel/Fachlicher Träger: VDI-Gesellschaft Produkt- und Prozessgestaltung, Fachbereich Getriebe und Maschinenelemente, Seiten/Artikel-Nr: 381-402; VDI Verlag GmbH: Dusseldorf, Germany, 2023; ISBN 978-3-18-092415-1. [Google Scholar]
- Dong, Y.; Zhou, Z.; Liu, Z.; Zheng, K. Temperature field measurement of spindle ball bearing under radial force based on fiber Bragg grating sensors. Adv. Mech. Eng. 2015, 7. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Li, X.; Wu, S. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowl.-Based Syst. 2018, 140, 1–14. [Google Scholar] [CrossRef]
- Kirchner, E.; Wallmersperger, T.; Gwosch, T.; Menning, J.D.M.; Peters, J.; Breimann, R.; Kraus, B.; Welzbacher, P.; Küchenhof, J.; Krause, D.; et al. A Review on Sensor-Integrating Machine Elements. Adv. Sens. Res. 2023. Early View. [Google Scholar] [CrossRef]
- Schulte, F.; Kirchner, E.; Kloberdanz, H. Analysis and Synthesis of Resilient Load-Carrying Systems. In Proceedings of the Design Society: International Conference on Engineering Design, 1 (1); Cambridge University Press: Cambridge, UK, 2019; pp. 1403–1412. [Google Scholar] [CrossRef]
- Bessonov, A.; Kirikova, M.; Haque, S.; Gartseev, I.; Bailey, M.J. Highly reproducible printable graphite strain gauges for flexible devices. Sens. Actuators A Phys. 2014, 206, 75–80. [Google Scholar] [CrossRef]
- Hrovat, M.; Belavič, D.; Makarovič, K.; Cilenšek, J.; Malič, B. Characterisation of thick-film resistors as gauge sensors on different LTCC substrates. J. Microelectron. Electron. Compon. Mater. 2014, 44, 4–11. [Google Scholar]
- Anderson, N.; Szorc, N.; Gunasekaran, V.; Joshi, S.; Jursich, G. Highly sensitive screen printed strain sensors on flexible substrates via ink composition optimization. Sens. Actuators A Phys. 2019, 290, 1–7. [Google Scholar] [CrossRef]
- Biehl, S.; Lüthje, H.; Bandorf, R.; Sick, J.-H. Multifunctional thin film sensors based on amorphous diamond-like carbon for use in tribological applications. Thin Solid Film. 2006, 515, 1171–1175. [Google Scholar] [CrossRef]
- Konopka, D.; Steppeler, T.; Ottermann, R.; Pape, F.; Dencker, F.; Poll, G.; Wurz, M.C. Advancements in monitoring of tribological stress in bearings using thin-film strain gauges. In Proceedings of the X ECCOMAS Thematic Conference on Smart Structures and Materials SMART 2023, Patras, Greece, 3–5 July 2023. [Google Scholar] [CrossRef]
- Winkelmann, C.; Woitschach, O.; Meyer, E.-M.; Lang, W. Development of a strain sensor for rolling contact loads. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1080–1083. [Google Scholar] [CrossRef]
- Konopka, D.; Pape, F.; Ottermann, R.; Steppeler, T.; Dencker, F.; Wurz, M.C.; Poll, G. Characterization of an anti-wear coating for the application of highly loaded smart thin-film sensors. In Proceedings of the International Scientific Conference BALTTRIB 2022, Kaunas, Lithuania, 22–24 September 2022. [Google Scholar]
- Schneider, V.; Behrendt, C.; Höltje, P.; Cornel, D.; Becker-Dombrowsky, F.M.; Puchtler, S.; Gutiérrez Guzmán, F.; Ponick, B.; Jacobs, G.; Kirchner, E. Electrical Bearing Damage, A Problem in the Nano- and Macro-Range. Lubricants 2022, 10, 194. [Google Scholar] [CrossRef]
- Graf, S.; Koch, O.; Sauer, B. Influence of Parasitic Electric Currents on an Exemplary Mineral-Oil-Based Lubricant and the Raceway Surfaces of Thrust Bearings. Lubricants 2023, 11, 313. [Google Scholar] [CrossRef]
- Maruyama, T.; Radzi, F.; Sato, T.; Iwase, S.; Maeda, M.; Nakano, K. Lubrication Condition Monitoring in EHD Line Contacts of Thrust Needle Roller Bearing Using the Electrical Impedance Method. Lubricants 2023, 11, 223. [Google Scholar] [CrossRef]
- Zaiat, A.; Ibrahim, K.; Kirchner, E. Pitting Influence on Electrical Capacitance in EHL Rolling Contacts. Lubricants 2023, 11, 419. [Google Scholar] [CrossRef]
- Bartz, M.; Häußler, F.; Halmos, F.; Ankenbrand, M.; Jüttner, M.; Roudenko, J.; Wirsching, S.; Reichenberger, M.; Franke, J.; Wartzack, S. Use of Printed Sensors to Measure Strain in Rolling Bearings under Isolated Boundary Conditions. Lubricants 2023, 11, 424. [Google Scholar] [CrossRef]
- Safdarzadeh, O.; Capan, R.; Werner, M.; Binder, A.; Koch, O. Influencing Factors on the Fluting in an Axial Ball Bearing at DC Bearing Currents. Lubricants 2023, 11, 455. [Google Scholar] [CrossRef]
- Puchtler, S.; Maier, P.; Kuhn, M.; Burkhardt, Y. The Influence of Load and Speed on the Initial Breakdown of Rolling Bearings Exposed to Electrical Currents. Lubricants 2024, 12, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirchner, E.; Bartz, M.; Becker-Dombrowsky, F. Behavior of Lubricated Bearings in Electric Circuits. Lubricants 2024, 12, 89. https://doi.org/10.3390/lubricants12030089
Kirchner E, Bartz M, Becker-Dombrowsky F. Behavior of Lubricated Bearings in Electric Circuits. Lubricants. 2024; 12(3):89. https://doi.org/10.3390/lubricants12030089
Chicago/Turabian StyleKirchner, Eckhard, Marcel Bartz, and Florian Becker-Dombrowsky. 2024. "Behavior of Lubricated Bearings in Electric Circuits" Lubricants 12, no. 3: 89. https://doi.org/10.3390/lubricants12030089
APA StyleKirchner, E., Bartz, M., & Becker-Dombrowsky, F. (2024). Behavior of Lubricated Bearings in Electric Circuits. Lubricants, 12(3), 89. https://doi.org/10.3390/lubricants12030089