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Abstract: With the increasingly demanding engine conditions and the implementation of “double
carbon” policies, the demand for high-quality lubricants that are cost-effective and environmentally
friendly is increasing. Additives, especially high-performance friction modifiers, play an important
role in boosting lubricant efficiency and fuel economy, so their developments are at the forefront of
lubrication technologies. In this study, 1,3-dioleoamide-2-propyloleate (DOAPO), which incorporates
polar amide, ester, and nonpolar alkyl chains, was synthesized from 1,3-diamino-2-propanol to give
an eco-friendly organic friction modifier. Nuclear magnetic resonance (NMR), high-resolution mass
spectrometry (HR-MS), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric
analysis (TGA) were used to characterize the structure and thermal stability of DOAPO. Meanwhile,
the storage stability and tribological behaviors of DOAPO in synthetic base oil were studied and
compared with a commercial oleamide. The results show that DOAPO has better thermal stability
and better storage stability in synthetic base oil. Additionally, 0.5 wt.% of DOAPO could shorten the
running-in period and reduce the average friction coefficient (ave. COF) and wear scar diameter (ave.
WSD) by 8.2% and 16.2%, respectively. The worn surface analysis and theoretical calculation results
show that the ester bond in DOAPO breaks preferentially during friction, which can reduce the
interfacial shear force and easily react with metal surfaces to form iron oxide films, thus demonstrating
a better friction-reducing and anti-wear performance.

Keywords: sulfur- and phosphorus-free; amide–ester; tribological behavior; synthetic base oil

1. Introduction

In recent years, energy conservation and emission reduction have become one of the
most urgent challenges for the automobile industry. The pursuit of improved fuel efficiency
and “dual carbon” goals emphasizes the growing trend toward the use of low-viscosity
oils [1], which could minimize the shear resistance between friction counterparts [2–4].
However, the shift to low-viscosity lubricants carries a certain risk of wear resistance as the
lubrication regime changes from a favorable hydrodynamic lubrication to a less favorable
mixed or boundary lubrication for engines with more stringent operating conditions. Under
the boundary lubrication state, the lubricating films of low-viscosity oils are thin and lack
of strength, resulting in direct contact and making the films break during high-strength
engine operations, which would increase friction and wear [5]. Therefore, friction modifiers,
which can form thick boundary films under mixed or boundary lubrication regimes, were
applied to reduce or prevent direct friction solid–solid contact on friction pairs [6–8].

In general, the friction modifications used in engine oil are metal friction modifications
(such as didithiophosphate zinc (ZDDP), organic molybdenum [9,10], etc.) and non-metallic
friction modifications (such as oleamide [11], glycerol monooleate [3,12,13], etc.). Metal
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friction improvement agents are mostly metal or metal compounds containing sulfur and
phosphorus. Although they show excellent performance and are most widely used [14,15],
the metal they contain will increase the ash content of lubricating oil, and the metal
compounds containing sulfur and phosphorus can poison automobile catalysts used for
emission control, causing adverse effects on the engine and the environment. Therefore,
green non-metallic organic friction modifiers (OFMs) composed only of carbon, hydrogen,
oxygen, and nitrogen atoms are attracting increasing attention [5,16,17].

OFMs tend to have amphiphilic structures, in which polar groups could adsorb onto
metal surfaces, while nonpolar hydrocarbons arrange outward within the lubricant [18,19].
This arrangement establishes a hydrocarbon surface with low shear strength on metal
surfaces. At present, the developed OFMs incorporate various polar functional groups,
such as carboxyl [20–22], alcohol [23–25], amine [26,27], amide [5,28–30], and ester [31]
functionalities. Biresaw [31] synthesized seven lipoic acid esters using various alcohols,
and the study showed that the performance of thioic acid multifunctional additives in base
oils is related to its structure. When the addition is 5 wt.%, 2-ethylhexyl thiocticate and
dodecyl thiocticate with straight chains increased the kinematic viscosity at 40 ◦C from
40.8 mm2/s to 78.7 mm2/s and 69.5 mm2/s, kinematic viscosity at 100 ◦C from 8.7 mm2/s
to 18.2 mm2/s and 15.0 mm2/s, the viscosity index from 200 to 253 and 229, showing a
good viscosity improvement performance. Compared with the base oil, the addition of
20 wt.% lipoic acid ester makes the onset oxidation temperature and extreme pressure load
increase from 187.2 ◦C to 218.4–221.5 ◦C, and 120 kgf to 420–480 kgf, respectively, showing
a good anti-oxidation and extreme pressure performance.

