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Abstract: In the modeling of elastohydrodynamic lubrication problems considering mixed friction,
strongly coupled dependencies occur due to piezo-viscous effects and asperities, which can make
a numerical solution exceptionally difficult. A fully implicit coupled scheme for solving mixed
elastohydrodynamic lubrication problems is presented. Our scheme uses finite-volume discretization
and co-allocated grids for hydrodynamic pressure and elastic deformation. To provide strong
coupling between pressure and deformation even in the highly loaded zone, a correction term that
adds numerical diffusion is used. The resulting linear equation system of this scheme can be efficiently
solved by Krylov subspace methods. This results in an improved accuracy and computational
efficiency compared to the existing methods. This approach was validated and has been shown to
be accurate.

Keywords: mixed elastohydrodynamic lubrication (EHL); fully implicit scheme; co-allocated grids;
computational tribology

1. Introduction

Mixed elastohydrodynamic lubrication (EHL) is a mechanism found in many tribo-
logical problems. Analysis of EHL problems is essential for the operational reliability and
performance of a wide range of applications in mechanical and medical engineering. In
modeling EHL problems, the interaction between elastic deformations of solids and the
flow of a viscous lubricant leads to complex and strongly coupled dependencies. Due to
piezo-viscous effects, the viscosity varies by many orders of magnitude for highly loaded
contacts. The resulting poor conditioning of the problem makes a numerical solution
exceptionally difficult and requires efficient and stable computational methods. A solution
for EHL contact was first proposed by Hamrock and Dowson [1] using the Gauss–Seidel
method. Later, a solution technique using geometric multigrid methods was developed
by Venner [2]. Hughes presented a coupled solution for pressure and deformation using a
differential deflection method [3]. In [4] A Computer Program Package for mixed elasto-
hydrodynamic lubrication is presented. A coupled solution procedure is introduced by [5]
using a finite element approach and a direct solver for the linearized system of equations.
To handle stability issues, a streamline upwind/Petrov–Galerkin formulation introduced
in [6] that adds numerical diffusion is used. A solution procedure for elasto-hydrodynamic
lubrication problems based on the Navier-Stokes equations is presented in [7] and a solu-
tion procedure with a coupled solution of a structural model and the Reynolds equation
for elastohydrodynamic contacts is described in [8]. Khonsari describes a numerical model
for mixed EHL contact with inner and outer loops [9]. In [10], the solution for mixed EHL
problems was described using an iterative scheme, and later, in [11], cavitation was also
considered using an iterative scheme. In this work, a new approach to overcoming these
challenges for mixed EHL problems is presented through a fully implicit coupled scheme.
This scheme provides strong coupling between hydrodynamic pressure and deformation
and works on co-allocated grids.
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2. The Mathematical Model
2.1. Governing Equations
2.1.1. Average Reynolds Equation

The EHL contact is described by a pressure field, a deformation field, and rigid body
displacement. These variables are specified by solving governing equations. To deter-
mine the hydrodynamic pressure, the average Reynolds equation introduced in [12] by
Patir and Cheng is used. Unlike Patir and Cheng, we use a generalized formulation for
compressible fluids.

fp := ∇ ·
(

ρ θ h3

12η
Φp ∇p

)
−∇ ·

(
ρ θ h

U⃗1 + U⃗2

2

)
−∇ ·

(
ρ θ h Φs

U⃗2 − U⃗1

2

)
− ∂(ρ θ h)

∂t
= 0 (1)

In a Cartesian coordinate system, the flow factor tensors for pressure Φp and shear flow Φs
have the components

Φp =

[
Φpx 0

0 Φpy

]
, Φs =

[
Φsx 0

0 Φsy

]
. (2)

The flow factors are determined separately. This can be done by interpolating from ta-
ble values, which is done in this work, or by evaluating an empirical correlation, for
example [12,13]. In the case of smooth surfaces, the average Reynolds equation simplifies
by Φp = 1 and Φs = 0.

