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Abstract: The problem of normal impact of a rigid sphere on a Maxwell viscoelastic solid half-space
is considered. The first-order asymptotic solution is constructed in the framework of Hunter’s model
of viscoelastic impact. In particular, simple analytical approximations have been derived for the
maximum contact force and the time to achieve it. A linear regression method is suggested for
evaluating the instantaneous elastic modulus and the mean relaxation time from a set of experimental
data collected for different spherical impactors and impact velocities.
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1. Introduction

Loosely speaking, an impact between two solids is a dynamic mechanical process
characterized by some exchange of their kinetic energies via intermediate transformation
into the potential energy stored in elastic deformations. If a part of the initial total kinetic
energy is lost during the impact, it is called inelastic, and reasons for the energy loss can be
different, depending on the mechanical properties of the solids [1,2]. A wide special class
of materials with intrinsic dissipation of strain energy covers viscoelastic materials whose
response to deformation depends on the strain rate [3].

Recent interest in viscoelastic impact arose in modeling such diverse phenomena as
dynamic response of biological soft tissues [4], hopping of a rover on an asteroid [5], fruit
drop tests [6], impact of nanomanipulation of nanoparticles [7], kinetic energy dissipation
in granular matter [8], seismic pounding [9], erosion [10], and protective performance of
flexible polymer material [11]. It goes without saying that the case of linearly viscoelastic
materials is a base case for more elaborate time-dependent material models such as poro-
viscoelasticity [12] and surface viscoelasticity [13]. Additionally, a rigid sphere is one of the
most frequently used types of impactor [14,15].

As a time process, impact starts at the moment of initial contact (see Figure 1), and its
subsequent time evolution strongly depends on the initial contact configuration, including
the initial contact geometry and the initial kinematic conditions. The so-called Hertzian
contact geometry assumes a single-point initial contact and the second-degree paraboloid
approximation for the initial gap between the contacting surfaces [16]. For what fol-
lows, two special cases of normal contact should be distinguished among others, namely,
(a) impact between two solid spheres (see Figure 1a) and (b) impact between a solid sphere
and a semi-infinite solid (see Figure 1b). In both cases, we can trace up a characteristic
feature of the Hertzian impact as a continuous variation of the contact area (which is
circular due to the axisymmetric contact geometry and the assumption of normal impact)
during the impact starting from a point of initial contact to a point of final contact, passing
through a single maximum. Whereas, in fully elastic impacts, the loading and unloading
stages are symmetric, there is a marked difference between the two stages in viscoelastic
impacts, depending on the share of the total kinetic energy dissipated during the impact.
The end of an impact is determined by the condition of vanishing the contact reaction.
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Figure 1. Initial impact configuration: (a) collision of two elastic spheres; (b) impact of a rigid sphere
on an elastic half-space.

In his ground-laying paper [17] on the frictionless local contact and impact of elastic
solids, Heinrich Hertz estimated the half-duration, t0

m = t0
c/2, of the normal dissipationless

impact as follows:

t0
m = τ0

m
w0

m
V0

, τ0
m =

1∫
0

dξ√
1 − ξ5/2

, (1)

where V0 is the initial relative velocity of the approach, and w0
m is the maximum value

of the contact approach (evaluated from the initial contact moment). For what follows,
the superscript 0 is attached to the Hertzian contact parameters, as Hertz’s model will be
treated as an unperturbed model. It is pertinent to note that the scaling law t0

m ∼ w0
m/V0

follows from simple dimensional considerations, but the main problem is to determine the
dimensionless proportionality constant τ0

m, which is sometimes called Hertz’s integral.
Hertz’s theory of elastic impact can be represented as the initial-value problem for the

following second-order nonlinear differential equation:

mẅ = −F, w
∣∣
t=0 = 0, ẇ

∣∣
t=0 = V0, (2)

where w is the contact approach measured from the time, t, of initial contact; ẇ and ẅ are
the impact velocity and acceleration, respectively; m is the equivalent mass; and F is the
contact force (reaction), which, according to Hertz’s contact law, is given by the following:

F = kw3/2, (3)

with k being the stiffness coefficient. For the basic facts of Hertz’s theory that we recall here,
we refer to textbooks on theoretical and solid mechanics (see, e.g., [2,16]).

In the case of collision between two elastic spheres (see Figure 1a), the equivalent
mass is given by m = m1m2/(m1 + m2), whereas the stiffness coefficient k = (4/3)E∗√R
is determined in terms of the equivalent radius, R, and the effective elastic modulus, E∗,
defined as follows:

1
R

=
1

R1
+

1
R2

,
1

E∗ =
1 − ν2

1
E1

+
1 − ν2

2
E2

. (4)

From Equations (2) and (3), the equation of energy conservation follows in the following form:

m
2
(
V2

0 − ẇ2) = 2
5

kw5/2, (5)

which determines the maximum contact approach, as follows:

w0
m =

(5m
k

)2/5
(

V0

2

)4/5

, (6)
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achieved at the time moment t = t0
m when ẇ = 0.