Hou [5] prepared a novel organic friction modifier N-(2,2,6,6-tetramethyl-1-oxyl-4-
piperidyl) dodecenamide (C12Amide-TEMPO) and found it can form a unique double-layer
boundary film on the iron oxide surface, i.e., the strong surface adsorption layer formed
by chemical interactions between amide oxygen, free radicals, and iron oxide surfaces, as
well as the interlayer hydrogen bond films formed by amide hydrogen and free radicals or
oxygen. Meanwhile, the combination of intra-layer and inter-layer hydrogen bonds also
increases the strength of the boundary film by enhancing cohesion, so C12Amide-TEMPO is
better than the traditional glyceryl monooleate (GMO) and stearic acid in terms of bearing
capacity, friction reduction, and friction stability. Compared to GMO and stearic acid at an
effective load of 5.0 N, C12Amide-TEMPO demonstrates a more stable instantaneous friction
coefficient (COF), with over 60% reduction in wear rate and surface roughness. The groove
width and wear rate of wear scar lubricated with C12Ester-TEMPO or C12Amino-TEMPO
is 569.0 µm, 544.0 µm and 461.2 µm3/(N·mm), 196.9 µm3/(N·mm), which is significantly
higher than 365.0 µm and 42.2 µm3/(N·mm) that lubricated with C12Amide-TEMPO. This
indicates that C12Amide-TEMPO with an amide-linked structure outperforms C12Ester-
TEMPO and C12Amino-TEMPO in terms of friction-reducing and anti-wear properties.
However, the long-term stability and durability study of these OFMs remains limited.

The reported studies show that ester- or amide-based compounds exhibit good per-
formance in improving friction; however, the prepared additives are all individual esters
or amides. Compared to a single-functional group, molecules with multiple functional
groups would enhance adsorption strength through multi-site adsorption or chelation
effects, improving the stability and durability of tribofilms and demonstrating excellent
tribological performance. Additionally, most of the reported tribological properties were
evaluated in PAO6, whose viscosity is relatively higher (kinematic viscosity of ~5.80 cSt at
100 ◦C). With increasingly stringent global emission regulations, low-viscosity lubricant
technology has become a well-known trend in recent years [32], so the performance of
additives should be conducted in lower-viscosity oils, such as PAO4 (kinematic viscosity of
~3.90 cSt at 100 ◦C). In this study, we designed and synthesized an eco-friendly OFM with
a ternary structure based on amide, ester, and hydrocarbons. 1,3-diamino-2-propanol and
oleic acid (OA) were used to prepare the 1,3-dioleoamide-2-propyloleate (DOAPO), which
was characterized by NMR, HR-MS, FT-IR, and TGA. Meanwhile, the storage stability and
tribological behaviors of DOAPO were investigated in a low-viscosity synthetic base oil and



Lubricants 2024, 12, 196 3 of 12

compared with a commercial oleamide. Additionally, micro-IR, XPS, and DFT calculations
were applied to clarify its micro-lubrication mechanism.

2. Materials and Methods
2.1. Materials

1,3-diamino-2-propanol (98%) and 4-dimethylaminopyridine (DMAP, 99%) were ob-
tained from Beijing Innochem Co., Ltd. (Beijing, China). Oxalyl chloride (98%), N, N-
dimethylformamide (DMF, 99.5%), and triethylamine (TEA, 99%) were received from
Energy Chemical. Dichloromethane (DCM, Shanghai Titan Scientific Co., Ltd. (Shanghai,
China), 99.9%), oleic acid (OA, Alfa Aesar Chemical Co., Ltd. (Hangzhou, China), 99%),
and all other reagents were commercially obtained and used as received for the synthesis
of DOAPO.

Durasyn®164 (PAO4, INEOS, London, UK) and Priolube 3970 (3970, CRODA, Snaith,
UK) were separately purchased from Shanghai Qicheng Industrial Co., Ltd. (Shanghai,
China) and Hersbit Chemical Co., Ltd. (Shanghai, China), which were applied as base oils
for the tribological evaluation of DOAPO, and oleamide (Tokyo Chemical Industry Co.,
Ltd. (Tokyo, Japan), 65%) was used as a commercial additive to compare with DOAPO.