2.1.2. Film Thickness Equation

Assuming that two arbitrarily shaped bodies are in contact in a sufficiently small area,
the shape of these bodies can be approximated by an ellipsoid with two radii. The distance
between these bodies can be expressed as a sum of the gap height from the curvature,
the change by deformation w, and the rigid body displacement h0. From this, a function for
the determination of h is derived:

fw := h −
(

x2

2 Rx
+

y2

2 Ry
+ w + h0

)
= 0 (3)

with the auxiliary radii Rx = R1x R2x
R1x+R2x

and Ry =
R1y R2y

R1y+R2y
.

2.1.3. The Force Balance Equation

Furthermore, another equation is needed to determine the displacement. For this
purpose, a predefined load condition is balanced.

fh0 :=
∫∫

Ω
(p + pc) dx dy − F = 0 (4)

The contact pressure pc(h) is a function of the averaged gap height and can also be interpo-
lated from table values. For smooth surfaces, pc = 0 everywhere.

2.2. Equation of State

For the treatment of the lubricant’s compressibility, the density pressure relation given
by Dowson and Higginson [14] is used.

ρ = ρ0
5.9 × 108 Pa + 1.34 p

5.9 × 108 Pa + p
(5)

Without considering cavitation, negative pressures occur in the solution. In early pub-
lications, these negative pressures were set to zero after the solution process [2]. This
resulted in a discontinuous pressure gradient, which led to violation of the conservation of
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mass and could lead to numerical instability. In particular, it cannot be treated implicitly.
Later publications have used a penalty function introduced by [15]. Other authors use
Elrod’s cavitation algorithm, which is mass-conserving but, beyond that, is not physically
motivated and cannot be treated implicitly either because the relationship between pres-
sure and density is non differentiable. Our cavitation approach is mass-conserving and
physically motivated and can be treated implicitly. The relation for fractional film content
that incorporates the influence of cavitation effects and is motivated by pseudo cavitation is

θ =
1 + αB

1 + αB
pa
p

. (6)

Here, αB = 0.08 . . . 0.1 is the Bunsen solubility coefficient, pa is the atmospheric pressure.
In EHL, the influence of αB on the results is negligible. The use of Elrod’s cavitation
algorithm [16] is also possible in principle, but it cannot be linearized. In this context, αB
can be interpreted as a numerical parameter. For αB → 0, the relationship is equivalent to
Elrod’s cavitation algorithm with zero cavitation pressure.

2.3. Viscosity–Pressure Relation

There are several models for describing the viscosity–pressure relation. The simplest
is the one by Barus.

η = η0 exp(α p) (7)

where η0 is the reference viscosity, and α = 1 . . . 2.2 × 10−8Pa−1 is the pressure–viscosity
coefficient for common lubricants. For a high pressure, this equation predicts an enor-
mous and progressive increase in viscosity. However, experiments show a degressive
correlation [17]. So, a better approximation can be obtained using the expression from
Roelands [18].

η = η0 exp
[
(ln(η0) + 9.67)

((
1 +

p
p0

)z
− 1
)]

(8)

where p0 = 1.98 × 108 Pa is the reference pressure. The exponent z can be computed from
the well-known pressure–viscosity coefficient by

z =
α p

ln(η0) + 9.67
. (9)

2.4. Elastic Deformation

To determine the elastic deformation of the two surfaces, the Boussinesq equation for
the elastic half-space

w =
2

π E′

∫∫
Ω

p + pc√
(x − ξ)2 + (y − η)2

dξ dη (10)

is used, where E′ is the reduced Young’s modulus, which is defined by 2
E′ =

1−ν2
1

E1
+

1−ν2
2

E2
.

3. Spatial and Temporal Discretization

The equations presented above are now solved approximately using numerical meth-
ods. In the following, the spatial discretization of the model equations is performed on a
Cartesian grid with m × n cells with extensions of ∆x and ∆y for interior cells and ∆x/2
and ∆y/2 at the boundary.
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3.1. The Average Reynolds Equation

Written as an integral over a domain Ω, the Reynolds equation (1) is

∮
∂Ω

ρ θ h3

12 η
Φp ∇p · n̂ dC −

∮
∂Ω

ρ θ h
U⃗1 + U⃗2

2
· n̂ dC

−
∮

∂Ω

ρ θ h Φs
U⃗2 − U⃗2

2
· n̂ dC −

∫∫
Ω

∂(ρ θ h)
∂t

dA = 0

(11)

and after discretization, the three flux terms read in general as

∮
∂Ω

ρ θ h3

12 η
Φp ∇p · n̂ dC = ∑

f

ρ̄ θ̄ f h̄3
f

12 η̄ f
Φ̄p f ∇p f + d

(
∇p f −∇p f

)
· n⃗ f (12)

