Development of a Digital Model for Predicting the Variation in Bearing Preload and Dynamic Characteristics of a Milling Spindle under Thermal Effects
Abstract
:1. Introduction
2. Theoretical Background
2.1. Thermal Modeling
2.1.1. Heat Generation of Ball Bearing
2.1.2. Convective Heat Transfer Coefficient
2.2. Bearing Configuration
2.3. Preload and Axial Clearance of Spacers
2.4. Modal Characteristics of Spindle Tool
3. Architecture of Digital Model of Spindle Tool
- Establishment of the thermal–mechanical model with characterized thermal parameters. Initially, a series of spindle run-in experiments were carried out. Based on the thermal–mechanical model of the spindle tool with bearing modules, the temperature rise history was predicted and compared with the measured results. From the comparisons, the thermal parameters, such as the heat loss of bearings and heat convection coefficients, were appropriately calibrated from initial defaults by an analytical approach.
- Establishment of thermal–mechanical model with mechanical characteristics. The dynamic characteristics, such as the modal parameters of the spindle tool, were assessed by conducting the tapping tests on the milling machine, which was used to calibrate the preload state of the spindle bearing model at the initial amount.
- Verification of the model. Additional experiments were conducted to assess the temperature rise history and dynamic characteristics at a steady state after run-in operation. Thermal-induced deformation and preload variation in the spindle tool were predicted based on an analysis model with imported temperature loadings form thermal analysis. The predicted bearing preload and dynamic characteristics under thermal effects were compared with experiments.
4. Assessments of Thermal and Mechanical Behaviors
4.1. Run-In Temperature Rises Experiments
4.2. Impact Vibration Test
4.3. Variation in Modal Parameters due to Temperature Rise
5. Creation of a Digital Model with Thermal–Mechanical Characteristics
5.1. Finite Element Model of Milling Spindle
5.2. Thermal–Mechanical Analysis and Calibration of Thermal Parameters
5.3. Validation of Digital Model
6. Application of Thermal–Mechanical Model
6.1. Prediction of Thermal Deformation
6.2. Prediction of Thermal-Induced Bearing Preload
7. Conclusions
- Experimental findings revealed that temperature rises in the spindle unit affect the modal frequency and dynamic compliance to change with the increase in spindle speed, indicating a decrease in bearing stiffness due to thermal effects at higher speeds.
- Thermal parameters played a crucial role in ensuring the effectiveness and accuracy of the model in mimicking the thermal–mechanical behavior of the milling spindle. The study successfully identified temperature-dependent thermal parameters by comparing results from transient thermal analysis with experimentally measured temperature rise histories. Notably, thermal parameters varied with temperature rise. In addition, the thermal-induced bearing preload can also be predicted by the digital model without the need for sensor implementation in the spindle.
- Furthermore, results from thermal–mechanical coupling analysis highlighted that thermal expansion of spindle components and headstock led to a decrease in bearing preload with increasing speed. At a speed of 15,000 rpm, bearing preload exhibited a reduction of approximately 45% from its initial state, consequently increasing the dynamic compliance of the spindle tool, as confirmed in experiments.