2.2. Synthesis of 1,3-Dioleoamide-2-Propyloleate (DOAPO)

OA (12.55 g, 44.44 mmol), dry DCM (20 mL), and 2–3 drops of DMF were mixed in
a round-bottom flask under an Ar atmosphere, and oxalyl chloride (11.28 g, 88.88 mmol)
was slowly added dropwise into the mixture at 0 ◦C. After that, the reaction was stirred
at room temperature for 4 h until the OA was transformed completely. The excess oxalyl
chloride was removed by reduced pressure to yield the oily, colorless oleoyl chloride.
Subsequently, the prepared oleoyl chloride was dissolved with dry DCM (20 mL) and
added dropwise into a mixture of 1,3-diamino-2-propanol (1.00 g, 11.11 mmol), TEA (4.60 g,
45.55 mmol), DMAP (0.41 g, 3.33 mmol), and dry DCM (30 mL). The mixture was refluxed
at 50 ◦C for 2 h and quenched with water when 1,3-diamino-2-propanol was completely
consumed using TLC monitoring. The organic phase was extracted with DCM, washed
with saturated NaHCO3 and NaCl solutions, and dried with anhydrous Na2SO4. The
crude product was purified by column chromatography (eluent: V(DCM)/V(MeOH) = 30/1) to
obtain 1,3-dioleoamide-2-propyloleate as a pale-yellow liquid (6.20 g, yield: 63%), which
was recorded as DOAPO.

1H NMR (400 MHz, CDCl3) δ 6.22 (s, 2H), 5.34 (s, 6H), 4.83 (s, 1H), 3.49 (s, 2H), 3.30 (d,
J = 14.1 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 2.21 (t, J = 7.5 Hz, 4H), 2.00 (d, J = 5.5 Hz, 12H), 1.63
(s, 6H), 1.28 (d, J = 14.2 Hz, 60H), 0.87 (t, J = 6.3 Hz, 9H) (Figure S1a). 13C NMR (101 MHz,
CDCl3) δ 174.11, 173.18, 130.19, 130.15, 129.86, 129.82, 77.48, 77.16, 76.84, 71.21, 39.13, 36.94,
34.44, 33.95, 32.06, 29.92, 29.88, 29.68, 29.48, 29.42, 29.36, 29.31, 29.29, 27.39, 27.34, 25.88,
25.02, 22.83, 14.24 (Figure S1b). HR-MS (ESI) calcd. for C57H107N2O4 [M+H]+: 883.82254,
found: 883.82341 (Figure S1c). FT-IR (ATR): ν = 3292.0, 3079.6, 2922.7, 2853.3, 1739.1, 1651.7,
1548.5, 1465.0, 1377.5, 1246.1, 1172.6, 1083.8, 722.6 cm−1 (Figure S1d).

2.3. Characterization

The nuclear magnetic resonance (NMR) characterization, including 1H NMR and
13C NMR, was conducted on a 400-MR (Varian, Palo Alto, CA, USA) using CDCl3 as the
solution. High-resolution mass spectrometry (HR-MS) was carried out on JMS-T100LP
AccuTOF LC-plus 4G (Nippon Electronics Corporation, Tokyo, Japan) using electrospray
ionization. Nicolet iN10MX (Thermo Fisher, Waltham, MA, USA) was applied to record
Fourier-transform infrared (FT-IR) and micro-infrared (micro-IR) spectroscopy by scanning
from 400 to 4000 cm−1. Thermogravimetric analysis (TGA) was performed on Q500 (TA,
Milford, MA, USA) under a N2 atmosphere with a flow rate of 60 mL/min and a heating
rate of 10 ◦C/min from 25 to 600 ◦C. The morphology and elemental composition of metal
surfaces are analyzed by scanning electron microscope with energy dispersive spectrometer
(SEM-EDS) using QUANTAX (Bruker, San Jose, CA, USA). The chemical state of specific
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elements and potential tribochemical films formed on the frictional surface were analyzed
using X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Waltham, MA,
USA) with an Al-Kα radiation source, and the obtained spectra were analyzed using the
Avantage 5.9931 software.

2.4. Oil Preparation

In this study, the synthetic hydrocarbon PAO4 (90 wt.%) and saturated polyol ester
3970 (10 wt.%), which are both low viscosity, were blended after heating and stirring at
60 ◦C for 2 h to obtain the base oil. Oil samples containing additives were prepared as
follows: 0.05~1.0 wt.% of self-prepared DOAPO or purchased oleamide, and the base oil
was mixed at 60 ◦C for 2 h.

