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Abstract: Ultrahigh-molecular-weight-polyethylene (UHMWPE) is extensively applied
to make bone and cartilage implants in the field of biomaterial application. UHMWPE
matched with a metal or ceramic component withstands the long-term effect of cyclic stress,
which induces UHMWPE serious wear, and affects the service life of the artificial joint.
This investigation focuses on the influence of pores on the mechanical and tribological
property of UHMWPE. The porosity, crystallinity, yield strength, tensile strength, hardness,
compression yield strength, creep resistance, wettability, friction performance, and wear
mechanism of solid and porous UHMWPE were evaluated and compared. The research
results indicated that the pore had a remarkable influence on the mechanical, friction, and
wear property of UHMWPE. The porosity of porous UHMWPE was 29.7% when 50 wt. %
sodium chloride (NaCl) was added and the pore size was about 200 µm. The crystallinity,
hardness, creep resistance, strength, and elongation decreased after NaCl was added and
dissolved. However, the yield strength in the tensile and compression test was closer to
that of the natural cartilage. The friction coefficient and wear loss of porous UHMWPE
were higher than that of solid UHMWPE in dry conditions, but these values of porous
UHMWPE were lower than that of solid UHMWPE in the calf serum lubrication condition.
The main wear mechanism of porous and solid UHMWPE was abrasive. The lubricity of
calf serum reduced wear surface scratches and furrows, especially for porous UHMWPE.

Keywords: polymers; FTIR; squeeze-film lubrication; viscoelasticity; abrasive wear

1. Introduction
Ultrahigh-molecular-weight-polyethylene (UHMWPE) is extensively serviced for bone

and cartilage implants due to its self-lubricating property, wear resistance, bioavailability,
and chemical stability [1–3]. The durability and wear of UHMWPE are the main problems
with UHMWPE-on-ceramic (or metal) artificial implants, particularly used as artificial
cartilage in total joint replacement [1,4]. Articular cartilage is composed of many biological
macromolecules, for instance, aggrecan, lubricant, hyaluronan, and phosphatidylcholine
liposomes. The amphoteric head groups of the phosphatidylcholine liposomes absorb water
to create a tough hydration film around the charges, resulting in a significant decrease in
the friction coefficient between joints, usually as little as 0.001–0.01 [5–8]. UHMWPE is used
to produce porous implants as close to articular cartilage as possible. Traditional foaming
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methods, such as gas foaming, phase separation, and sintering cannot be used because
the molecular weight of UHMWPE is very high [9]. The foaming agent used in porous
UHMWPE as a material for bone or cartilage implants should be non-toxic. Sodium chloride
(NaCl), as a component of human body fluids, can maintain the normal morphology of
cells. NaCl can be served as a pore-forming filler to produce porous materials, and the
porosity of these materials can reach 60–70% [9,10].

Wu et al. prepared porous UHMWPE with different porosity by the NaCl template
leaching method. They found that the friction and wear property were improved by pores
under water lubrication, but the pore structure and other mechanical performance of
this material were not mentioned [11]. Chou et al. adopted the same approach to study
the porosity distribution and tribological behavior of porous UHMWPE. In physiological
saline, the abrasion performance of porous UHMWPE was inferior to solid UHMWPE,
and the percentage of abrasive chips in the reaction size range of the foreign body was
smaller, but wettability and mechanical properties of porous UHMWPE, such as the tensile
test, compression performance, hardness, and creep resistance, were not involved [12].
Maksimkin et al. fabricated multilayer porous UHMWPE scaffolds to mimic the structure
of trabecular and maintain its adaptability, but this material only applied to trabecular
bone and was free from the force of torsion, bending, compression, and friction [9]. Sun
et al. manufactured UHMWPE foams by the one-step batch foaming method, but this
material was mainly used for heat insulation and the separation of oil and water [13].
Wang et al. reported UHMWPE/PEG porous materials with both large and small cells
and demonstrated the evolution of micropore morphology and mechanical properties,
but mainly focused on the compression performance [14]. Li et al. fabricated porous
UHMWPE/PVDF/MWCNT used PLA and PMMA as a sacrificial template and tested the
electromagnetic shielding performance [15]. Azam et al. manufactured cellular structures
GNP/UHMWPE via selective laser sintering and tested the mechanical and piezoresistive
properties [16]. Zhu et al. prepared oil-containing modified porous UHMWPE composites
and tested frictional performance under pure and seawater conditions [17]. Salimon
et al. also obtained porous UHMWPE through the sacrificial template method and tested
compression and tensile and bending properties with different pore sizes [10]. Wettability,
hardness, and friction and wear properties were equally important in the performance of
cartilage materials as strength.