The same Hertzian Equations (1)–(3), (5), and (6) also apply in the case of the impact
of a rigid sphere of mass m on an elastic half-space (see Figure 1b), as Equation (4) allows a
passage to the limit as E1 → ∞ and R2 → ∞. We recall that Hertz’s theory of frictionless
contact assumes that the contact is developed in the framework of the linear theory of
elasticity, the elastic bodies are assumed to be isotropic and homogeneous, the contact is
local in a sense that the initial contact occurs at a single point only, and the elastic half-space
approximation applies for evaluating the contact stresses by neglecting the effect of global
contact geometry [18].

It should be noted that some of the Hertz model’s restrictions can be relaxed. For in-
stance, in a routine manner, Willis [19] extended Hertz’s theory of impact to anisotropic
bodies, using his solution for the problem of local frictionless contact. By utilizing Bon-
dareva’s solution [20] for a heavy elastic sphere on a rigid plane, Villaggio [21] showed that
the global contact geometry effect slightly increases the contact duration, compared with
that predicted by the classical Hertz’s theory. The inertia effect revealing itself in the impact
energy loss due to the elastic wave radiation in the impact problem for an elastic half-space
(Figure 1b) was first estimated by Hunter [22] (see also [23,24]) based on the analytical
solution obtained by Miller and Pursey [25] for the elastic wave energy radiated by a rigid
disk vibrating on the half-space surface. It is pertinent to note here that the excitation of the
half-space surface by a spherical impact was considered in [26].

Hertz’s theory of impact predicts the unit coefficient of restitution, e; the symmetry of
loading/unloading contact process; and the duration of impact, t0

c , to be equal twice the
time t0

m to the maximum of the contact approach w0
m. It was shown by Hunter [22] and

Deresiewicz [27] that the variation of the contact approach as a function of time during the
contact can be well approximated by the following simple formula:

w ≈ w0
m sin

πt
t0
c

, t0
c = 2t0

m. (7)

The classical Hertz impact theory has been given substantial experimental verifica-
tion [1] and, in particular, was extended to the frictional impact of anisotropic nonlinear
elastic solids [28] and power-graded viscoelastic solids [29] as well as to tangential (oblique)
impact [30–32] and impact with adhesion [33–35].

It is known [36,37] that the coefficient of restitution in the collision of two perfectly
elastic bodies is almost equal to the unit (that is, e ≈ 1), if the time of impact well exceeds the
time needed for elastic waves to traverse either body. That is why the impact configuration
shown in Figure 1b primarily differs from that shown in Figure 1a by the presence of the
energy dissipation (absorption [22]) mechanism due to the vibrational energy radiated into
the massive substrate when elastic waves propagate to the infinity.

Energy dissipation in the Hertzian impact between two spherical solids (Figure 1a) can
be associated with the effects of plastic deformation or internal friction among others [37].
A phenomenological approach (see, e.g., [38,39]) leads to the following Hunt–Crossley
dissipative contact model [40]:

F = kw3/2 + χwβẇ. (8)

Here, β is a dimensionless constant and χ denotes the hysteresis damping factor. As a rule,
the dimensional coefficient χ is interpreted in terms of the coefficient of restitution [41].
By adopting a constitutive law similar to the Kelvin–Voigt model σzr = 2µ0εzr + 2ηε̇zr,
where η is the viscosity coefficient, Goldobin et al. [42] arrived at Equation (8) with β = 1/2
and χ being proportional to a linear combination of the shear and bulk viscosity coeffi-
cients (see also [43,44]). However, it should be noted that the Kelvin–Voigt model has the
relaxation function in terms of Dirac’s delta function (see, e.g., [45]), and therefore, it is
not appropriate for modeling the material behavior under a blunt impact as it predicts a
jump-like contact reaction at the impact moment (see, e.g., [46]).
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It should be emphasized that, in contrast with the Hunt–Crossley model (8), where
the current contact reaction depends only on the current kinematic variables w(t) and
ẇ(t), in the viscoelastic Hertzian contact, a preceding history of loading is important. This
allows for gaining insight into the hereditary effect in a bouncing impact [47], whereas the
Hunt–Crossley reaction element forgets about the prior loading as soon as it returns into
the intact state (i.e., w(t) = 0).

The impact problem becomes exceedingly hard if colliding solids are assumed to
possess time-dependent mechanical properties. The Hertz impact problem for a rigid
spherical indenter and a viscoelastic half-space was first considered by Hunter [48], who
complemented the analytical solution by Lee and Radok [49] for the Hertzian quasi-static
contact problem with monotonically increasing contact by the solution when the contact
radius possesses a single maximum, which is the case in single impact problems. In the
special case of a Maxwell solid, Hunter obtained the first-order perturbation approximations
for the coefficient of restitution, e, and the impact duration, tc. Later, Forney [50] questioned
Hunter’s result about the impact duration, which indirectly casts a shadow on the entirety
of Hunter’s solution. To date, this issue remains unresolved.

The case of a Kelvin–Voigt solid (with accounting for the unloading stage) was consid-
ered by Khusid [51] (see also [29]), who obtained some numerical results for the impact
duration and the coefficient of restitution. A systematic review of modeling linear and
non-linear viscoelastic contact problems was recently given by Wang et al. [52].