- These findings demonstrate that the spindle model developed in this study accurately reflects the characteristics of real milling spindles. Moreover, this model, incorporating a milling spindle with a machine frame, provides a valuable foundation for monitoring changes in spindle performance and improving the design of both spindle and machine frame structures. This is particularly relevant for optimizing bearing configuration, feeding mechanisms, and cooling systems to mitigate thermal effects.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
H | Heat value | Watts (W) |
M | Sum of the moments | N.mm |
n | Rotation per minute | rpm |
Ml | Mechanical friction torque | N.mm |
Mv | Viscous friction torque | N.mm |
f1 | Bearing type load factor | |
Fβ | Bearing load | N |
Pith diameter of ball bearing | mm | |
fs | Static equivalent load | N |
Fa | Axial load | N |
Fr | Radial load | N |
Cor | Basic static load rating | N |
z, y | Constant value | |
X0,Y0 | Static equivalent load factor | |
v0 | Kinematic viscosity of the lubricant | mm2/s |
f0 | factor related to the type of bearing with the condition of bearings arrangements and lubrication type | |
hh | Natural convection coefficient | W/m2/°C |
Forced convection coefficients of the rotating components | W/m2/°C | |
Rolling balls and the lubricant forced convection coefficient | W/m2/°C | |
ΔTh | Air temperature changes | °C |
Nusselt number | ||
Thermal conductivity of the air | W/m/°C | |
Equivalent diameter of the rotating components | mm | |
Re | Reynold number | |
Prandtl number of the fluid | ||
Kinematic viscosity factor of the fluid | mm2/s | |
λb | Heat conductivity | W/m/°C |
us | One-third of the shaft/housing surface velocity | m/s |
Dm | Diameter of the bearing outer surface | mm |
Ball bearing lubricant kinematic viscosity | mm2/s | |
Contact force | N | |
Z | Number of balls | |
Contact angle | ||
Loaded condition contact angle | ||
Pd | Diametric clearance | mm |
D | Ball diameter | mm |
ro | Outer raceway curvature radius | mm |
ri | Inner raceway curvature radius | mm |
Radial force | N | |
Axial force | N | |
Normal load–deflection factor; axial load–deflection factor | N/mmn | |
Normal deflection or contact deformation | mm | |
Hertzian load–deflection factor; axial load–deflection factor | N/mmn | |
ωn | Natural frequency | Hz |
ξ | Damping ratio | |
G(ω) | Real parts of the frequency response | |
H(ω) | Imaginary parts of the frequency response | |
Stiffness | N/m | |
Mass | Kg | |
Damping factor | N.s/m | |
Qb | Bearing heat loss | W |
Axial deformation | µm | |
S | Rotation speed | rpm |
Bearing preload | N |
References
- Mayr, J.; Jedrzejewski, J.; Uhlmann, E.; Alkan Donmez, M.; Knapp, W.; Härtig, F.; Wendt, K.; Moriwaki, T.; Shore, P.; Schmitt, R.; et al. Thermal Issues in Machine Tools. CIRP Ann. 2012, 61, 771–791. [Google Scholar] [CrossRef]
- El Ouafi, A.; Guillot, M.; Barka, N. An Integrated Modeling Approach for ANN-Based Real-Time Thermal Error Compensation on a CNC Turning Center. AMR 2013, 664, 907–915. [Google Scholar] [CrossRef]
- Yang, J.; Mei, X.; Zhao, L.; Ma, C.; Shi, H.; Feng, B. Thermal Error Compensation on a Computer Numerical Control Machine Tool Considering Thermal Tilt Angles and Cutting Tool Length. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 78–97. [Google Scholar] [CrossRef]
- Pahk, H.; Lee, S.W. Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error. Int. J. Adv. Manuf. Technol. 2002, 20, 487–494. [Google Scholar] [CrossRef]
- Chen, T.-C.; Chang, C.-J.; Hung, J.-P.; Lee, R.-M.; Wang, C.-C. Real-Time Compensation for Thermal Errors of the Milling Machine. Appl. Sci. 2016, 6, 101. [Google Scholar] [CrossRef]