∮
∂Ω

ρ θ h
U⃗1 + U⃗2

2
· n̂ dC = ∑

f
ρ̃ f θ̃ f h̄ f

U⃗1 + U⃗2

2
· n⃗ f (13)

∮
∂Ω

ρ θ h Φs
U⃗2 − U⃗2

2
· n̂ dC = ∑

f
ρ̃ f θ̃ f h̄ f Φ̄s f

U⃗2 − U⃗1

2
· n⃗ f (14)

where the subscript ( ) f means that the variable is evaluated at the face f . h̄ f , η̄ f , ρ̄ f , θ̄ f ,
Φ̄p f ,and Φ̄s f are linear interpolations from the nodal values to f , and ρ̃ f and θ̃ f are the
values from the upwind node. The gradient ∇p f is an approximation at f like the central
difference, and ∇p f is an interpolation from approximations of the gradient at the nodes
to f . The additional second term in (12) is a correction that adds numerical diffusion and
guarantees strong coupling between hydrodynamic pressure and deformation. It can be
shown that this term vanishes when the pressure varies as a second-order polynomial
Appendix A. Higher-order pressure oscillations will be damped rapidly. This technique is
known as ”Rhie-Chow interpolation” from the pressure-velocity coupling in the solution of
the Navier-Stokes equations. Thereby, the term is motivated by the condition of continuity,
and the coefficient d is approximated from the momentum equation [19]. In this case, d has
to be approximated so that the correction is effective even in the high-pressure zone with
large values for η. So,

d := λ
ρ0 h3

0
12 η0

(15)

is proposed, where λ is an optional empirical factor. In the following, the discretization is
evaluated for the grid shown in Figure 1. For this, we have the faces f = {w, e, s, n}, and

the face normal vectors are n⃗ f =

{[
∆y
0

]
,
[
−∆y

0

]
,
[

0
∆x

]
,
[

0
−∆x

]}
. The linear interpolation

example for the film thickness is h̄ f = hP+hnb
2 with the central node P and its neighbor

nodes nb = {W, E, S, N}. The pressure gradient approximation as an example at the face w
is ∇p f · n⃗w = ∆y

∆x (pP − pW), and the interpolation from the approximations at the nodes
is ∇pw · n⃗w = 1

2 (∇pP +∇pW) · n⃗w with the approximations at the nodes ∇pP · n⃗w =
∆y

2 ∆x (pE − pW) and ∇pW · n⃗w = ∆y
2 ∆x (pP − pWW). A similar procedure is used for the

remaining faces. In sum, the correction term is

∑
f

d
(
∇p f −∇p f

)
· n⃗ f = d

∆y
∆x

(
3
2

pP − pW − pE +
1
4

pWW +
1
4

pEE

)

+d
∆x
∆y

(
3
2

pP − pS − pN +
1
4

pSS +
1
4

pNN

)
.

(16)
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The discretization of the temporal term is∫∫
Ω

∂(ρ θ h)
∂t

n dA =
∆x ∆y

∆t

(
ρP θP hP − ρ0

P θ0
P h0

P

)
(17)

for the first-order backward Euler scheme and∫∫
Ω

∂(ρ θ h)
∂t

n dA =
∆x ∆y
2 ∆t

(
3 ρP θP hP − 4 ρ0

P θ0
P h0

P + ρ00
P θ00

P h00
P

)
(18)

for the second-order backward Euler scheme, where ( )0 denotes a value from the last time
step and ( )00 a value from the second last time step.

PW E

N

S

w e

n

s

SS

NN

EEWW

computational 
grid node

cell

i=1 i=2 i=m
j=1

j=2

j=n

i=m-1

j=n-1

x

y

Figure 1. Spatial discretization on a co-allocated Cartesian grid.