In this work, solid and porous UHMWPE specimens were fabricated by thermal
compression molding. NaCl particles were used as space-holder material to increase the
porosity and were removed sufficiently by water leaching after sintering. The effect of NaCl
on density, porosity, and pore structure was investigated. The tensile test, compression test,
hardness, creep resistance, and especially the tribological performance of porous UHMWPE
were measured and analyzed.

2. Experiment
2.1. Materials and Fabrication Methods

Medical UHMWPE (GUR 4150, provided by Shanghai Hualan Chemical Technology
Limited Company, Shanghai, China), with a molecular mass of 9 million and a density of
930 kg/m3, is in powder form. NaCl particles with a pure degree of 99.8% and a density of
2170 kg/m3 were purchased from Aladdin.

The UHMWPE and NaCl powders were mingled in an agitator for 15 min. The
content of NaCl particles was 50 wt.% according to a study reported by Wu [11] because
the continuity of the UHMWPE matrix and the connectivity of the pores were ensured. The
powder mixtures were added into a mold and hot-pressed on a flat vulcanizing machine.
The pressure, temperature, and time were set as 15 MPa, 200 ◦C, and 2 h, respectively.
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The final products with different dimensions were cooled with the equipment to normal
temperature. The NaCl particles were removed from the sintered products by water
leaching at a temperature of 40 ◦C for two weeks and the water once a day for purification.
The porous UHMWPE specimens were placed into a dryer at 50 ◦C for 8 h to eliminate
dampness. The masses of the porous UHMWPE were measured before and after leaching
to calculate the dissolution ratio of NaCl and the porosity of UHMWPE.

2.2. Pore and Porosity Characterization

The scanning electron microscopy (SEM) images of pore structure were captured by
FEI Quanta TM 250 under the condition of high vacuum and 20 kV accelerating voltage.

The porosity of porous UHMWPE was counted through Equation (1).

θ =
WL

ρ1
ρ2

+ 1
× 100% (1)

where θ is the porosity value of porous UHMWPE, WL is the dissolution rate of NaCl in
porous UHMWPE, ρ1 is the density of NaCl, and ρ2 is the density of UHMWPE.

The dissolution rate of NaCl in porous UHMWPE was calculated through Equation (2).

WL =
W1 − W2

W1
× 100% (2)

where W1 is the mass of the UHMWPE specimen before NaCl dissolution, and W2 is the
mass of UHMWPE specimen after NaCl dissolution.

2.3. Fourier Transform Infrared and Differential Scanning Calorimetry

The effect of the molding process on the molecular structure was investigated through
Fourier transform infrared (FTIR) on Vertex 80v. The measurement was performed from
500 to 4000 cm−1, with a scan resolution of 4 cm−1. Differential scanning calorimetry (DSC)
was used to measure and estimate the crystallinity. A sample (~20 mg) was heated from 30
to 200 ◦C and held at 200 ◦C for 5 min. The sample was cooled to 30 ◦C and then heated to
200 ◦C again. The rate of heating and cooling was 10 ◦C/min. The crystallinity of solid and
porous UHMWPE was counted through Equation (3). The results of three samples for each
type of UHMWPE were averaged.

χc =
∆H

∆H100
× 100% (3)

where ∆H is the integrated enthalpy of fusion, which was obtained by integrating the area
under endothermic peak between 80 and 160 ◦C, and ∆H100 is the enthalpy of fusion for
100% crystalline polyethylene, which is considered 289.3 J/g [4,18].

2.4. Wettability Testing

The apparatus (JCB2000B, Beijing Zhongyi Kexin Technology Limited Company, Bei-
jing, China) was employed to measure the contact angle. A syringe was skillfully used to
drop calf serum on the solid and porous UHMWPE surface, then we captured the image
and measured the contact angle within 30–120 s after the calf serum dropped onto the
specimen surface. Each specimen was tested ten times and then averaged. UHMWPE wet-
tability and the hydrophilicity/hydrophobicity ratio of the material surface was reflected
by the measured contact angle [3].
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2.5. Mechanical Performance Characterization

The tensile specimen was performed on a tensile test machine in accordance with ISO
527 [19], with an s stretch speed of 50 mm/min. During the test, the stress–strain curve
was recorded automatically after the specimen dimension input. The specimen used in this
experiment was manufactured according to Reference [4]. The results of three samples for
each type of UHMWPE were averaged.