- Peng, J.; Yin, M.; Cao, L.; Liao, Q.; Wang, L.; Yin, G. Study on the Spindle Axial Thermal Error of a Five-Axis Machining Center Considering the Thermal Bending Effect. Precis. Eng. 2022, 75, 210–226. [Google Scholar] [CrossRef]
- Liu, H.; Miao, E.; Feng, D.; Li, J.; Ma, H.; Zhang, Z. Thermal Error Modeling Algorithm Based on Overall Adjustment Strategy Neural Network. J. Chongqing Univ. Technol. Nat. Sci. 2020, 34, 107–115. [Google Scholar]
- Liu, J.; Ma, C.; Gui, H.; Wang, S. Thermally-Induced Error Compensation of Spindle System Based on Long Short Term Memory Neural Networks. Appl. Soft Comput. 2021, 102, 107094. [Google Scholar] [CrossRef]
- Wei, X.; Ye, H.; Miao, E.; Pan, Q. Thermal Error Modeling and Compensation Based on Gaussian Process Regression for CNC Machine Tools. Precis. Eng. 2022, 77, 65–76. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, B.; Dai, Y.; Zhu, W.; Wang, Q.; Wang, B. Research on Thermal Error Modeling of Motorized Spindle Based on BP Neural Network Optimized by Beetle Antennae Search Algorithm. Machines 2021, 9, 286. [Google Scholar] [CrossRef]
- Tan, F.; Yin, M.; Peng, J.; Wei, Y.; Yin, G. CNC Machine Tool Spindle Thermal Error Modeling Based on Ensemble BP Neural Network. Comput. Integr. Manuf. Syst. 2018, 24, 1383–1390. [Google Scholar]
- Li, Y.; Yu, M.; Bai, Y.; Hou, Z.; Wu, W. A Review of Thermal Error Modeling Methods for Machine Tools. Appl. Sci. 2021, 11, 5216. [Google Scholar] [CrossRef]
- Ozturk, E.; Kumar, U.; Turner, S.; Schmitz, T. Investigation of Spindle Bearing Preload on Dynamics and Stability Limit in Milling. CIRP Ann. 2012, 61, 343–346. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Hung, J.-P.; Wu, K.-D. Experimental Measurement and FEM Modeling of the Dynamic Characteristics of the Milling Spindle with Different Bearing Preload. J. Chin. Soc. Mech. Eng. 2017, 38, 56–61. [Google Scholar]
- Zhang, Z.; Feng, S.; Ding, Y.; Mei, X.; Tao, Z. Thermal Error Modeling of Spindle and Dynamic Machining Accuracy Reliability Analysis of CNC Machine Tools Based on IA and LHSMC. Eksploat. Niezawodn.—Maint. Reliab. 2022, 24, 100–113. [Google Scholar] [CrossRef]
- Harris, T.A. How to Compute the Effects of Preloaded Bearings. Prod. Eng. 1995, 19, 84–93. [Google Scholar]
- Kim, K.; Kim, S.S. Effect of Preload on Running Accuracy of Spindle. Int. J. Mach. Tools Manuf. 1989, 29, 99–105. [Google Scholar] [CrossRef]
- Huseyin Filiz, I.; Gorur, G. Analysis of Preloaded Bearings under Combined Axial and Radial Loading. Int. J. Mach. Tools Manuf. 1994, 34, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Shin, Y.C. Analysis of Bearing Configuration Effects on High Speed Spindles Using an Integrated Dynamic Thermo-Mechanical Spindle Model. Int. J. Mach. Tools Manuf. 2004, 44, 347–364. [Google Scholar] [CrossRef]
- Ciou, Y.-S.; Lee, C.-Y. Controllable Preload Spindle with a Piezoelectric Actuator for Machine Tools. Int. J. Mach. Tools Manuf. 2019, 139, 60–63. [Google Scholar] [CrossRef]
- Bian, W.; Wang, Z.; Yuan, J.; Xu, W. Thermo-Mechanical Analysis of Angular Contact Ball Bearing. J. Mech. Sci. Technol. 2016, 30, 297–306. [Google Scholar] [CrossRef]
- Jiang, S.; Mao, H. Investigation of Variable Optimum Preload for a Machine Tool Spindle. Int. J. Mach. Tools Manuf. 2010, 50, 19–28. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Lee, C.M. Development of Automatic Variable Preload Device for Spindle Bearing by Using Centrifugal Force. Int. J. Mach. Tools Manuf. 2009, 49, 781–787. [Google Scholar] [CrossRef]
- Zahedi, A.; Movahhedy, M.R. Thermo-Mechanical Modeling of High Speed Spindles. Sci. Iran 2012, 19, 282–293. [Google Scholar] [CrossRef]