3.2. The Film Thickness Equation

Assuming that the pressure at the boundaries vanishes, (10) in the discretized form is

wi,j =
m−1

∑
k=2

n−1

∑
l=2

Ki,j,k,l (pk,l + pc,k,l) (19)

whereby

Ki,j,k,l =
2

π E′

xi−ξk+
∆x
2∫

xi−ξk− ∆x
2

yi−ηk+
∆y
2∫

yi−ηk−
∆y
2

1√
(xi − ξ)2 + (yi − η)2

dξ dη (20)

is the kernel of the elastic deformations. On an equidistant Cartesian grid, there are
redundancies that can be used to reduce the size of K. With xp = |xi − xk| and yq = |yj − yl |,
the kernel is

Kp,q =
2

π E′

xp+
∆x
2∫

xp− ∆x
2

yq+
∆y
2∫

yq− ∆y
2

1√
(xp − ξ)2 + (yq − η)2

dξ dη (21)

and the elastic deformation reads as
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wi,j =
m

∑
k=1

n

∑
l=1

Ki−k,j−l (pk,l + pc,k,l) (22)

The evaluation of these integrals is

Kp,q =
2

π E′


|y+| asinh

(
x+
y+

)
+ |x+| asinh

(
y+
x+

)
|y+| asinh

(
x−
y+

)
− |x−| asinh

(
y+
x−

)
|y−| asinh

(
x+
y−

)
− |x+| asinh

(
y−
x+

)
|y−| asinh

(
x−
y−

)
+ |x−| asinh

(
y−
x−

)

 (23)

with x+ = xp + ∆x/2, x− = xp − ∆x/2, y+ = yq + ∆y/2 and y− = yq − ∆y/2 [2].

3.3. The Force Balance Equation

The discretized force balance equation reads as

fh0 =
m−1

∑
i=2

n−1

∑
j=2

(pij + pij,c) ∆x ∆y − F = 0 (24)

4. Solution Strategy
4.1. The Coupled System of Equations

The numerical discretization provides a non-linear system of equations. For the
coupled solution for all the equations, the general equation system f (X) = [ fp, fw, fh0 ]

T = 0
is defined with the general solution variable X = [p, w, h0]

T , which has the dimensions
(2 m n + 1) × 1. For the solution of this non-linear system of equations, the Newton–
Raphson method is used. Starting from a previous solution, a better solution can be
found by

Xi,k+1 = Xi,k + ∆Xi,k+1 = Xi,k − J−1
ij,k fi,k (25)

with the Jacobian

J =


∂ fp
∂p

∂ fp
∂w

∂ fp
∂h0

∂ fw
∂p

∂ fw
∂w

∂ fw
∂h0

∂ fh0
∂p

∂ fh0
∂w

∂ fh0
∂h0

 (26)

For simplicity and generality, the derivatives are evaluated numerically by forward differ-
ences. As the step size,

√
ε Xtypical is used, where ε is the machine accuracy and Xtypical,i ̸= 0

is a typical expected value for Xi. For the pressure and the deformation, the maximum
values pH and dH from the Hertzian contact ellipse [20] can be used as Xtypical . For the
displacement, hc − dH can be used. For better numerical efficiency, a sparsity pattern can
be used when evaluating the Jacobian. This is shown in Figure 2. It can be seen that
∂ fp
∂p is always banded, and ∂ fw

∂p is always strongly populated. ∂ fw
∂w is diagonal for smooth

surfaces and strongly populated for rough surfaces. Furthermore, it is not necessary to
re-compute the Jacobian for every iteration. Only at the beginning of the solution process
when the change in the solution vector is high are the non-linearity and thus the change in
the Jacobian significant. A simple and efficient way is to retain the Jacobian when all the
residuals decrease at an acceptable rate.
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(a) (b)

Figure 2. Sparsity pattern for a 8 × 8 grid: (a) smooth case; (b) rough case.

4.2. The Relaxation Scheme

Relaxation of the solution is implemented in two different ways, one implicit and one
explicit. For the deformation and displacement, an implicit scheme is utilized by adding a
part to the diagonal of the Jacobian.

J′i,i = Ji,i −
(

1
ωi

− 1
)

fi
Xtypical,i

(27)

Here, ωw = 1 and ωh0 = 0.3 are used. This procedure guarantees sufficient large diagonal
elements for the deformation and displacement so that the linear equation sytem can be
solved by the iterative solver. For the pressure equation this is guaranteed by the correction
term, and ωp = 1 is used for the pressure, but explicit relaxation is used with

∆Xi,k+1 = βi ∆X∗
i,k+1 (28)

with βp = 0.5. For the deformation and displacement, βw = βh0 = 1 is used.