The stress on anti-abrasive material was usually compressive strength. The specimen
dimension of solid and porous UHMWPE was (10 × 10 × 5) mm3. The compression test
was carried out on a WDW-5 according to the standard ISO 604 [20]. The specimen of
the solid and porous UHMWPE was compressed to 250 N and then unloaded the force to
zero. The force and deformation curves were recorded to check the stress and deformation
recovery capacity during the loading and unloading process, respectively. The results of
five samples for each type of UHMWPE were averaged.

To research the effect of pores on the hardness of UHMWPE, shore hardness (SH) was
used according to the standard ISO 868 and calculated automatically [21]. Each sample
was tested ten times and then averaged.

The polymer continued to produce creep deformation under the constant external
force. Serious deformation caused by creep influenced the precision of implant and led to
its failure [22]. Creep behaviors of solid and porous UHMWPE were characterized through
a ball indentation creep experiment. Each sample was tested five times and then averaged.

2.6. Friction Experiment

A tribological property experiment was performed on a tribo-testing machine to assess
the friction and wear performance of solid and porous UHMWPE. Experimental heating,
insulation, lubrication, and methods were described in detail in Reference [4]. The test load,
temperature, sliding speed, and reciprocating distance were 19.8 N, 37 ± 1 ◦C, 2 mm/s,
and 10 mm, respectively. This test load resulted in a central contact pressure of 85.2 MPa
between the ball and the porous UHMWPE specimen, corresponding to the central contact
pressure for a ceramic ball with a diameter of 28 mm on the UHMWPE cup applied by the
peak load of the body weight of 75 kg [23]. Calf serum solution (25 vol. %) and deionized
water were used as lubricants, and the whole test lasted for 7200 s. The friction coefficient
recorded during the test and wear mass loss were taken as the wear parameters to estimate
the friction performance of solid and porous UHMWPE. Each sample was tested five times
and then averaged. The wear mechanism was also analyzed by SEM.

3. Results and Discussion
3.1. SEM Analysis of NaCl and UHMWPE

Figure 1 presents the morphology of UHMWPE and NaCl. The mean particle size of
UHMWPE was 88.64 µm, distributing between 21.12~179.75 µm. UHMWPE powder had
an irregular particle structure with protuberances on its surface. The NaCl particle was a
regular cube, and the average size was about 200 µm. In natural cartilage, the pore sizes
are mainly concentrated in the range of 0.01~0.03, 7~15, and 30~150 µm [24]. NaCl with a
particle size close to 30~150 µm was used as a template to fabricate porous materials.

The weights of UHMWPE samples before and after NaCl dissolution were 19.41 ± 0.28,
and 9.52 ± 0.06 g, respectively. The dissolution rate of NaCl reached 49%, indicating
that a very small amount of NaCl was encapsulated by UHMWPE in the matrix. The
volume porosity of porous UHMWPE was 29.7%, based on the dissolution rate of NaCl
and the density of NaCl and UHMWPE. Figure 2 shows the micrographs of solid and
porous UHMWPE. The pores of porous UHMWPE replicated from NaCl were opened and
interconnected. The hole size ranged from tens to hundreds of microns, and the size of the
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largest hole was 200 µm, corresponding to the added NaCl particle size. The shape of the
pore is inherited from the space holder, and the porosity is related to the amount of space
holder added, both of which have an impact on the performance of porous UHMWPE.
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Figure 2. SEM images of (a) solid and (b) porous UHMWPE.