In what follows, we consider the normal impact of a rigid sphere on an isotropic
viscoelastic half-space with a constant Poisson’s ratio, ν, and a hereditary constitutive law,
as follows:

σzr(t) = 2
t∫

0−

µ(t − t′)
dϵzr(t′)

dt′
dt′, (9)

where σzr and ϵzr are the shear stress and strain, respectively; µ(t) is the shear relaxation
modulus; t′ is the integration variable; and 0− indicates the instant immediately before the
initial point of contact.

In his first-order perturbation analysis of the viscoelastic Hertzian impact, Aksel [53]
applied the viscoelastic constitutive law in the following form:

σzr(t) = 2µ0ϵzr(t) + 2
t∫

0

µ̂(t′)ϵzr(t − t′)dt′, (10)

where µ0 = µ(0) is the instantaneous shear modulus, and µ̂(t) = dµ(t)/dt is the viscoelas-
tic relaxation kernel, and it is tentatively assumed that ϵzr(t) = 0 for t < 0. In what follows,
the constitutive equation in the compact form (9) is preferred over (10). Additionally, in the
spherical impact problem, the kinematic contact variables start to vary from the zeroth
values, and therefore, the lower limit in the hereditary integral (9) may be replaced with a
zero value.

The practically important problem of material parameter identification by means
of impact tests was considered in a number of experimental studies [54–57]. Kren and
Naumov [58] formulated the inverse problem of determining the relaxation function µ(t)
from the spherical impact loading history (impactor velocity, V(t); contact force, F(t);
and contact approach, w(t)) without a priori adopting any material model. However,
the problem with the Kren–Naumov method is that the Lee–Radok solution [49], which is
valid only for the loading contact stage, was incorrectly applied for the unloading stage as
well. It is noteworthy here that the approximation that is utilized for the restitution phase
of the same form of the equation of motion derived for compression is sometimes used
for the sake of simplicity [59,60]. Apparently, this simple but erroneous approach to the
viscoelastic Hertzian impact problem dates back to the seventy-year-old paper [61], which
was already criticized by Lee and Radok [49].
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Why do we need to study the viscoelastic Hertzian impact then? If the material
behavior follows a linearly viscoelastic constitutive law, the dissipative contact model (8)
still can be applied for describing a spherical impact, but the model parameters χ and β
should be initialized from the impact itself (indeed, χ and β are not material parameters).
On the other hand, when the impact model has been derived using the solution of the
viscoelastic Hertzian contact problem, the viscoelastic material parameters that enter the
contact reaction model can be determined from an independent material deformation test.
However, the latter problem (that is, the problem of the viscoelastic Hertzian impact) is
much more mathematically difficult than the impact problem given by Equations (2) and (8).
Here, we are not looking for simple solutions but rather for the correct one.

2. Hunter’s Model of the Spherical Viscoelastic Impact
2.1. Viscoelastic Hertzian Impact

For the sake of simplicity, we consider the single impactor configuration (see Figure 1b)
and start with Newton’s second law and the initial conditions:

m
d2w
dt2 = −F, w

∣∣
t=0 = 0,

dw
dt

∣∣∣
t=0

= V0, (11)

where F is the contact reaction.
Assuming a constant Poisson’s ratio ν and neglecting inertia effects in the viscoelastic

half-space target, the Hertzian elastic solution can be generalized (for the loading stage) as
follows [48,49]:

F(t) =
8

3(1 − ν)R

t∫
0

µ(t − t′)
d

dt′
(
a3(t′)

)
dt′, (12)

w(t) =
a2(t)

R
, t ≤ tm. (13)

Here, R is the sphere radius, µ(t) is the shear relaxation modulus that describes the
material’s time-dependent response to an instantaneous unit shear deformation, a(t) is the
contact radius as a function of time t, and tm is the duration of the loading stage. It is clear
that Equation (13) is the Hertzian relation between the contact radius a and the contact
approach w.

From Equations (11)–(13), the following holds:

m
d2w
dt2 = − 8

√
R

3(1 − ν)

t∫
0

µ(t − t′)
d

dt′
(
w3/2(t′)

)
dt′. (14)

It should be remembered that, in the loading stage, the Lee–Radok Equations (12) and (13)
and Equation (14) are valid until the time moment tm of maximum penetration, wm, which,
in view of Equation (13), coincides with the moment of maximum contact radius, am,
and, therefore, with the moment when the impactor velocity vanishes, as follows:

am = a(tm), wm = w(tm),
dw
dt

∣∣∣
t=tm

= 0. (15)

In the unloading stage (tm < t < tc, where tc denotes the end time of contact),
Hunter’s solution is given in terms of the auxiliary function t1(t) that solves the equation
a(t) = a(t1) for t > tm and t1 < tm. Namely, the contact reaction is given by the following:

F(t) =
8

3(1 − ν)R

t1(t)∫
0

µ(t − t′)
d

dt′
(
a3(t′)

)
dt′, (16)
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whereas Equation (13) should be replaced with the following relation [48]:

Rw(t) = a2(t)−
t∫

tm

µ−1(t − t′)
d

dt′

 t′∫
t1(t′)

µ(t′ − t′′)
d

dt′′
(
a2(t′′)

)
dt′′

dt′. (17)

Here, µ−1(t) is the shear creep compliance (we keep the notation from [48]).