- Sy Truong, D.; Kim, B.-S.; Park, J.-K. Thermally Affected Stiffness Matrix of Angular Contact Ball Bearings in a High-Speed Spindle System. Adv. Mech. Eng. 2019, 11, 168781401988975. [Google Scholar] [CrossRef]
- Truong, D.S.; Kim, B.-S.; Ro, S.-K. An Analysis of a Thermally Affected High-Speed Spindle with Angular Contact Ball Bearings. Tribol. Int. 2021, 157, 106881. [Google Scholar] [CrossRef]
- Gao, S.H.; Meng, G.; Long, X.H. Stability Prediction in High-Speed Milling Including the Thermal Preload Effects of Bearing. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2010, 224, 11–22. [Google Scholar] [CrossRef]
- Liu, J.; Lai, T.; Tie, G. Influence of Thermo-Mechanical Coupled Behaviors on Milling Stability of High Speed Motorized Spindles. Precis. Eng. 2018, 52, 94–105. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Yang, X.; Zhu, L. Influence of Thermal Effect on Dynamic Behavior of High-Speed Dry Hobbing Motorized Spindle System. J. Mech. Sci. Technol. 2022, 36, 2521–2531. [Google Scholar] [CrossRef]
- Hao, J.; Li, C.; Song, W.; Yao, Z.; Miao, H.; Xu, M.; Gong, X.; Lu, H.; Liu, Z. Thermal-Mechanical Dynamic Interaction in High-Speed Motorized Spindle Considering Nonlinear Vibration. Int. J. Mech. Sci. 2023, 240, 107959. [Google Scholar] [CrossRef]
- Miao, H.; Wang, C.; Song, W.; Li, C.; Zhang, X.; Xu, M. Coupling Modeling of Thermal–Dynamics–Milling Process for Spindle System Considering Nonlinear Characteristics. Nonlinear Dyn. 2024, 112, 6061–6099. [Google Scholar] [CrossRef]
- Zhang, C.; Li, B.; Yu, C.; Li, H.; Zhu, Y. Prediction of the Modal Parameters of The Spindle System in High-speed Dry Hobbing Machine with Thermal Effects. Acad. J. Sci. Technol. 2024, 9, 221–226. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital Twin Paradigm: A Systematic Literature Review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital Twins-Based Smart Manufacturing System Design in Industry 4.0: A Review. J. Manuf. Syst. 2021, 60, 119–137. [Google Scholar] [CrossRef]
- Segovia, M.; Garcia-Alfaro, J. Design, Modeling and Implementation of Digital Twins. Sensors 2022, 22, 5396. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Starly, B.; Cohen, P.; Lee, Y.-S. Sensor Data and Information Fusion to Construct Digital-Twins Virtual Machine Tools for Cyber-Physical Manufacturing. Procedia Manuf. 2017, 10, 1031–1042. [Google Scholar] [CrossRef]
- Liu, T.; Gao, W.; Zhang, D.; Zhang, Y.; Chang, W.; Liang, C.; Tian, Y. Analytical Modeling for Thermal Errors of Motorized Spindle Unit. Int. J. Mach. Tools Manuf. 2017, 112, 53–70. [Google Scholar] [CrossRef]
- Xiao, J.; Fan, K. Research on the Digital Twin for Thermal Characteristics of Motorized Spindle. Int. J. Adv. Manuf. Technol. 2022, 119, 5107–5118. [Google Scholar] [CrossRef]
- Liu, J.; Ma, C.; Wang, S.; Wang, S.; Yang, B.; Shi, H. Thermal-Structure Interaction Characteristics of a High-Speed Spindle- Bearing System. Int. J. Mach. Tools Manuf. 2019, 137, 42–57. [Google Scholar] [CrossRef]
- Lei, C.; Li, F.; Gong, B.; Jia, X. An Integrated Model to Characterize Comprehensive Stiffness of Angular Contact Ball Bearings. Math. Probl. Eng. 2020, 2020, 4951828. [Google Scholar] [CrossRef]
- Palmgren, A. Ball and Roller Bearing Engineering, 3rd ed.; SKF Industries Inc.: Philadelphia, PA, USA, 1959; pp. 34–41. [Google Scholar]
- Harris, T.A.; Kotzalas, M.N. Advanced Concepts of Bearing Technology: Rolling Bearing Analysis, 5th ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- SKF Group. The SKF Model for Calculating the Frictional Moment, 2021, 17000–B5. Available online: https://cdn.skfmediahub.skf.com/api/public/0901d1968065e9e7/pdf_preview_medium/0901d1968065e9e7_pdf_preview_medium.pdf (accessed on 29 October 2023).