3.2. FTIR Analysis

FTIR spectra of UHMWPE powder and sintered (solid or porous) UHMWPE are
shown in Figure 3. The peaks from 680 to 780 cm−1 and 1430 to 1470 cm−1 represented
the rocking and bending deformation of polyethylene [25]. The peaks around 2835 and
2910 cm−1 represented the asymmetrical and symmetrical stretching of CH3-CH2- and
-CH2-CH2- groups, respectively [25]. The peaks from 1650 to 1850 cm−1 corresponded
to the absorption of carbonyl species and 1100 to 1400 cm−1 associated with -C-O-C-
vibrations [26]. These indicated that the UHMWPE was oxidized during the molding
process. Mechanical properties of UHMWPE were weakened owing to the oxidation [27],
so antioxidants such as Vitamin E [8,28], butylated hydroxytoluene [29], butyl hydroxy
anisole [30] and natural polyphenols [31] were used to prevent UHMWPE oxidation.
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3.3. Crystallinity Analysis

The crystallinity values of solid and porous UHMWPE were 50.0 ± 0.5 and 48.7 ± 0.5%,
respectively. The crystallinity of porous UHMWPE decreased due to the addition of
NaCl. The thermal capacity of NaCl (0.88 kJ/kg ◦C) was lower than that of UHMWPE
(1.84 kJ/kg ◦C). This shows that the heat absorbed by NaCl was less than that of UHMWPE
in the molding process when the same temperature was raised. The heat absorption
of UHMWPE was insufficient due to the manufacturing system being commanded by
temperature. Also, the compression effect of external force on the UHMWPE matrix was
reduced because NaCl particles undertook part of the force [12]. UHMWPE, as a semi
crystalline material, contains the phases of crystalline and amorphous [4,7]. The insufficient
heat and actuated pressure reduced the mobility of UHMWPE chains, and this formed
less crystalline lamellae in the molding process, resulting in the crystallinity of porous
UHMWPE reduction.

3.4. Wettability Analysis

The friction property of materials is related to the contact angle or wettability under
lubrication [32]. Materials with a larger contact angle were prone to forming and maintain-
ing a lubricating film due to the lower diffusion ability of lubricants on the sample surface.
In this case, the coefficient of friction is reduced, and the wear resistance is enhanced [33].
Meanwhile, the specimen with a small contact angle permits the lubricant to extend on its
surface, and the lubricating film cannot be formed and kept, resulting in a high friction
coefficient and low wear resistance.

Figure 4 presents a micrograph of the contact angle between UHMWPE and deionized
water. The contact angle values of solid UHMWPE with deionized water and calf serum
were 85 ± 3 and 81 ± 3◦, and these values of porous UHMWPE were 54 ± 2 and 58 ± 2◦,
respectively. The change in the solid material surface microstructure led to the change in
the intrinsic contact area and contact angle. Yin et al. considered that, due to the existence
of a coarse surface, the real contact area between the liquid and the solid material was
larger than the apparent contact area, thus improving the hydrophilicity [34]. The fluid was
easily inhaled into the pores, which transformed the surface and interface performance,
resulting in the decrease in the contact angle [35]. The macromolecular proteins in calf
serum rubbed with the pore wall when they penetrated the pores, which prevented calf
serum from continuing to penetrate. Therefore, the change in contact angle with calf serum
from solid to porous UHMWPE was less than that with deionized water.



Lubricants 2025, 13, 31 7 of 13Lubricants 2025, 13, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 4. Microscopic picture of the contact angle between UHMWPE and deionized water. 

3.5. Hardness Test Analysis 

The SH value of solid UHMWPE was 67.9 ± 1.3 HD, and these values of porous 
UHMWPE were 69.5 ± 3.4 and 48.9 ± 2.1 HD before and after the dissolution of NaCl, 
respectively. The hard NaCl particles hindered the deformation of the soft UHMWPE ma-
trix and then led to an increase in the hardness [36]. But the addition of NaCl reduced the 
crystallinity and then reduced the hardness of UHMWPE. Pores were formed in situ after 
the dissolution of NaCl. The hardness of porous UHMWPE decreased obviously due to 
the pores’ weakening action and crystallinity decrease [37]. 