2.2. Impact for a Maxwell Solid

The reciprocal relaxation and creep functions for a Maxwell solid are the following:

µ(t) = µ0 exp(−ηt), µ−1(t) =
1

µ0
(1 + ηt), (18)

where µ0 is the instantaneous shear modulus, and η is an inverse relaxation time.
The substitution of (18)1 into Equation (14), in view of the initial conditions (11), leads

to the following differential equation:

d2w
dt2 + η

(
dw
dt

− V0

)
= − 8

√
Rµ0

3(1 − ν)m
w3/2, t < tm, (19)

which is an exact result.
However, in the unloading (or withdrawal) stage, the application of Equations (18)

allows for reducing Equation (17) to a complicated nonlinear differential equation for t1(t)
(see [48] for details). Nevertheless, by utilizing the simple approximation t1 ≈ 2tm − t,
Hunter derived the following resulting governing differential equation:

d2w

dt2 − η

(
3

dw
dt

+ V0

)
= − 8

√
Rµ0

3(1 − ν)m
w3/2, t > tm, (20)

which is amendable to analytical treatment, but constitutes an approximate result.
It should be noted that the governing Equations (19) and (20) make use of slightly

different but similar symbols w and w. In the first case, w coincides with the contact
approach, which is related to the relative squared contact radius by Equation (13). In the
second case, the symbol w preserves the latter geometrical meaning of w, but not its
kinematic meaning (i.e., w does not coincide with the contact approach).

In fact, we introduce the following auxiliary function:

w =
a2(t)

R
, t ≥ tm, (21)

which is related to the contact approach by the following differential equation:

dw
dt

= exp
(
−2η(t − tm)

) d
dt

( a2(t)
R

)
. (22)

We note that, in view of (13) and (21), the solution of Equation (20) is subject to the
following boundary conditions (or the initial conditions for the withdrawal stage):

w
∣∣
t=tm

= w
∣∣
t=tm

,
dw
dt

∣∣∣
t=tm

= 0, (23)

The contact duration tc is determined by the condition w(tc) = 0, when the contact
shrinks down.
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In the following dimensionless variables:

ω =
a2(t)
Rw0

m
, τ =

V0t
w0

m
, τm =

V0tm

w0
m

, ε =
ηw0

m
V0

, (24)

where w0
m is given by (6) with k being replaced by 8

√
Rµ0/[3(1− ν)], Equations (19) and (20)

become the following:

d2ω

dτ2 + ε

(
dω

dτ
− 1

)
= −5

4
ω3/2, τ < τm, ω

∣∣
τ=0 = 0,

dω

dτ

∣∣∣
τ=0

= 1, (25)

d2ω

dτ2 − ε

(
3

dω

dτ
+ 1

)
= −5

4
ω3/2, τm < τ, ω

∣∣
τ=τm

= ωm,
dω

dτ

∣∣∣
τ=τm

= 0, (26)

where τm is the time-like point for which the solution of Equation (25) first yields dω/dτ = 0,
and the corresponding value of ω(τm) will be denoted by ωm.

2.3. Asymptotic Solution for the Loading Stage

The problem with Forney’s critique [50] of Hunter’s approximate solution is in the
following integral decomposition representation:

τm =

ωm∫
0

dω

ω̇
=

1∫
0

dω

ω̇
+

ωm∫
1

dω

ω̇
, (27)

where ω̇ = dω/dτ, because the function ω cannot be regarded as a perturbation of the
limit (ε = 0) elastic solution ω0(τ) that is defined only on the interval [0, τ0

m], where τ0
m

is the dimensionless Hertzian half duration of an impact. At the same time, the second
integral on the right-hand side of Equation (27) refers to the interval ω ∈ (1, ωm), which
corresponds to τ ∈ (τ0

m, τm); that is, the second term in (27) falls outside the interval of
validity of the limit solution.

That is why we will make use of the following formula:

τm =

0∫
1

dω

υ
= −

1∫
0

ω′(υ)
dυ

υ
, (28)

where ω is regarded as a function of υ ∈ [0, 1], ω′(υ) is its derivative, and υ decreases from
1 to 0 as τ increases from 0 to τm.

By setting υ = dω/dτ and d2ω/dτ2 = dυ/dτ = υdυ/dω, we reduce Equation (25)
to the following first-order differential equation:

dω

dυ
= − υ

(5/4)ω3/2 + ε(υ − 1)
, υ ∈ (0, 1). (29)

The first-order approximate solution of Equation (29) subject to the boundary condition
ω
∣∣
υ=1 = 0 is given by the following:

ω ≃ ω0 + εω1, ω0 = (1 − υ2)2/5, ω1 =
(4/5)2

(1 − υ2)3/5

1∫
υ

ξ(1 − ξ)dξ

(1 − ξ2)3/5 . (30)

The substitution of (30) into Equation (28) yields the following:

τm ≃ τ0
m + εcτ

m, τ0
m =

4
5

1∫
0

dξ

(1 − ξ2)3/5 , (31)
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where we have introduced the following notation:

cτ
m =

24

52

1∫
0

(1 − ξ)dξ

(1 − ξ2)6/5 − 25 · 3
53

1∫
0

1
(1 − υ2)8/5

1∫
υ

ξ(1 − ξ)

(1 − ξ2)3/5 dξ dυ. (32)

Moreover, in view of (30), we obtain the following:

ωm ≃ 1 + εcω
m, cω

m =
24

52

1∫
0

ξ(1 − ξ)

(1 − ξ2)3/5 dξ. (33)

It can be easily verified numerically that the first-order approximations (31)1 and (33)1 com-
pletely agree with the corresponding results obtained by Hunter. At the same, the asymptotic
formula (31)1 disagrees with Forney’s result τm − τ0

m = O(ε1/2) as ε → 0.
From a practical point of view, it is of interest to evaluate the maximum contact force,

FM, and the corresponding time moment, tM, such that FM = F(tM). In the case of a
Maxwell solid, according to Equations (12), (18), (19) and (24), for τ ∈ (0, τm), we have
the following:

w0
m

mV2
0

F =
5
4

ω3/2 + ε
(dω

dτ
− 1

)
≃ 5

4
ω3/2

0 + ε
(15

8
ω1/2

0 ω1 − 1 + υ
)

, (34)

where ω0 and ω1 are given by (30)2 and (30)3, respectively.
Without going into details of the first-order asymptotic analysis, the following can

be shown:

w0
m

mV2
0

FM ≃ 5
4
− ε

(
1 − 15

8
cω

m

)
,

V0

w0
m

tM ≃ τ0
m − ε

( 8
15

− cτ
m

)
, (35)

where cτ
m and cω

m are given by (32) and (33)2, respectively.

2.4. Asymptotic Solution for the Unloading Stage

Now, we transform Equation (26) as follows:

υ
dυ

dω
= −5

4
ω3/2 + ε(3υ + 1), ω ∈ (0, ωm), υ

∣∣
ω=ωm

= 0. (36)

The first-order approximate solution υ ≃ υ0 + ευ1 to Equation (36) is given by the following:

υ0 = −
√

ω5/2
m − ω5/2, υ1 = − 1√

ω5/2
m − ω5/2

ωm∫
ω

[
3
√

ω5/2
m − ϕ5/2 − 1

]
dϕ. (37)

The end of the unloading stage is determined by the following value:

υc = υ
∣∣
ω=0 ≃ −1 + ε

1 − 5
4

cω
m − 3

1∫
0

√
1 − ξ5/2 dξ

, (38)

where cω
m is defined by formula (33)1.

The duration of the unloading stage can be evaluated as follows:

τc − τm =

υc∫
1

dω

υ
= −

ωm∫
0

dω

υ(ω)
,
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and, in view of (37), we find the following:

τc − τm ≃ τ0
m − εcτ

c , (39)

where we have introduced the following notation:

cτ
c =

1
4

τ0
mcω

m +

1∫
0

1
(1 − ξ5/2)3/2

1∫
ξ

[
3
√

1 − ζ5/2 − 1
]
dζ dξ. (40)

Hence, the dimensional impact duration t0
c = (w0

m/V0)τ
0
c can be represented as follows:

tc ≃ t0
c

(
1 + ηt0

c
(cτ

m − cτ
c )

(τ0
c )

2

)
, (41)

where τ0
c = 2τ0

m, and cτ
c is given by (40).

Again, by numerical check for the involved integrals, it can be easily established that
formula (41) completely agrees with the corresponding Hunter’s result.

Finally, according to Equation (22), the rebound velocity is found to be as follows:

Vc = V0 exp
(
−2η(tc − tm)

)dω

dτ

∣∣∣
τ=τc

,

that is, Vc/V0 ≃
(
1 − ε(τc − τm)

)
υc, and in view of (38) and (39), we arrive at the following

Hunter’s result for the coefficient of restitution:

e ≃ 1 − 4
9

ηt0
c . (42)

Thus, our calculations for wm, tc, and e have conformed to those by Hunter, obtained
by a different method.

3. Comparison with the FEM Solution
3.1. Impact for a Maxwell Solid

It is interesting that though numerical approaches for the viscoelastic Hertzian impact
were developed in a number of papers [62–64], quite general numerical results were
obtained not so long ago by Herrenbrück et al. [65] based on finite-element simulations for
both the Maxwell model and the standard linear sold model. The numerical master curves
were calculated for the maximum penetration wm scaled by the Hertzian elastic solution
w0

m, for the coefficient of restitution e, and for the maximum acceleration, which coincides
with the relative maximum contact force FM/m, also scaled by the Hertzian solution F0

M/m,
where the following holds:

F0
M =

5
4

mV2
0

w0
m

. (43)

In the case of a Maxwell solid, the creep function (18)2 is now represented as follows:

µ−1(t) =
1

µ0

(
1 +

t
τR

)
, τR =

1
η

, (44)

where τR is the characteristic relaxation time, which is introduced instead of the inverse
characteristic time η used before.