2.5. Tribological Test

The tribological behaviors of DOAPO in base oil were evaluated on a Tenkey MS-
10A four-ball tester (Xiamen TenKey Automation Co., Ltd., Xiamen, China), which was
compared with that of commercially available oleamide. A picture of the four-ball tester
and its schematic are shown in Figure 1; all balls used are made of GCr15-bearing steel
with a diameter of 12.7 mm. According to the standard NB/SH/T 0189-2017 [33], the
tribological tests were operated at 75 ◦C for 1 h, where the rotational speed of the upper
steel ball was 1200 rpm, and the load was 392 N. Each test was conducted at least three
times to ensure the repeatability of the average friction coefficient (ave. COF) and average
wear scar diameter (ave. WSD).
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3. Results and Discussion
3.1. Synthesis Route of DOAPO

At present, the synthesis of amides mainly includes direct amidation of carboxylic
acids and amines; amidation of acyl halogens, anhydrides, or esters; hydrolysis of amides by
oximes or nitriles; amidation of alcohol oxidation; and so on. Among them, the amidation
of acyl halogens, namely the Schotten–Baumann reaction, is the most convenient and
efficient method. Meanwhile, the reaction rate of carboxylic acid activated to acyl chloride
is fast, even for substrates with large site resistance. Therefore, oxalyl chloride is used to
activate OA to oleoyl chloride in this work, which can react simultaneously with the amine
and hydroxyl groups of 1,3-diamino-2-propanol to obtain DOAPO; the synthesis route
is shown in Scheme 1. NMR, HR-MS, and FT-IR were used to confirm the structure of
DOAPO, and the results can be seen in Section 2.2.



Lubricants 2024, 12, 196 5 of 12

Lubricants 2024, 12, x FOR PEER REVIEW 5 of 15 
 

 

the amine and hydroxyl groups of 1,3-diamino-2-propanol to obtain DOAPO; the synthe-
sis route is shown in Scheme 1. NMR, HR-MS, and FT-IR were used to confirm the struc-
ture of DOAPO, and the results can be seen in Section 2.2. 

 
Scheme 1. The synthesis route of DOAPO. 

3.2. Thermal Stability of DOAPO 
In general, high-quality lubricants such as engine oils, anti-wear hydraulic oils, com-

pressor oils, etc., all require a good high-temperature resistance. Although the thermal 
stability of lubricants mainly depends on base oils, it is worth noting that many additives 
with lower decomposition temperatures will adversely affect the overall stability of lubri-
cants, thus reducing their comprehensive performance and service life. So, thermal stabil-
ity is a key index to estimate the effectiveness of additives. The TG and DTG curves of 1,3-
diamino-2-propanol, DOAPO, and commercial oleamide are shown in Figure 2. Combing 
the comparison data in Table S1, the initial and terminal decomposition temperatures of 
1,3-diamino-2-propanol, DOAPO, and oleamide are 58.4 °C, 291.8 °C, and 273.4 °C and 
188.9 °C, 495.0 °C, and 329.9 °C, respectively; their maximum decomposition temperatures 
are 178.1 °C, 395.5 °C, and 307.8 °C, respectively. Meanwhile, the residual masses of 1,3-
diamino-2-propanol, DOAPO, and oleamide at 300 °C and 400 °C are 0.06%, 86.9%, and 
33.9% and 0.02%, 20.1%, and 0.3%, respectively. The results show that the thermal stability 
of the three can be ranked as DOAPO> oleamide> 1,3-diamino-2-propanol. Due to the in-
troduction of an oleacyl group with a long carbon chain, the thermal stability of DOAPO 
is significantly improved compared with the raw material 1,3-diamino-2-propanol, even 
better than that of commercial oleamide. 
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3.2. Thermal Stability of DOAPO