3.6. Tensile Test Analysis 

The tensile stress–strain of solid and porous UHMWPE have the same profiles, re-
spectively. Figure 5 demonstrates the typical tensile stress–strain profiles of solid and po-
rous UHMWPE. The tensile curves included two different stages. In the first stage, only 
elastic deformation occurred; the length of the specimen increased in proportion to the 
stress increase. The dimension of the sample returned to its incipient size; when applied, 
stress was expunged. In the second stage, plastic deformation strengthening appeared, 
and the dimension could not restore when the applied stress was removed. The sample 
was pulled apart, and the stress decreased sharply when the stress exceeded the strength 
of UHMWPE. The yield strengths of solid and porous UHMWPE were 21.0 ± 1.7 and 8.4 
± 0.5 MPa, while the tensile strengths were 29.5 ± 1.6 and 12.4 ± 0.7 MPa, respectively. The 
elongation of porous UHMWPE was 27.4 ± 0.5%. The elongation of solid UHMWPE was 
larger than that of porous UHMWPE, but the detailed extensibility value of solid 
UHMWPE could not be measured due to the sample curling after a fracture. Although the 
yield strength of solid UHMWPE was higher than that of porous UHMWPE, the yield 
strength of porous UHMWPE was closer to that of natural cartilage (~5.80 MPa) [38]. 

0 100 200 300 400
0

10

20

30

St
re

ss
/M

Pa

Strain/%

Solid UHMWPE

Porous UHMWPE

 

Figure 4. Microscopic picture of the contact angle between UHMWPE and deionized water.

3.5. Hardness Test Analysis

The SH value of solid UHMWPE was 67.9 ± 1.3 HD, and these values of porous
UHMWPE were 69.5 ± 3.4 and 48.9 ± 2.1 HD before and after the dissolution of NaCl,
respectively. The hard NaCl particles hindered the deformation of the soft UHMWPE
matrix and then led to an increase in the hardness [36]. But the addition of NaCl reduced
the crystallinity and then reduced the hardness of UHMWPE. Pores were formed in situ
after the dissolution of NaCl. The hardness of porous UHMWPE decreased obviously due
to the pores’ weakening action and crystallinity decrease [37].

3.6. Tensile Test Analysis

The tensile stress–strain of solid and porous UHMWPE have the same profiles, respec-
tively. Figure 5 demonstrates the typical tensile stress–strain profiles of solid and porous
UHMWPE. The tensile curves included two different stages. In the first stage, only elastic
deformation occurred; the length of the specimen increased in proportion to the stress
increase. The dimension of the sample returned to its incipient size; when applied, stress
was expunged. In the second stage, plastic deformation strengthening appeared, and the
dimension could not restore when the applied stress was removed. The sample was pulled
apart, and the stress decreased sharply when the stress exceeded the strength of UHMWPE.
The yield strengths of solid and porous UHMWPE were 21.0 ± 1.7 and 8.4 ± 0.5 MPa,
while the tensile strengths were 29.5 ± 1.6 and 12.4 ± 0.7 MPa, respectively. The elongation
of porous UHMWPE was 27.4 ± 0.5%. The elongation of solid UHMWPE was larger than
that of porous UHMWPE, but the detailed extensibility value of solid UHMWPE could
not be measured due to the sample curling after a fracture. Although the yield strength of
solid UHMWPE was higher than that of porous UHMWPE, the yield strength of porous
UHMWPE was closer to that of natural cartilage (~5.80 MPa) [38].
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3.6. Tensile Test Analysis 

The tensile stress–strain of solid and porous UHMWPE have the same profiles, re-
spectively. Figure 5 demonstrates the typical tensile stress–strain profiles of solid and po-
rous UHMWPE. The tensile curves included two different stages. In the first stage, only 
elastic deformation occurred; the length of the specimen increased in proportion to the 
stress increase. The dimension of the sample returned to its incipient size; when applied, 
stress was expunged. In the second stage, plastic deformation strengthening appeared, 
and the dimension could not restore when the applied stress was removed. The sample 
was pulled apart, and the stress decreased sharply when the stress exceeded the strength 
of UHMWPE. The yield strengths of solid and porous UHMWPE were 21.0 ± 1.7 and 8.4 
± 0.5 MPa, while the tensile strengths were 29.5 ± 1.6 and 12.4 ± 0.7 MPa, respectively. The 
elongation of porous UHMWPE was 27.4 ± 0.5%. The elongation of solid UHMWPE was 
larger than that of porous UHMWPE, but the detailed extensibility value of solid 
UHMWPE could not be measured due to the sample curling after a fracture. Although the 
yield strength of solid UHMWPE was higher than that of porous UHMWPE, the yield 
strength of porous UHMWPE was closer to that of natural cartilage (~5.80 MPa) [38]. 
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Figure 5. Typical tensile stress–strain profiles of solid and porous UHMWPE.
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3.7. Compression and Recovery Test Analysis