- Liu, J.; Li, X.; Ding, S.; Pang, R. A time-varying friction moment calculation method of an angular contact ball bearing with the waviness error. Mech. Mach. Theory 2020, 148, 103799. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, R.; Xue, Y.; Liu, Y. Study on Thermal Characteristics of Angular Contact Ball Bearings Considering Roundness Error. Lubricants 2024, 12, 43. [Google Scholar] [CrossRef]
- Rodionov, E.M. Moment Originating from Errors in the Form or Rolling Surfaces of a Ball Bearing; Technical Report FTD-HT-66-374; Foreign Technology Div.: Wright-Patterson AFB, OH, USA, 1966. [Google Scholar]
- Liu, J.; Xu, Z. An Optimization Design Method of a Cylindrical Roller Bearing with the Low Friction Torque. J. Tribol. 2022, 144, 111201. [Google Scholar] [CrossRef]
- NSK Ltd. Part 5: Technical Guides. In NSK Motion & Control Super Precision Bearings; NSK Ltd.: Tokyo, Japan, 2022; Available online: https://www.nsk.com (accessed on 4 November 2023).
- Dong, Y.; Chen, F.; Qiu, M. Thermal-Induced Influences Considered Spindle Unit Angular Contact Ball Bearing Preload Determination Using Embedded Fiber Bragg Gating Sensors. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221082430. [Google Scholar] [CrossRef]
- KOYO. Ball & Roller Bearing. Available online: https://koyo.jtekt.co.jp/en/support/bearing-knowledge/pdf/catb2001-8_a.pdf#page=68 (accessed on 25 March 2024).
- Jorgensen, B.R.; Shin, Y.C. Dynamics of Machine Tool Spindle/Bearing Systems Under Thermal Growth. J. Tribol. 1997, 119, 875–882. [Google Scholar] [CrossRef]
- Bossmanns, B.; Tu, J.F. A Thermal Model for High Speed Motorized Spindles. Int. J. Mach. Tools Manuf. 1999, 39, 1345–1366. [Google Scholar] [CrossRef]
- Zhang, L.; Xuan, J.; Shi, T. Obtaining More Accurate Thermal Boundary Conditions of Machine Tool Spindle Using Response Surface Model Hybrid Artificial Bee Colony Algorithm. Symmetry 2020, 12, 361. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, P.; Chen, C.; Yu, D.; Wu, Z. A Method for Thermal Performance Modeling and Simulation of Machine Tools. Int. J. Adv. Manuf. Technol. 2013, 68, 1517–1527. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, J.; Tong, Q.; An, G.; Liu, R.; Zhang, Y.; Yan, H. Study on the Thermal Performance and Temperature Distribution of Ball Bearings in the Traction Motor of a High-Speed EMU. Appl. Sci. 2020, 10, 4373. [Google Scholar] [CrossRef]
- Alfares, M.; Saleem, O.; Majeed, M. Analytical Study of Thermal Variation Impact on Dynamics of a Spindle Bearing System. Proc. IMechE 2019, 233, 871–898. [Google Scholar] [CrossRef]
- Hung, J.-P.; Lai, Y.-L.; Lin, C.-Y.; Lo, T.-L. Modeling the Machining Stability of a Vertical Milling Machine under the Influence of the Preloaded Linear Guide. Int. J. Mach. Tools Manuf. 2011, 51, 731–739. [Google Scholar] [CrossRef]
