The Performance of Carbon-Based Nanomaterials in Different Base Oils and an Oil Blend
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lubricants
2.2. Nanomaterials
2.2.1. Characterization with XRD
2.2.2. Characterization with SEM
2.3. Sample Preparation
2.4. HFRR Test Setup
2.5. Welding Point Test Setup
3. Results
3.1. HFRR Tests
3.1.1. Mineral Oil Samples
3.1.2. Vegetable Oil Samples
3.1.3. Oil Blend Samples
3.2. Welding Point Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nowak, P.; Kucharska, K.; Kamiński, M. Ecological and Health Effects of Lubricant Oils Emitted into the Environment. Int. J. Environ. Res. Public Health 2019, 16, 3002. [Google Scholar] [CrossRef]
- Jayadas, N.H.; Nair, K.P.; Ajithkumar, G. Tribological Evaluation of Coconut Oil as an Environment-Friendly Lubricant. Tribol. Int. 2007, 40, 350–354. [Google Scholar] [CrossRef]
- Rani, S.; Joy, M.L.; Nair, K.P. Evaluation of Physiochemical and Tribological Properties of Rice Bran Oil—Biodegradable and Potential Base Stoke for Industrial Lubricants. Ind. Crops Prod. 2015, 65, 328–333. [Google Scholar] [CrossRef]
- Kalam, M.A.; Masjuki, H.H.; Cho, H.M.; Mosarof, M.H.; Mahmud, M.I.; Chowdhury, M.A.; Zulkifli, N.W.M. Influences of Thermal Stability, and Lubrication Performance of Biodegradable Oil as an Engine Oil for Improving the Efficiency of Heavy Duty Diesel Engine. Fuel 2017, 196, 36–46. [Google Scholar] [CrossRef]
- Quinchia, L.A.; Delgado, M.; Franco, J.M.; Spikes, H.A.; Gallegos, C. Low-Temperature Flow Behaviour of Vegetable Oil-Based Lubricants. Ind. Crops Prod. 2012, 37, 383–388. [Google Scholar] [CrossRef]
- Hamnas, A.; Unnikrishnan, G. Bio-Lubricants from Vegetable Oils: Characterization, Modifications, Applications and Challenges—Review. Renew. Sustain. Energy Rev. 2023, 182, 113413. [Google Scholar] [CrossRef]
- Merrill, L.I.; Pike, O.A.; Ogden, L.V.; Dunn, M.L. Oxidative Stability of Conventional and High-Oleic Vegetable Oils with Added Antioxidants. J. Am. Oil Chem. Soc. 2008, 85, 771–776. [Google Scholar] [CrossRef]
- Asadauskas, S.; Perez, J.M.S.; Duda, J.L. Oxidative Stability and Antiwear Properties of High Oleic Vegetable Oils. Lubr. Eng. 1996, 52, 877–882. [Google Scholar]
- Singh, Y. Tribological Behavior as Lubricant Additive and Physiochemical Characterization of Jatropha Oil Blends. Friction 2015, 3, 320–332. [Google Scholar] [CrossRef]
- Basiron, J.; Abdollah, M.F.B.; Abdullah, A.S.; Amiruddin, H. Lubricant Mechanisms of Eco-Friendly Lubricant Blended with Mineral Oil for Steel-Steel Contact. Tribol. Int. 2023, 186, 108653. [Google Scholar] [CrossRef]
- Bahari, A.; Lewis, R.; Slatter, T. Friction and Wear Response of Vegetable Oils and Their Blends with Mineral Engine Oil in a Reciprocating Sliding Contact at Severe Contact Conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 232, 244–258. [Google Scholar] [CrossRef]
- Alam, I.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Hasmelidin, M.; Mahmud, K.A.H.A.; Shahir, S.A.; Habibullah, M. Study of Friction and Wear Characteristic of Jatropha Oil Blended Lube Oil. Procedia Eng. 2013, 68, 178–185. [Google Scholar]
- Yu, H.; Xu, Y.; Shi, P.-J.; Xu, B.; Wang, X.; Liu, Q. Tribological Properties and Lubricating Mechanisms of Cu Nanoparticles in Lubricant. Trans. Nonferrous Met. Soc. China 2008, 18, 636–641. [Google Scholar] [CrossRef]