The compression and recovery performance of solid and porous UHMWPE have the
same trend of change, respectively. Figure 6 shows the typical resistance and deformation
recovery curves of solid and porous UHMWPE to force in dry conditions and calf serum.
The change in force applied on the solid UHMWPE was very sharp under the small
deformation, while the porous UHMWPE had a large deformation under the same load,
and there was a buffering effect on the force applied to the material. This buffering effect
was caused by the liquid-holding capacity of porous materials. The compressive yield
strength of solid UHMWPE was 25.9 ± 0.7 MPa, whether in dry conditions or calf serum.
The compressive yield strengths of porous UHMWPE in dry conditions and calf serum
were 7.0 ± 0.3 and 7.3 ± 0.4 MPa, respectively. The strength of porous UHMWPE had
little change in dry conditions and calf serum and was closer to that of natural cartilage
(~3.7 MPa) [39].
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3.8. Creep Resistance Analysis

The typical indentation depth changes in solid and porous UHMWPE with time are
shown in Figure 7. In the ball compression creep test, the indentation depth increased
significantly at the beginning of 500 s, and, then, the increase slowed down. The final
indentation depth of solid UHMWPE was 0.102 ± 0.008 mm, whether in dry conditions,
deionized water, or calf serum. The final indentation depths of porous UHMWPE in dry
conditions, deionized water, and calf serum sample were 0.271 ± 0.016, 0.264 ± 0.013, and
0.254 ± 0.012 mm, respectively. The reasons for the change in indentation depth are as
follows: First, the weakening effect of the pore makes the porous UHMWPE produce more
deformation. Second, the pores in porous UHMWPE promote the motion ability of the
UHMWPE molecules and reduce the creep resistance. Therefore, the indentation depth of
porous UHMWPE, whether in dry conditions, deionized water, or calf serum, is larger than
that of solid UHMWPE. The final indentation depth reduced about 0.007 and 0.017 mm
due to the presence of deionized water and calf serum, which indicated that the creep
resistance of porous UHMWPE was enhanced, and porous UHMWPE still had a certain
liquid-holding capacity under long-term pressure.
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3.9. Friction Property and Wear Mechanism

The coefficient of friction and wear amount were usually utilized to reveal friction
and wear property of materials. Figure 8 exhibits the typical friction coefficient of solid
and porous UHMWPE in dry conditions, deionized water, and calf serum. To all sam-
ples, the initial friction coefficient values changed greatly and then reached equilibrium.
The stable friction coefficient values of solid and porous UHMWPE in dry conditions
were 0.185 ± 0.005 and 0.278 ± 0.012, and these values decreased to 0.102 ± 0.003 and
0.075 ± 0.002, 0.038 ± 0.001 and 0.020 ± 0.001 in deionized water and calf serum, respec-
tively. The surface roughness and real stress on porous UHMWPE increased due to the
existence of pores, and the friction force increased, which led to a significant increase
in the friction coefficient in dry conditions. Figure 9 displays the lubrication model of
porous material. The liquid in the pores bore part of the pressure due to the liquid-holding
capacity of the pore, resulting in a decrease in real stress on UHMWPE and a reduction in
frictional force. Porous UHMWPE showed a low friction coefficient under the action of
liquid lubrication. The friction coefficient was not only related to the liquid lubricity but
also to the pore-holding capacity caused by the viscosity of the liquid and pore. Therefore,
the friction coefficient values of solid or porous UHMWPE in deionized water and calf
serum were lower than that in dry conditions. Compared with solid UHMWPE, porous
UHMWPE had better liquid-holding ability, and its friction coefficient value was lower than
that of solid UHMWPE. The friction coefficient of porous UHMWPE in dry conditions was
higher than that of solid UHMWPE because the pore reduced the real stress area and then
increased the real stress. The friction coefficient values of solid and porous UHMWPE in dry
conditions (0.185 and 0.278) were almost the same as that of dry cartilage (0.25) [40]. The
friction coefficient of porous in calf serum (0.020) was lower than that of solid UHMWPE
(0.038), but it was still higher than that of natural cartilage in the synovium (0.005) [40].
The wear loss values of solid and porous UHMWPE in dry conditions were 0.25 ± 0.02
and 1.13 ± 0.05 mg, and these values changed to 0.19 ± 0.02 and 0.09 ± 0.01 mg in calf
serum, respectively. The wear resistance of porous UHMWPE was lower than that of solid
UHMWPE in dry conditions because the continuity of porous UHMWPE was damaged
by the pore. Calf serum stored in porous UHMWPE was released to the surface and acted
as a lubricant during the process of friction and wear. Due to the lubricating effect of calf
serum, the wear resistance of solid UHMWPE in calf serum was superior to that in dry
conditions. Meanwhile, the wear resistance of porous UHMWPE was superior to that of
solid UHMWPE in calf serum because the formed lubricating film on the solid UHMWPE
surface was easy to destroy.
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Figure 9. Lubrication model of porous UHMWPE.