In view of (1)1, (24)4, and (44)2, we have the following:

τR

t0
m

=
1

ετ0
m

, ε =
t0
m

τ0
mτR

, (45)

where τ0
m is given by the Hertzian formula (1)2.
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According to relations (33)1, (35)1, and (42), the above-mentioned impact parameters
can be approximated as follows:

wm

w0
m

= 1 + εcω
m, e = 1 − ε

8
9

τ0
m,

FM

F0
M

= 1 − εcF
M, (46)

where F0
M is given by (43), and we have introduced the following notation:

cF
M =

4
5
− 3

2
cω

m. (47)

As it is seen from Figures 2 and 3 (see the inserts), the analytical approximations (46)
can be used with less than 5% relative error for ε ≤ 0.2. It should be noted that different
symbols in Figures 2 and 3 correspond to different combinations of the dimensional model
parameters used in the FEM simulations [65].
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Figure 2. Master curves for the Maxwell model obtained by Herrenbrück et al. [65], using FEM
simulations, and the analytical approximations (46)1 and (46)3: relative maximum penetration (a) and
relative maximum acceleration (b) as functions of the scaled characteristic relaxation time.

We note that, for a Maxwell solid, in view of (9), (10), and (18)1, we have µ̂(t) =
−ηµ0 exp(−ηt). It can be verified that Aksel [53] obtained the approximate formula
e = 1 − 2.69ηw0

m/V0, which can be transformed to the form (42) with the coefficient 0.914
instead of 4/9 ≈ 0.444. Thus, Aksel’s asymptotic solution apparently contains a com-
putational error, as it does not agree with the numerical solution shown in Figure 3b.
Additionally, it should be noted that Aksel’s approach suffers from a similar inconsistency
as that of Forney’s approach. It should be pointed out that Aksel’s approach takes the
contact radius as an independent variable, but in light of (30), the range of contact radius in
the perturbed problem is larger than that in the Hertzian (unperturbed) problem.
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Figure 3. Master curves for the Maxwell model obtained by Herrenbrück et al. [65], using FEM
simulations, and the analytical approximations (46)2 (red curve) and (48) (blue curve): coefficient
of restitution as a function of the scaled characteristic relaxation time (a) and the relative inverse
relaxation time (b).

Remark 1. The accuracy of asymptotic approximations, which directly depends on the value of the
small parameter ε (it is clear that the smaller ε, the smaller is the error), can be improved by the use
of a Padé-like transformation [66] (see also [24] for an example). For instance, formula (46)2 can be
replaced with the following asymptotically equivalent one:

e ≃ 1
1 + ε(8/9)τ0

m
. (48)

Formula (48) yields the blue solid line in Figure 3b. As it is seen from the insert in Figure 3b (errors
produced by the asymptotic approximations (46)2 and (48) are negative and positive, respectively),
the 5% error interval of formula (48) is 50% bigger than the interval of the same accuracy for
formula (46)2. It is clear that the FEM numerical master curves [65] for the Maxwell viscoelastic
model can be fitted with more accurate analytical approximations. For the main purpose of our
study, it is important to highlight that the straight line in Figure 3b (which is produced by the
first-order asymptotics (46)2) coincides with the initial tangent line of the FEM master curve. This
fact precisely supports the correctness of Hunter’s asymptotic solution.

3.2. Impact for a Standard Linear Solid

By adopting the notation used in [65], the shear creep function in the case of a standard
linear solid will be the following:

µ−1(t) =
1

(1 − α)µ0

{
1 − α exp

(
−(1 − α)

t
τS

)}
, (49)

where τS is a characteristic time, α = (µ0 − µ∞)/µ0, and µ∞ is the relaxed shear modulus.
The short-time approximation (as t tends toward zero) follows from (49) in the following form:

µ−1(t) ≃ 1
µ0

(
1 +

t
τS/α

)
. (50)

By comparing formulas (44)1 and (50), we conclude that the first-order approxima-
tions (46) still can be employed provided that the following holds:

ε =
αt0

m
τ0

mτS
, (51)
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where τS and α are the model parameters of a standard solid subjected to a spherical impact.
As it may be seen from Figure 4, the short-time approximations can be utilized in a

limited range of the dimensionless parameter ε. We note also that the Maxwell model (44)
can be recovered from the standard linear solid model (49) in the limit as α tends toward
zero, provided that τS/α is fixed to be τR (see also [46]).
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Figure 4. Rescaled master curves for the standard linear solid model obtained by Herrenbrück et al. [65]
using FEM simulations and the analytical approximations (46): coefficient of restitution (a) and relative
maximum acceleration (b) as functions of the scaled characteristic relaxation time.