4.3. The Linear Equation Solution

Before solving the system of equations, each equation is scaled by its pivot element for
better conditioning:

f ∗i =
fi
J′i,i

, J∗i,j =
J′i,j
J′i,i

(29)

The final system of linear equations J∗ij,k∆X∗
i,k+1 = − f ∗i,k can be solved efficiently with

iterative solvers like Krylov subspace methods. Combining this with the Newton–Raphson
method is also known as the Newton–Krylov method. Here, BiCGSTAB is used with ILU
as the preconditioner [21].

4.4. Initialisation

The values for the pressure and the deformation can be initialized with zeros. The rigid
body displacement can be initialized with the central film thickness by the Hamrock–Dowson
method [1].

hD
c = 1.69 G0.53 U0.67 W−0.067

2 (1 − 0.61e−0.73k) Rx (30)

with W2 = w
E′ R2

x
, U = η0(U1+U2)

E′ Rx
, G = α E′ and k = 1.03

(
Ry
Rx

)0.64
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5. Numerical Results
5.1. Test Case

The method developed was then analyzed using test examples. For validation, a test
case (smooth case) according to Venner [2] was used. The parameters and the numerics
used are listed in Table 1. These values are used for both smooth and rough cases.

Table 1. Values of the parameters for the test case.

Parameter Value Unit Parameter Value Unit

E′ 2.26 × 1011 N/m2 α 2.2 × 10−8 m2/N
F 10 . . . 100 N αB 0.09 [22] 1
Lx/a = Ly/b 4 1 η0 40 × 10−3 N s/m2

Rx = Ry 16 × 10−3 m ρ0 853 kg/m3

U1 = U2 0.8 m/s

Here, a and b are the values for the Hertzian contact ellipse [20].

5.2. Surface Roughnes

To create the rough case, flow factors and contact pressure were determined for a
pair of randomly generated synthetic surfaces with a given height probability distribution
(tangent function) and autocorrelation function. The surfaces were generated by correlating
Gaussian random numbers with an exponential autocorrelation function and then correct-
ing the height distribution to fulfil the specified characteristics. For details on the surface
generation, see [23,24]. The surfaces have the characteristics of the Abbott–Firestone curve
Rk = 0.3 µm, Rpk = Rvk = 0.15 µm, which results in a average roughness of Ra = 0.1 µm,
a quadratic mean roughness of Rq = 0.13 µm, a kurtosis of K = 3, and a skewness of
Sk = 0. The correlation function is isotropic with a correlation length of λ0.5 = 5 µm.

The surface roughness as well as the flow factors and the contact pressure are shown
in Figure 3 and listed in Table 2. In the following, the results are shown for this case.

(a) (b)
Figure 3. (a) Surface height distribution of the generated surface; (b) flow factors and contact pressure
for the rough case.
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Table 2. Values for pressure flow factor, shear flow factor, and contact pressure.

h̄ in µm Φp Φs p̄c in MPa

0.1626 0.0142 −0.5397 159.0373

0.1769 0.0583 −0.4005 133.2646

0.2115 0.2616 −0.2123 87.8586

0.2545 0.5316 −0.0846 49.5630

0.3117 0.7519 −0.0144 22.5594

0.3859 0.8752 0.0105 8.5413

0.5626 0.9564 0.0119 0.0771

0.7499 0.9746 0.0068 0

0.9374 0.9833 0.0043 0

1.1249 0.9882 0.0030 0

1.3124 0.9912 0.0022 0

5.3. Mesh Study

The magnitude of the correction term in (12) depends on the grid spacing via the
accuracy of the approximations of the pressure gradient. If the approximations are exact,
the correction term has no influence on the solution. So, the choice of λ and the number
of grid points are not independent. In Figure 4a, the pressure distribution is shown for
n = m = 150 and different values of λ.

(c)

(b)

(a)
Figure 4. Mesh study for the smooth case: (a) pressure; (b) minimum fill thickness; (c) maximum
pressure.