Figure 10 displays SEM images of abrasion marks on a solid and porous UHMWPE
surface. The worn surface was distributed with slight scratches and shallow furrows along
the friction direction; these were the main characteristic of abrasive wear. The heat was
generated by the friction between UHMWPE and the ceramic ball and caused the thermal
softening of UHMWPE, resulting in scratches and furrows on wear marks [36]. There
were some folds on the grinding marks of porous UHMWPE because the continuity of
UHMWPE was destroyed by the pores. The wear mass loss of porous UHMWPE in dry
conditions was the largest in all UHMWPE samples. The scratches and furrows on the
solid and porous UHMWPE surface in calf serum were very light, especially on the porous
UHMWPE. There were almost no scratches or furrows. Therefore, the wear loss of porous
HMWPE in calf serum was the least in all UHMWPE samples.



Lubricants 2025, 13, 31 11 of 13

Lubricants 2025, 13, x FOR PEER REVIEW 10 of 13 
 

 

0 1800 3600 5400 7200
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
ic

tio
n 

co
ef

fic
ie

nt

Time/s

Porous UHMWPE (Dry)

Solid UHMWPE (Dry)

Solid UHMWPE (Deionized wter)

Porous UHMWPE (Deionized water)

Solid UHMWPE (Calf serum)

Porous UHMWPE (Calf serum)

 

Figure 8. Typical friction coefficient profiles of solid and porous UHMWPE in different mediums. 

 

Figure 9. Lubrication model of porous UHMWPE. 

  
(a) (b) 

  

(c) (d) 

Scratches and furrows 

Scratches and furrows 

Scratches and furrows 

Folds 

Figure 10. SEM images of abrasion marks on (a) solid and (c) porous UHMWPE under dry friction,
and (b) solid and (d) porous under calf serum lubrication.

4. Conclusions
UHMWPE and NaCl/UHMWPE samples were produced by the compression molding

method. Then, the NaCl in UHMWPE was completely dissolved, and the pores formed in
situ of dissolved NaCl. The porosity of the porous UHMWPE was 29.7% when the addition
of NaCl was 50 wt. % and the average pore size was 200 µm. The crystallinity of UHMWPE
decreased due to the addition of NaCl. Mechanical properties such as hardness, creep
resistance, strength, and elongation were decreased due to the weakening effect of the pore
and crystallinity decrease. However, the yield strength of porous UHMWPE was closer
to that of the natural cartilage in the tensile and compression test. At the same time, the
porous UHMWPE had a better buffering effect on the force due to the pore’s liquid-holding
capacity. To both solid and porous UHMWPE, the friction coefficient was lower, and the
wear resistance was higher in calf serum than that in dry conditions because calf serum
played a lubricating role during friction and wear test. In dry conditions, porous UHMWPE
had a higher friction coefficient and lower wear resistance than that of solid UHMWPE
due to the continuity of UHMWPE, which was damaged, and the real stress applied on
the UHMWPE was increased. Meanwhile, in calf serum, porous UHMWPE had a lower
friction coefficient and wear resistance than that of solid UHMWPE because the liquid in
the pores bore part of the pressure and overflowed under the action of pressure, forming
a complete lubrication film. The wear mechanism of solid and porous UHMWPE was
abrasive wear. The scratches and furrows on grinding marks were reduced by the lubricity
of calf serum, especially in porous UHMWPE.

In future work, the content of space holder material can be changed to alter the porosity
of porous UHMPWE, making it closer to the performance of cartilage. The shape and
particle size of the space holder can also be changed to study their effect on the properties of
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porous UHMPWE. When the performance of porous UHMWPE is comparable to cartilage,
its rheological behavior and dynamic mechanical analysis should be studied.
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