- Kumara, C.; Luo, H.; Leonard, D.N.; Meyer, H.M.; Qu, J. Organic-Modified Silver Nanoparticles as Lubricant Additives. ACS Appl. Mater. Interfaces 2017, 9, 37227–37237. [Google Scholar] [CrossRef] [PubMed]
- Peña-Parás, L.; Taha-Tijerina, J.; La Garza, L.M.-D.; Maldonado-Cortés, D.; Michalczewski, R.; Lapray, C. Effect of CuO and Al2O3 Nanoparticle Additives on the Tribological Behavior of Fully Formulated Oils. Wear 2015, 332–333, 1256–1261. [Google Scholar] [CrossRef]
- Battez, A.H.; González, R.; Viesca, J.L.; Fernández, J.M.V.; Fernández, J.; Machado, A.S.; Chou, R.; Riba, J. CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants. Wear 2008, 265, 422–428. [Google Scholar] [CrossRef]
- Del Río, J.M.L.; Pérez, G.; Martínez, A.; Peña, D.; Fernández, J. Tribological Improvement of Potential Lubricants for Electric Vehicles Using Double Functionalized Graphene Oxide as Additives. Tribol. Int. 2024, 193, 109402. [Google Scholar] [CrossRef]
- Piya, A.K.; Yang, L.; Omar, A.A.S.; Emami, N.; Morina, A. Synergistic Lubrication Mechanism of Nanodiamonds with Organic Friction Modifier. Carbon 2023, 218, 118742. [Google Scholar] [CrossRef]
- Dai, Y.; Feng, X.; Liu, Y.; Huang, J.; Wu, S.; Zhou, P.; Li, H. Onion-like Carbon Nanoparticles as Additives in Lubricant Oil Deform Inelastically during the Wear Testing for Improved Lubrication Performances. Mater. Chem. Phys. 2024, 314, 128836. [Google Scholar] [CrossRef]
- Wang, X.L.; Yin, Y.; Zhang, G.N.; Wang, W.Y.; Zhao, K. Study on Antiwear and Repairing Performances about Mass of Nano-Copper Lubricating Additives to 45 Steel. Phys. Procedia 2013, 50, 466–472. [Google Scholar] [CrossRef]
- Saravanakumar, N.; Saravanan, M.L.J.; Barathkumar, K.E.; Kannan, K.; Karthikeyan, R. Development and Testing of Nano Particulate Lubricant for Worm Gear Application. J. Mech. Sci. Technol. 2019, 33, 1785–1791. [Google Scholar] [CrossRef]
- Gupta, R.; Harsha, A.P. Tribological Study of Castor Oil with Surface-Modified CuO Nanoparticles in Boundary Lubrication. Ind. Lubr. Tribol. 2018, 70, 700–710. [Google Scholar] [CrossRef]
- Guo, D.; Luo, J. Mechanical Properties of Nanoparticles: Basics and Applications. J. Phys. D Appl. Phys. 2013, 47, 013001. [Google Scholar] [CrossRef]
- Srinivas, V.; Thakur, R.N.; Jain, A.K. Antiwear, Antifriction, and Extreme Pressure Properties of Motor Bike Engine Oil Dispersed with Molybdenum Disulfide Nanoparticles. Tribol. Trans. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Padgurskas, J.; Rukuiža, R.; Prosyčevas, I.; Kreivaitis, R. Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles. Tribol. Int. 2013, 60, 224–232. [Google Scholar] [CrossRef]
- Rahmati, B.; Sarhan, A.A.D.; Sayuti, M. Morphology of Surface Generated by End Milling AL6061-T6 Using Molybdenum Disulfide (MoS2) Nanolubrication in End Milling Machining. J. Clean. Prod. 2014, 66, 685–691. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Guo, S.; Zhao, Y.; Qi, J.; Zhang, R.; Ren, J.; Cheng, H.; Zong, M.; Wu, X.; et al. A Review of Carbon Nanomaterials/Bacterial Cellulose Composites for Nanomedicine Applications. Carbohydr. Polym. 2024, 323, 121445. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, S.; Patel, S.S.; Singh, S.P.; Kumar, P.; Khan, M.A.; Awasthi, H.; Singh, S. Carbon Nanomaterials for the Detection of Pesticide Residues in Food: A Review. Environ. Pollut. 2022, 310, 119804. [Google Scholar] [CrossRef]