4. Material Parameter Identification via Impact Testing

Let us recall that the analytical approximations for the characteristics of an impact de-
rived in the framework of the Maxwell viscoelastic model exploit the following expansions
about t = 0:

µ(t) = µ0(1 − ηt + . . .), µ−1(t) =
1

µ0
(1 + ηt − . . .). (52)

Moreover, the characteristic relaxation time 1/η is assumed to be much larger than
the impact duration, that is, ηtc ≪ 1 or, which is asymptotically the same, ηt0

c ≪ 1.
The analytical approximations are given in terms of the small dimensionless parameter

ε, which, in view of (1) and (24), is proportional to ηt0
c , where t0

c is the Hertzian impact
duration (see Equations (1) and (7)2). Namely, Hertz’s theory of impact yields the following
characteristic time:

w0
m

V0
= C0

( m2

RV0

)1/5
, (53)

where we have introduced the notation for the following compliance coefficient:

C0 =

(
15(1 − ν)

32µ0

)2/5

. (54)

Now, we consider the approximate formulas (35), which can be recast as follows:

FM

mV0
=

V0

w0
m

(5
4
− εcF

M

)
, (55)

tM =
w0

m
V0

(
τ0

m − εct
M

)
, (56)

where we have introduced the following short-hand notation:

cF
M = 1 − 15

8
cω

m, ct
M =

8
15

− cτ
m. (57)

We recall that FM and tM denote the maximum contact force and the corresponding
time moment. We assume that at least one of these parameters of impact can be measured
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experimentally. The problem is to evaluate the material parameters C0 and η from the im-
pact data collected from several tests characterized by the following governing parameter:

V =
(RV0

m2

)1/5
. (58)

In view of (24)4, (53), and (58), formulas (55) and (56) can be represented as follows:

FM

mV0
=

5
4
C−1

0 V − cF
Mη, (59)

tM = τ0
mC0V

−1 − ct
MηC2

0V
−2. (60)

First, we consider Equation (59) and note that this formula represents a linear relation
between the relative maximum contact force Fm/(mV0) and the variable impact parame-
ter V. Provided that both of them are measured in an experiment, the material parameters
C−1

0 and η can be evaluated via linear regression by means of fitting the linear Formula (59)
to the scaled experimental data. After that, the instantaneous shear elastic modulus will be
given by the following:

µ0 =
15(1 − ν)

32
C−5/2

0 , (61)

where the material Poisson’s ratio ν, as usual, is supposed to be known.
Second, in order to exhibit the method of linear regression, we transform Equation (60)

to the following form:
VtM = τ0

mC0 − ct
MηC2

0V
−1. (62)

By fitting Equation (62) to the experimental data (RV0/m2)1/5tM versus (m2/RV0)
1/5,

we can evaluate C0 and ηC2
0 , from where, in view of (61), we readily obtain µ0. Meanwhile,

the inverse characteristic relaxation time η is simply determined from the ratio of the two
linear regression coefficients.

In the same way, formula (12) for the impact duration can be rewritten as follows:

tc =
w0

m
V0

(
2τ0

m + εct
c

)
(63)

and eventually transformed to the following form:

Vtc = 2τ0
mC0 + ct

cηC2
0V

−1. (64)

By comparing Equations (62) and (64), we readily see that a similar linear regression
method can be designed for evaluating the parameters µ0 and η from the impact duration
data. It is clear that the same type of equation can be easily obtained for the duration tm of
the loading stage.

It remains an open issue whether the impact test results for polymer rubber-like
materials (for which the standard solid model is quite suitable) align with the asymptotic
model in the appropriate range of the model variables. To apply the above-suggested
linear-regression-method-based analysis to experimental data, accurate measurements
of the maximum contact reaction FM or the contact duration parameters tM, tm, and tc
are needed.

Remark 2. In light of (13), (21), (24), (53), (54), and (58), Formula (46)1 can be recast in the
following form:

wm

R
=

V0

R
C0

V
+

ηV0

R
C2

0
V2 . (65)

Let us recall [67] that the ratio De = τR/tc is called the Deborah number. In view of (45), we
have τR/tc ∼ 1/ε as ε → 0. Thus, formula (65), as well as other asymptotic formulas derived
above in the framework of the Maxwell viscoelastic model, holds under the assumption De ≫ 1,
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that is, for the so-called fast-time impact. Further, it is clear that the first term on the right-hand
side of Equation (65) represents the Hertzian solution, which is known to be self-similar [28].
Recently, using the first- and second-order asymptotic solutions obtained for the spherical impact of a
Maxwell-type viscoelastic Winkler foundation, Maruoka [67] has proposed a crossover of scaling law,
which may be regarded as the interference from the higher-class similarity parameters. A somewhat
similar interpretation, which refers to the concept of intermediate asymptotics [68], can be extended
to the case of viscoelastic Hertzian impact for a Maxwell solid.

5. Discussion

The Hertzian impact assumes a paraboloidal approximation φ(r) = r2/2R for the
initial gap between two colliding elastic solids, which eventually leads to Hertz’s contact
law F = kw3/2. Shtaerman [69] and Galin [70] obtained the force–displacement relations
F = knw(2n+1)/(2n) and F = kλw(λ+1)/λ for the monomial gap functions φ(r) = Anr2n

(n is an integer) and φ(r) = Aλrλ (λ ≥ 1 is a real number). The special case of a conical
gap, φ(r) = A1r and F = k1w2, was earlier considered by Love [71]. The corresponding
generalizations of the elastic Hertzian impact model was given by Kilchevsky [72] and Gra-
ham [73]. However, to the best of the author’s knowledge, Hunter’s model of viscoelastic
impact was not extended to the case of the Shtaerman–Galin contact law F = kλw(λ+1)/λ.