A smaller lambda value is better for resolving the pressure spike. Figure 4b,c show the
influence of the number of grid points on the minimum film thickness and the maximum
film pressure for different values of λ. It can be seen that the larger the value of λn,
the finer the specifications of the grid must be to achieve grid independency. For λ = 0.2,
grid-independent values of hmin and pmax can be achieved with n = m ≥ 40.
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5.4. Verification

In Figure 5, the results for the central film thickness in the smooth case are compared
with the results of Hamrock–Dowson and Moes–Venner [2].

Figure 5. Central film thickness for various loads and viscosity–pressure coefficient combinations.

5.5. Results for the Rough Case

In Figure 6, the results for both cases are compared. Due to the solid body contact
pressure, the hydrodynamic pressure is lower in the rough case, as shown in Figure 7.
The total pressure is also lower. The minimum gap height is higher.

(a) (b) (c)

Figure 6. Rough case results: (a) hydrodynamic pressure; (b) contact pressure; (c) gap height.

As a further test, the results of our model were compared with the results published
by Khonsari [9]. The results for a dimensionless central film thickness Hc = hc/Rx,
a dimensionless minimum film thickness Hmin = hmin/Rx, and an asperity–load aspect
ratio La are shown in Table 3. The fixed input parameters are Rx = 13 mm, U1 = U2 =
6.2 m/s, E′ = 226 GPa, η0 = 0.03 Pa·s, and α = 2 · 10−8 m2/N. The other parameters are
determined to satisfy the dimensionless numbers κ = a/b, W = F

E′ R2
x
, U = η0 (U1+U2)

2 E′ Rx
,

G = α E′, and σ̄ = Rq/Rx, whereby the roughness was scaled in our model. Khonsari
treated the roughness differently, which limits the comparability. However, the predictions
of both models agree well for the operating points analyzed, although our model predicts
slightly lower values for the film thickness.
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Figure 7. Comparison of pressure and gap height for smooth and rough cases along x.

Table 3. Comparison of the results for the rough case using the current model (left) with those of
Khonsari [9] (right).

κ W U G σ̄ 105 · Hc Hmin La

1 1 × 10−6 1 × 10−11 4972 2 × 10−5 1.8 1.58 2.17 2.13 34 34.7

2 1 × 10−6 1 × 10−11 4972 2 × 10−5 2.04 2.15 2.35 2.51 31.2 31.9

3 1 × 10−6 1 × 10−11 4972 2 × 10−5 2.18 2.37 2.44 2.63 29.9 32.5

4 1 × 10−6 1 × 10−11 4972 2 × 10−5 2.28 2.43 2.5 2.74 29.3 34.1

6 1 × 10−6 1 × 10−11 4972 2 × 10−5 2.39 2.52 2.58 2.86 29.1 35.8

8 1 × 10−6 1 × 10−11 4972 2 × 10−5 2.42 2.58 2.63 2.93 29.4 37.7

6. Convergence and Solution Time

To monitor the solution process and to obtain a convergence criterion, the raw residuals
are normalized. In Figure 8, the RMS residuals for each set of equations are displayed over
the iteration number for n = m = 40. The convergence criterion is 10−6.

Figure 8. Convergence history for the smooth test case.
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To demonstrate the number of iterations and the solution time required for the model,
we performed a test with our implementation and using an Intel Xeon W-2123 CPU, the
results of which are shown in Table 4.

Table 4. Iteration numbers and CPU time for the test cases.