- Haque, S.U.; Nasar, A.; Duțeanu, N. Inamuddin Carbon Based-Nanomaterials Used in Biofuel Cells—A Review. Fuel 2023, 331, 125634. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Zhang, H.; Li, T.; Xu, H.; Sun, Y.; Gu, X.; Hu, X.; Gao, B. Synthesis and Adsorption Performance of Three-Dimensional Gels Assembled by Carbon Nanomaterials for Heavy Metal Removal from Water: A Review. Sci. Total Environ. 2022, 852, 158201. [Google Scholar] [CrossRef]
- Shahnazar, S.; Bagheri, S.; Hamid, S.B.A. Enhancing Lubricant Properties by Nanoparticle Additives. Int. J. Hydrogen Energy 2016, 41, 3153–3170. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.; Roy, R.; Younis, H.; AlNahyan, M.; Younes, H. Carbon Nanomaterial-Based Lubricants: Review of Recent Developments. Lubricants 2022, 10, 281. [Google Scholar] [CrossRef]
- Lee, J.-K.; Cho, S.; Hwang, Y.; Lee, C.-G.; Kim, S.H. Enhancement of Lubrication Properties of Nano-Oil by Controlling the Amount of Fullerene Nanoparticle Additives. Tribol. Lett. 2007, 28, 203–208. [Google Scholar] [CrossRef]
- Ku, B.; Han, Y.; Lee, J.-E.; Lee, J.-K.; Park, S.-H.; Hwang, Y. Tribological Effects of Fullerene (C60) Nanoparticles Added in Mineral Lubricants According to Its Viscosity. Int. J. Precis. Eng. Manuf. 2010, 11, 607–611. [Google Scholar] [CrossRef]
- Cornelio, J.A.C.; Cuervo, P.; Palacio, L.M.H.; Lara-Romero, J.; Toro, A. Tribological Properties of Carbon Nanotubes as Lubricant Additive in Oil and Water for a Wheel–Rail System. J. Mater. Res. Technol. 2016, 5, 68–76. [Google Scholar] [CrossRef]
- Bhaumik, S.; Prabhu, S.; Singh, D.K.J. Analysis of Tribological Behavior of Carbon Nanotube Based Industrial Mineral Gear Oil 250 CSt Viscosity. Adv. Tribol. 2014, 2014, 341365. [Google Scholar] [CrossRef]
- Nunn, N.; Mahbooba, Z.; Ivanov, M.G.; Ivanov, D.M.; Brenner, D.W.; Shenderova, O. Tribological Properties of Polyalphaolefin Oil Modified with Nanocarbon Additives. Diam. Relat. Mater. 2015, 54, 97–102. [Google Scholar] [CrossRef]
- ASTM D2783-03; Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method). ASTM International: West Conshohocken, PA, USA, 2009.
- Huang, W.; Tan, Y.; Chen, B.; Dong, J.; Wang, X. The Binding of Antiwear Additives to Iron Surfaces: Quantum Chemical Calculations and Tribological Tests. Tribol. Int. 2003, 36, 163–168. [Google Scholar] [CrossRef]
- Leang, T.J.; Walvekar, R.; Nagarajan, T.; Said, Z.; Khalid, M.; Mubarak, N.M. A Review on the Properties and Tribological Performance of Recent Non-Aqueous Miscible Lubricants. J. Mol. Liq. 2022, 366, 120274. [Google Scholar]
- Lin, J.; Wang, L.; Chen, G. Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive. Tribol. Lett. 2010, 41, 209–215. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, M.; Zhu, H.; Tian, Y.; Wang, K.; Wei, J.; Ji, F.; Li, X.; Li, Z.; Zhang, P.; et al. Tribological Properties of Oleic Acid-Modified Graphene as Lubricant Oil Additives. J. Phys. D Appl. Phys. 2011, 44, 205303. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, X.H.; Xu, L.; Liu, Y.; Li, W.H. Modification of Multi-Walled Carbon Nanotubes with Fatty Acid and Their Tribological Properties as Lubricant Additive. Carbon 2005, 43, 1660–1666. [Google Scholar] [CrossRef]