Another open issue is to account for the target thickness, which is realized by a non-
linear force–displacement relation that looses the self-similarity scaling. In the case of
quasi-static viscoelastic Hertzian contact, the thickness effect was considered by Arga-
tov et al. [74]. It would be of undoubted interest to incorporate this effect even into the
elastic Hertzian impact model (see, e.g., [55,75]).

Still, a puzzle remains to be solved, and this concerns the inconsistency of Hunter’s pre-
diction for the duration of impact (tc < t0

c) with the experimental observations [55] that the
effect of viscoelasticity increases the impact duration as compared with the elastic case (that
is, tc > t0

c). For the linear viscoelastic Maxwell impact model (see, e.g., [46,76]), though the
viscoelasticity effect increases the duration of impact, we have tm = t0

m(1 + O(ζ)) and
tc = t0

c(1 + O(ζ2)), where ζ is the loss factor. In other words, the viscoelastic dissipation
effect on the duration of the loading stage is much stronger than the effect on the overall
contact duration. Apparently, the answer to the raised question might be sought in the fact
that Hunter’s approximation t1 ≃ 2tm − t is not asymptotically exact (strictly speaking,
the sign ≃ should be replaced with ≈). At the same time, the approximate model (19) for
the loading stage and the corresponding solutions (see Section 2.3) are asymptotically exact.
It should be also noted that the FEM simulations performed by Diani et al. [57] for a gener-
alized Maxwell model result in an impact duration smaller than that predicted by Hertz’s
theory. Hence, an accurate numerical study (with a precisely controllable accuracy) of the
Hunter model for a Maxwell solid is needed to shed light on the impact duration issue.

A remark should be made about numerical solutions to the unilateral viscoelastic
impact problem, where the force–displacement relation in the unloading stage is given by
the two nonlinear integral equations (16) and (17) with the function t1(t) being determined
by the equation a(t) = a(t1), where a(t) is the current contact radius in the unloading
stage (t > tm), and a(t1) is the same value of contact radius in the loading stage (t1 < tm).
A number of numerical schemes have been designed in the literature [62–64], but still no
in-depth reliable numerical study of the impact problem (e.g., for a Maxwell solid) has
been published. It is noteworthy that the FEM simulations, while being very useful for the
overall analysis [65], do not suit well for verifying asymptotic solutions, especially if the
second-order smallness effects should be spotlighted.

6. Conclusions

The author’s contribution to the theory of viscoelastic Hertzian impact concerns a
new approach to the first-order asymptotic solution of the set of governing differential
Equations (19) and (20) in the case of a Maxwell solid. Simple analytical approximations
have been derived for the maximum contact force and the time to achieve it. It has been
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shown that the critique of Forney (1974) of the analytical solution obtained by Hunter (1957)
is in error. By comparison with the FEM results obtained by Herrenbrück et al. (2015),
Hunter’s asymptotic solutions for the maximum penetration and contact reaction as well
as for the coefficient of restitution have been supported. A linear-regression-based method
is outlined for recovering two material parameters from the impact data collected from
several tests characterized by the governing impact parameter RV0/m2.

To conclude, in view of its practical significance, the problem of viscoelastic impact
requires further investigation.
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Nomenclature

The following nomenclature is used in this manuscript:

a(t) contact radius
am maximum contact radius
Aλ monomial gap function coefficient
cF

M first-order correction coefficient for FM
ct

M first-order correction coefficient for tM
cτ

c first-order correction coefficient for tc − tm
cτ

m first-order correction coefficient for t0
m

cω
m first-order correction coefficient for wm
C0 compliance coefficient
E Young’s elastic modulus
E∗ effective elastic modulus
e coefficient of restitution
k Hertzian stiffness coefficient
kn stiffness coefficient
m impactor (equivalent) mass
F contact reaction
FM maximum contact force
F0

M Hertzian maximum contact force
R impactor (equivalent) radius
t time variable
tM time to the maximum contact force
tm time to the maximum contact penetration
t0
m Hertzian impact half-duration

tc impact duration
t0
c Hertzian impact duration

t1(t) Hunter’s auxiliary function
Vc rebound impact velocity
V0 initial impact velocity
V impact governing parameter
w contact approach
w relative squared contact radius
ẇ impact velocity
wm maximum contact approach (penetration)
w0

m Hertzian maximum contact approach
α relative shear moduli difference
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λ monomial gap function exponent
ε dimensionless small parameter
εzr shear strain
ε̇zr shear strain rate
ζ loss factor
µ0 instantaneous shear modulus
µ(t) shear relaxation modulus
µ−1(t) shear creep compliance
µ̂(t) viscoelastic relaxation kernel
ν Poisson’s ratio
η inverse relaxation time
σzr shear stress
τ dimensionless time variable
τc dimensionless contact time
τm dimensionless time to the maximum contact penetration
τ0

m dimensionless Hertzian time to the maximum penetration
τR characteristic relaxation time in the Maxwell model
τS characteristic relaxation time in the standard solid model
υ dimensionless impact velocity
φ(r) gap function
ω dimensionless relative squared contact radius
ωm dimensionless maximum contact penetration
ω0 dimensionless Hertzian relative squared contact radius
ω1 first-order correction coefficient to ω0
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