In general, high-quality lubricants such as engine oils, anti-wear hydraulic oils, com-
pressor oils, etc., all require a good high-temperature resistance. Although the thermal
stability of lubricants mainly depends on base oils, it is worth noting that many additives
with lower decomposition temperatures will adversely affect the overall stability of lubri-
cants, thus reducing their comprehensive performance and service life. So, thermal stability
is a key index to estimate the effectiveness of additives. The TG and DTG curves of 1,3-
diamino-2-propanol, DOAPO, and commercial oleamide are shown in Figure 2. Combing
the comparison data in Table S1, the initial and terminal decomposition temperatures of
1,3-diamino-2-propanol, DOAPO, and oleamide are 58.4 ◦C, 291.8 ◦C, and 273.4 ◦C and
188.9 ◦C, 495.0 ◦C, and 329.9 ◦C, respectively; their maximum decomposition temperatures
are 178.1 ◦C, 395.5 ◦C, and 307.8 ◦C, respectively. Meanwhile, the residual masses of 1,3-
diamino-2-propanol, DOAPO, and oleamide at 300 ◦C and 400 ◦C are 0.06%, 86.9%, and
33.9% and 0.02%, 20.1%, and 0.3%, respectively. The results show that the thermal stability
of the three can be ranked as DOAPO > oleamide > 1,3-diamino-2-propanol. Due to the
introduction of an oleacyl group with a long carbon chain, the thermal stability of DOAPO
is significantly improved compared with the raw material 1,3-diamino-2-propanol, even
better than that of commercial oleamide.
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3.3. Storage Stability of DOAPO in Synthetic Base Oil

Good storage stability is the basic requirement to ensure the performance of lubricants,
which is primarily determined by the stability of additives in base oils. Therefore, we
have investigated the storage stability of oils with different additions of DOAPO, as well
as the same addition of DOAPO and commercial oleamide. As shown in Figure 3a and
Table S1, after 30 days of storage at room temperature, the oil samples with 0.05~1.0 wt.%
DOAPO remained clear and bright without any precipitation (Figure 3a), while the bottom
of 0.5 wt.% oleamide appeared obvious precipitation (Figure 3b), indicating that the storage
stability of DOAPO in synthetic base oil is better than that of oleamide.
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3.4. Tribological Properties of DOAPO
3.4.1. Different Additions of DOAPO

The performance of additives in base oils usually varies with different additions,
exhibiting better comprehensive properties within an optimal addition range [34]. Figure 4
displays the tribological performance of oil samples with different additions of DOAPO.
The friction profiles (Figure 4a) show that the running-in period of oil with a low DOAPO
addition, i.e., 0.05 wt.%, is much longer than that with 0.1~1.0 wt.% (600 s vs. 120 s),
which is similar to base oil. During the relative-stability period (600~3600 s), oil samples
with 0.05~1.0 wt.% DOAPO are much more stable compared to base oil, even the COF
of 0.05 wt.% DOAPO oil is high. It is worth noting that the COF of 0.1 wt% DOAPO
oil increases at the end of friction, which is maintained stable for 0.5 wt% DOAPO oil.
Nonetheless, the COF of 1.0 wt% DOAPO oil fluctuates slightly in the initial phase of the
relative-stability period. Overall, oils with 0.1~1.0 wt% DOAPO exhibit better tribological
properties, i.e., lower COF and smaller WSD, when compared to the base oil (Figure 4b).
However, the tribological performance of 0.05 wt.% DOAPO oil is slightly worse than
base oil, which may be related to the higher friction during the running-in period (see
the insertion in Figure 4a). Overall, the oil with 0.5 wt.% DOAPO shows the best friction-
reducing and anti-wear performance, namely reducing COF and WSD by 8.2% and 16.2%
compared to base oil, respectively.
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3.4.2. Comparison with the Commercial Oleamide

The tribological performance of DOAPO was compared with the commercial oleamide
that has a similar structure, applying 0.5 wt% as the optimal addition. As demonstrated in
Figure 5a, both DOAPO and oleamide could shorten the running-in period to some extent
when compared to the base oil, but the friction of the oil containing DOAPO is more stable.
The ave. COF values during the running-in period of base oil, 0.5 wt.% DOAPO oil, and
0.5 wt.% oleamide oil are 0.094, 0.080, and 0.082, respectively. The results in Figure 5b
show that oils with DOAPO and oleamide exhibit lower COF and smaller WSD than base
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oil, i.e., both of them have effectiveness in friction reduction and anti-wear. Specifically,
0.5 wt.% DOAPO decreases the COF and WSD by 8.2% and 16.2%, while 0.5 wt.% oleamide
decreases the COF and WSD by 2.6% and 12.0%, which indicates that the friction-reducing
and anti-wear properties of DOAPO are better.
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3.5. Micro-Lubrication Mechanism
3.5.1. Worn Surface Analysis