- Ghaednia, H.; Babaei, H.; Jackson, R.L.; Bozack, M.J.; Khodadadi, J.M. The Effect of Nanoparticles on Thin Film Elasto-Hydrodynamic Lubrication. Appl. Phys. Lett. 2013, 103, 263111. [Google Scholar] [CrossRef]
Properties | SN150 | RSO | Blend | Methods |
---|---|---|---|---|
Density (20 °C, kg/m3) | 871.1 | 916.6 | 892.7 | ASTM D-1298 |
Kinematic viscosity (40 °C, cSt) | 30.49 | 35.97 | 31.59 | ASTM D-445 |
Kinematic viscosity (100 °C, cSt) | 5.18 | 8.01 | 6.4 | ASTM D-445 |
Viscosity index | 98 | 205 | 160 | ASTM D-2270 |
Flash point (°C) | 254 | 238 | 241 | ASTM D-92 |
Pour point (°C) | −20 | −24 | −22 | ASTM D-97 |
Copper corrosion (at 100 °C) | 1a | 1a | 1a | ASTM D-130 |
Acid value (mgKOH/g) | 0.12 | 2.7 | 1.8 | ASTM D-974 |
Oxidation stability by RBOT, min | 60 | 46 | 30 | ASTM D-2272 |
Wear scar diameter according to 4 ball tester, µm (75 °C, 60 min, 1200 RPM, 147 N) | 605.8 | 413.6 | 448.7 | ASTM D-4172-94 |
Nanoparticle | Nanoparticle Concentration wt.% | |||||||
---|---|---|---|---|---|---|---|---|
COF | WSD (µm) | |||||||
0.1 | 0.5 | 1 | 2 | 0.1 | 0.5 | 1 | 2 | |
SWCNT-COOH | 0.084 | 0.086 | 0.078 | 0.077 | 171 | 169 | 195 | 173 |
SWCNTs | 0.088 | 0.09 | 0.09 | 0.093 | 171 | 176 | 186 | 178 |
Fullerenes | 0.081 | 0.084 | 0.08 | 0.076 | 126 | 118 | 137 | 158 |
Graphene | 0.082 | 0.092 | 0.094 | 0.094 | 112 | 130 | 174 | 226 |
Nanoparticle | Nanoparticle Concentration wt.% | |||||||
---|---|---|---|---|---|---|---|---|
COF | WSD (µm) | |||||||
0.1 | 0.5 | 1 | 2 | 0.1 | 0.5 | 1 | 2 | |
SWCNT-COOH | 0.059 | 0.054 | 0.059 | 0.063 | 185 | 155 | 173 | 160 |
SWCNTs | 0.057 | 0.066 | 0.064 | 0.065 | 201 | 185 | 255 | 184 |
Fullerenes | 0.067 | 0.054 | 0.049 | 0.054 | 194 | 155 | 142 | 170 |
Graphene | 0.058 | 0.06 | 0.068 | 0.067 | 165 | 212 | 259 | 250 |
Nanoparticle | Nanoparticle Concentration wt.% | |||||||
---|---|---|---|---|---|---|---|---|
COF | WSD (µm) | |||||||
0.1 | 0.5 | 1 | 2 | 0.1 | 0.5 | 1 | 2 | |
SWCNT-COOH | 0.064 | 0.071 | 0.06 | 0.067 | 120 | 136 | 134 | 145 |
SWCNTs | 0.079 | 0.073 | 0.072 | 0.071 | 175 | 220 | 283 | 307 |
Fullerenes | 0.066 | 0.064 | 0.071 | 0.066 | 131 | 120 | 135 | 122 |
Graphene | 0.073 | 0.079 | 0.08 | 0.08 | 224 | 159 | 186 | 218 |
Lubricant | Force (N) | ||||
---|---|---|---|---|---|
Pure | Graphene | Fullerenes | SWCNTs | SWCNT-COOH | |
SN150 | 3530.3 | 1372.9 | 1274.8 | 1569 | 1569 |
RSO | 4707.1 | 2745.8 | 1765.1 | 2353.5 | 1765.1 |
50-50 Oil Blend | 3922.6 | 1765.1 | 1765.1 | 1765.1 | 3530.3 |
Lubricant | COF | WSD (µm) |
---|---|---|
SN150 | 0.081 | 116 |
RSO | 0.064 | 151.5 |
50-50 Oil Blend | 0.071 | 168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, J.; Cursaru, D.-L. The Performance of Carbon-Based Nanomaterials in Different Base Oils and an Oil Blend. Lubricants 2024, 12, 90. https://doi.org/10.3390/lubricants12030090
Nasr J, Cursaru D-L. The Performance of Carbon-Based Nanomaterials in Different Base Oils and an Oil Blend. Lubricants. 2024; 12(3):90. https://doi.org/10.3390/lubricants12030090
Chicago/Turabian StyleNasr, Jack, and Diana-Luciana Cursaru. 2024. "The Performance of Carbon-Based Nanomaterials in Different Base Oils and an Oil Blend" Lubricants 12, no. 3: 90. https://doi.org/10.3390/lubricants12030090
APA StyleNasr, J., & Cursaru, D. -L. (2024). The Performance of Carbon-Based Nanomaterials in Different Base Oils and an Oil Blend. Lubricants, 12(3), 90. https://doi.org/10.3390/lubricants12030090