n
Number of Iterations Solution Time Time per Iteration

Smooth Rough Smooth Rough Smooth Rough

10 31 30 0.92355 1.848 0.029792 0.061601

15 32 32 2.2888 5.2206 0.071526 0.16314

20 31 30 5.8159 15.033 0.18761 0.50111

25 29 30 11.056 29.999 0.38125 0.99998

30 29 30 21.28 67.131 0.73378 2.2377

35 29 30 36.181 123.41 1.2476 4.1136

40 29 30 60.634 227.51 2.0908 7.5836

45 29 30 91.972 414.36 3.1714 13.812

50 29 30 142.6 730.07 4.9173 24.336

55 34 30 231.8 1213.4 6.8178 40.446

60 63 30 595.41 1918.1 9.4509 63.935

The convergence and solution time of our approach can be compared with the solution
method of Gu [11], which used a similar model with an iterative strategy. Gu gives a
number of iterations between 56 and 210 for a smooth case and between 231 and 941 for a
rough case. For the solution time, he gives a value between 2.86 and 9.58 s for the smooth
case and between 11.16 and 39.17 for the rough case but without specifying the mesh size
used. The convergence of our approach can also be compared, with restrictions, with the
approach of Habchi [5], which also coupled pressure and deformation but determined h0
in an outer iteration loop and applied a deformation equation for a 3D structure. Habchi
gives a total number of iterations from 10 to 100 depending on the initialization but without
giving a convergence criterion. For the computation time, he gives 2.875 to 50.281 seconds
per iteration.

7. Conclusions

In this paper, a new scheme for the implicit treatment of general mixed EHL prob-
lems was presented. The method developed has been validated and shown to be accurate
and robust. Our fully implicit method offers significant advantages in terms of compu-
tational efficiency and stability. The use of co-allocated grids reduces the complexity of
the implementation and the computational effort. The resulting linear equation system
can be efficiently solved by Krylov subspace methods. By implementing our method in a
computational program, an almost arbitrary EHD problem can be solved by a user. This is
an enrichment of many applications in mechanical engineering and medical technology.
The current implementation already has a good solution time and a lower number of
iterations compared to similar models. Further improvements in speed can be expected
with optimized code in a machine-oriented language. In summary, it can be said that this
fully implicit coupled scheme represents a significant advance in numerical tribology.
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Nomenclature

Latin symbols
a, b radii of the Hertzian contact ellipse
d coefficient of the pressure correction term
dH deformation of the Hertzian contact ellipse
E1, E2 Young’s modulus of body 1, 2
E′ reduced Young’s modulus
h film thickness
w elastic deformation
hc central film thickness
h0 rigid body displacement
J Jacobian
K deformation kernel
n⃗ normal vector
p hydrodynamic pressure
pa atmospheric pressure
pc contact pressure
p0 ref. pressure in Roelands’ equation
Rx, Ry auxiliary radii
R1x, R2x radii of body 1, 2 along x
R1y, R2y radii of body 1, 2 along y
U⃗1, U⃗2 surface velocity
X general solution variable
x, y spatial coordinates
z exponent in Roelands’ equation
Greek symbols
α pressure–viscosity coefficient
β explicit under-relaxation factor
αB Bunsen solubility coefficient
θ fractional film content
λ empirical factor of pressure correction term
ν1, ν2 Poisson’s ratio of body 1, 2
ρ fluid density
ρ0 density at atmospheric pressure
Φp tensor of pressure flow factors
Φpx, Φpy pressure flow factors
Φs tensor of shear flow factors
Φsx, Φsy shear flow factors
η dyn. viscosity
η0 viscosity at atmospheric pressure
ω implicit under-relaxation factor
Ω integration domain
∂Ω boundary of Ω

Appendix A. Accuracy of the Pressure Gradient Approximation

Assuming that the pressure varies as a second-order polynomial along x as follows

p(x) = a (x − xP)
2 + b (x − xP) + c (A1)
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the pressure at the neighbor nodes becomes

pWW = 4a ∆x2 − 2b ∆x + c

pW = a ∆x2 − b ∆x + c

pP = c

pE = a ∆x2 + b ∆x + c

pEE = 4a ∆x2 + 2b ∆x + c

(A2)

As a result, correction term (16) becomes

3
2

pP − pW − pE +
1
4

pWW +
1
4

pEE

=
3
2

c − (a ∆x2 − b ∆x + c)− (a ∆x2 + b ∆x + c)

+
1
4
(4a ∆x2 − 2b ∆x + c) +

1
4
(4a ∆x2 + 2b ∆x + c)

= a ∆x2
(
−1 − 1 +

4
4
+

4
4

)
+ b ∆x

(
1 − 1 − 2

4
+

2
4

)
+ c
(

3
2
− 1 − 1 +

1
4
+

1
4

)
= 0

(A3)

This can be applied analogously to each pair of opposite faces, and so the integral of the
correction term vanishes for any closed boundary if the pressure varies as a second-order
polynomial in space.
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