To investigate the micro-lubrication mechanism of the as-prepared amide–ester in
synthetic base oil, micro-IR, SEM-EDS, and XPS were applied to analyze the composition of
tribofilms on worn and non-worn surfaces lubricated with 0.5 wt.% DOAPO oil before and
after tribological tests (marked as DOAPO_Non-wear and DOAPO_Wear, respectively),
which were also compared to that with base oil (marked as Base oil_Wear). In Figure 6a,
DOAPO_Non-wear not only has the stretching vibrations at 3357 cm−1 and 3177 cm−1

(υN-H), bending vibration at 1632 cm−1 (δN-H), and δC-H at 722 cm−1 of long alkyl chains but
also has υC-O-C at 1058 cm−1 and 1021 cm−1 and δC=C-H at 892 cm−1, which is characteristic
for OA-based amide–ester. However, the υC-O-C at 1058 cm−1 and 1021 cm−1 and δC=C-H
at 892 cm−1 that are characteristic of OA-based ester disappeared for DOAPO_wear, which
is most likely caused by the breaking of long alkyl chain for ester in DOAPO during
friction. When compared to the Base oil_Wear (Figure 6b), it has a characteristic υ(CO)O-H
at 1696 cm−1, indicating an ester chain broken in ester 3970, which composed the base oil.
According to the micro-IR results, it can be speculated that the ester group in DOAPO is
more prone to be broken than the amide group when friction occurs.
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The morphology and elemental composition were analyzed by SEM-EDS, as shown
in Table S3. The SEM images show that the surface wear is significantly improved when
lubricated with 0.5 wt.% DOAPO. Compared with base oil, the surface lubricated with
0.5 wt.% DOAPO had lower C and slightly higher O and Fe before the tribological test, but
it had higher C and Fe and lower O after the tribological test, indicating that DOAPO is
involved in the formation of friction films. By further comparing the element composition
of wear and non-wear surfaces lubricated with 0.5 wt.% DOAPO and base oil, it can be seen
that the content of C and O for the wear surface is significantly higher than that of non-wear,
and C content of surface lubricated with 0.5 wt.% DOAPO increases more, indicating that
C is a key component of friction films.

XPS is mainly used to determine the binding energy of electrons. By comparing
the chemical composition, bond state, and surface state before and after friction, XPS is
beneficial for obtaining the chemical change information of the material surface during
friction [35]. The bonding states of C, O, Fe, and N elements on worn surfaces lubricated
with base oil and 0.5% DOAPO oil were further analyzed by XPS. After deconvolution (in
Figure 7 and Table S4), there are three major peaks in the C1s spectra for DOAPO_Wear,
i.e., C-C/C=C (284.80 eV, ~69.0%), C-O/C-N (285.94 eV, ~10.1%), and C=O (288.58 eV,
~20.90%) [36,37], whose C=O content is less than that of DOAPO_Wear. while there are
only C-C/C=C (~91.6%) and C=O (~8.4%) for Base oil_Wear. In the O1s spectra, both of
them have peaks at 530.33 eV, 531.93 eV, and 532.86 eV, which are ascribed to Fe-O, C=O,
and C-O bonds, respectively [37,38]. In the Fe2p spectrum, the peaks at 707.32 eV (2p3/2)
and 719.87 eV (2p1/2) are attributed to iron atoms arising from the steel ball. Peaks at
724.21 eV (2p1/2), 713.17 eV (2p3/2), and 710.81 eV (2p3/2) correspond to Fe2+ (2p1/2),
Fe3+ (2p3/2), and Fe2+ (2p3/2), respectively, signifying that local high-temperature and
high-pressure during friction lead to chemical reactions between iron in the steel balls and
oxygen in the air [38,39]. Combining the O1s spectra, iron oxide films are formed for the
DOAPO_Wear during friction, which are potentially composed of Fe2O3, FeOOH, FeO,
and Fe3O4 [40]. In addition, the N1s spectrum of DOAPO_Wear exhibits peaks at 399.50 eV
and 402.63 eV, corresponding to C-N and N-O bonds, respectively, suggesting that there
are some amides turn into nitrogen oxides [41,42]. The results support that the tribofilm
formed by DOAPO is composed of organic oxides and iron oxides, which would improve
friction-reducing and anti-wear performance.