- Jakubek, B.; Barczewski, R. The Influence of Kinematic Viscosity of a Lubricant on Broadband Rolling Bearing Vibrations in Amplitude Terms. Diagnostyka 2018, 20, 93–102. [Google Scholar] [CrossRef]
Mode | Modal Frequency (Hz) | Dynamic Compliance (μm/N) | Modal Stiffness (N/μm) | Damping Ratio (%) |
---|---|---|---|---|
1 | 176 | 0.0447 | 403.91 | 5.16 |
2 | 380 | 0.0167 | 680.60 | 6.48 |
3 | 675 | 0.0192 | 629.22 | 6.44 |
4 | 1070 | 0.0405 | 519.32 | 3.38 |
5 | 1420 | 0.0151 | 548.66 | 5.29 |
Spindle Speed (rpm) | Frequency (Hz) | Damping (%) | Compliance (μm/N) | Modal Stiffness (N/μm) | Dynamic Stiffness (N/μm) |
---|---|---|---|---|---|
Before run-in | 1070 | 3.380 | 0.0405 | 519.32 | 24.69 |
3000 | 1030 | 2.447 | 0.0407 | 483.43 | 24.57 |
6000 | 1015 | 2.483 | 0.0404 | 401.99 | 24.75 |
9000 | 1012 | 2.490 | 0.0447 | 361.03 | 22.36 |
12,000 | 1010 | 2.495 | 0.0476 | 338.25 | 21.01 |
15,000 | 1010 | 2.505 | 0.0520 | 311.59 | 19.23 |
RPM | Measured Temp. at Bearing Housing (°C) | Predicted Temp. at Bearing Housing (°C) | Predicted Temp. at Ball Bearing (°C) | Temperature Rise (°C) | ||
---|---|---|---|---|---|---|
Front | Rear | Front | Rear | Rear | ||
3000 | 27.17 | 25.10 | 26.63 | 25.64 | 29.5 | 9.5 |
6000 | 27.96 | 28.07 | 27.34 | 27.25 | 31.5 | 11.5 |
9000 | 27.03 | 27.00 | 27.91 | 27.57 | 34.5 | 14.5 |
12,000 | 28.34 | 28.45 | 28.45 | 28.75 | 37.9 | 17.9 |
15,000 | 28.35 | 28.58 | 28.45 | 28.62 | 40.7 | 20.7 |
Spindle Speed (rpm) | Bearing Heat Loss (W) | Forced Convection around Spindle Shaft (W/(m2.°C) | Forced Convection at Bearing Rotating Surface (W/(m2.°C) |
---|---|---|---|
3000 | 23 | 101.6 | 83.3 |
6000 | 52 | 162.4 | 117.8 |
9000 | 87 | 213.7 | 144.3 |
12,000 | 138 | 259.6 | 166.6 |
15,000 | 198 | 301.9 | 186.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arief, T.M.; Lin, W.-Z.; Royandi, M.A.; Hung, J.-P. Development of a Digital Model for Predicting the Variation in Bearing Preload and Dynamic Characteristics of a Milling Spindle under Thermal Effects. Lubricants 2024, 12, 185. https://doi.org/10.3390/lubricants12060185
Arief TM, Lin W-Z, Royandi MA, Hung J-P. Development of a Digital Model for Predicting the Variation in Bearing Preload and Dynamic Characteristics of a Milling Spindle under Thermal Effects. Lubricants. 2024; 12(6):185. https://doi.org/10.3390/lubricants12060185
Chicago/Turabian StyleArief, Tria Mariz, Wei-Zhu Lin, Muhamad Aditya Royandi, and Jui-Pin Hung. 2024. "Development of a Digital Model for Predicting the Variation in Bearing Preload and Dynamic Characteristics of a Milling Spindle under Thermal Effects" Lubricants 12, no. 6: 185. https://doi.org/10.3390/lubricants12060185
APA StyleArief, T. M., Lin, W. -Z., Royandi, M. A., & Hung, J. -P. (2024). Development of a Digital Model for Predicting the Variation in Bearing Preload and Dynamic Characteristics of a Milling Spindle under Thermal Effects. Lubricants, 12(6), 185. https://doi.org/10.3390/lubricants12060185