3.5.2. DFT Calculation

In order to reveal the influence of amide-only and amide–ester structure on the tri-
bological properties as lubricating additives, DFT theoretical calculations of electrostatic
potential (ESP) were conducted using the Gaussian16 software. Geometric optimizations
were performed for both DOAPO and oleamide, applying the B3LYP hybrid exchange-
correlation function. The optimized structures were characterized by harmonic vibration
frequency with the minimum (Nimag = 0) or transition state (Nimag = 1) to analyze the
atomic ESPs of C, H, O, and N with a 6-31G (d) basis set. The ESPs of compound molecules
were calculated using Multiwfn based on the efficient algorithm, with reference to the van
der Waals surface, while the molecular surface was defined as an isosurface with electron
density r = 0.001 a.u.). Figure 8 reveals that the minimum and maximum ESP values
for oleamide and DOAPO are −0.0689, 0.0706 and −0.0656, 0.0710, respectively, which
suggests that oleamide has stronger adsorption to metal surfaces compared to DOAPO.
However, it is worth noting that DOAPO is superior to oleamide in friction-reducing
and anti-wear performance, which indicates that strong adsorption does not necessar-
ily demonstrate better tribological performance. According to the micro-IR analysis, the
ester group in DOAPO is more prone to be broken than the amide group when friction
occurs. It means that DOAPO could produce ester chain fractures during friction, which is
more convenient to react with metal surfaces to form metal-oxide films and achieve the
anti-wear effect. Meanwhile, the interfacial shear force is reduced when the ester bond is
broken, which improves friction-reducing performance. In general, DOAPO can not only
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form a strong adsorption film with metal surfaces through amide and ester groups but
also produce chain fractures during friction to reduce interfacial shear force, improving
tribological performance.
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Figure 8. Theoretical electrostatic potential (ESP) calculation of (a) oleamide and (b) DOAPO.

Combining the DFT calculation and worn surface analysis, although the adsorption of
DOAPO on the metal surface is slightly weaker than that of commercial oleamide (ESP:
−0.0656 vs. −0.0689), ester-/amide-bonds in DOAPO are easier broken to produce polar
carboxyl groups and alkyl chains during friction, as illustrated in Figure 9. While the
broken chains reduce the interface shear force, and the carboxyl groups react with metal
surfaces to form iron oxide protective films, so DOAPO shows good friction-reducing and
anti-wear performance.
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Figure 9. Schematic diagram of the lubrication mechanism with DOAPO.

4. Conclusions

In this work, a new sulfur- and phosphorus-free amide–ester, DOAPO, containing
polar amide, ester, and nonpolar alkyl chains was synthesized from simple 1,3-diamino-2-
propanol and OA. Its structure and thermal stability were characterized by NMR, HR-MS,
FT-IR, and TGA. The tribological properties of DOAPO in synthetic base oil were studied
and compared with commercial oleamide, and the micro-lubrication mechanism was
disclosed by combining worn surface analysis and theoretical calculations. The following
conclusions were drawn from this study:

(1) The introduction and multi-structure of long alkyl chains make DOAPO exhibit
better storage stability in synthetic base oil and better thermal stability than that of
commercial oleamide, whose residual mass at 300 ◦C is 86.9% vs. 33.9%.

(2) The optimal addition of DOAPO in the selected synthetic base oil is 0.5 wt.%, which
can not only effectively shorten the running-in period compared to base oil (120 s vs.
600 s) but also reduce ave. COF and ave. WSD by 8.2% and 16.2%, respectively, which
is better than that of commercial oleamide.

(3) The worn surface analysis and DFT calculation show that although the adsorption
of DOAPO on metal surfaces is slightly weaker than oleamide (ESP: −0.0656 vs.
0.0689), its ester bond breaks preferentially during friction, which could reduce the
interfacial shear force and easily react with metal surfaces to form iron oxide films,
thus demonstrating better friction-reducing and anti-wear performance.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/lubricants12060196/s1, Figure S1: (a) 1H NMR, (b) 13C NMR,
(c) HR-MS and (d) FT-IR spectra of DOAPO. Table S1: Thermal stability comparison of 1,3-diamino-2-
propanol, DOAPO and oleamide. Table S2: Storage stability of oil samples with different additions of
DOAPO and the same addition (0.5 wt.%) of DOAPO or oleamide. Table S3: SEM-EDS analysis of
surfaces lubricated with oils before and after tribological tests. Table S4: Surface XPS analysis after
friction testing of base oils and oil samples supplemented with 0.5 wt.% DOAPO.
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