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Abstract: In this study, a chaos theory-based characterization method is proposed to ad-
dress the nonlinear behavior of acoustic emission (AE) signals during the startup and
shutdown phases of dry gas seals. AE signals were collected through a controlled experi-
ment at three distinct phases: startup, normal operation, and shutdown. Analysis of these
signals identified a transition speed of 350 r/min between the mixed lubrication (ML) and
hydrodynamic lubrication (HL) states. The maximum Lyapunov exponent, correlation
dimension, K-entropy, and attractors of the AE signals throughout the operation of the
dry gas seal are calculated and analyzed. The findings indicate that the chaotic features of
these signals reflect the friction state of the seal system. Specifically, when the maximum
Lyapunov exponent is greater than zero, the system exhibits chaotic behavior. The corre-
lation dimension and K-entropy first increase and then decrease in boundary and hybrid
lubrication states, while remaining stable in the hydrodynamic lubrication state. Attractors
exhibit clustering in boundary lubrication and dispersion in mixed lubrication states. The
proposed method achieves an accuracy of 98.6% in recognizing the friction states of dry gas
seals. Therefore, the maximum Lyapunov exponent, correlation dimension, and K-entropy
are reliable tools for characterizing friction states, while attractors serve as a complementary
diagnostic feature. This approach provides a novel framework for utilizing AE signals to
evaluate the friction states of dry gas seals.

Keywords: dry gas seals; chaos theory; acoustic emission; friction state

1. Introduction
Dry gas seals, renowned for their exceptional performance, are widely employed in

critical applications, including centrifugal compressors [1], aircraft engines, and nuclear
power pumps. As these technologies evolve to operate at higher speeds and pressures, the
integrity and stability of dry gas seals are increasingly challenged. This growing concern
underscores the need for a deep understanding of the dynamics governing the friction
states of dry gas seals, which is crucial for their optimal operation and maintenance.

The conventional destructive monitoring approach, which involves embedding sen-
sors in the static ring, often compromises seal performance and compatibility [2]. In contrast,
advanced nondestructive acoustic emission (AE) technology offers a transformative so-
lution for real-time monitoring of dry gas seal conditions, providing superior potential
compared to traditional methods [3,4]. Early work in AE monitoring, beginning in 1969
with Orcutt’s exploration of its effectiveness in evaluating mechanical seals [5], was further
advanced by Miettinen in 1995, who applied AE techniques to analyze the sliding contact
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behavior of seals [6]. Today, AE technology is recognized for its exceptional capability in
acting as a highly sensitive indicator of lubrication conditions, serving as a foundation for
condition monitoring in various systems, including bearings and gearboxes [7–9].

AE technology’s high sensitivity and resolution make it an effective tool for detecting
subtle changes in the operating conditions of mechanical systems. AE sensors detect stress
wave signals generated by friction on the seal end face. Huang et al. [10] analyzed the
frequency bands associated with friction during the startup and shutdown phases of dry
gas seals, while Xu et al. [11] studied AE signals across three operational states: non-contact,
light contact, and excessive contact. Sun et al. [12] employed the SVD–AVMD method
to extract AE characterization signals related to the friction state of liquid film seals, and
Towsyfyan et al. [13] explored AE characterization of typical faults in mechanical seals. Li
et al. [14] utilized genetic particle filters and support vector machine signal analysis for
mechanical seal fault classification. Despite their potential, AE-based monitoring methods
have limitations, such as complex interpretation and susceptibility to ambient noise, which
can lead to false positives or negatives.

To overcome these challenges, chaos theory offers a promising approach for feature
extraction from AE signals, leveraging the high sensitivity of chaotic systems to initial
conditions and their complex dynamical behavior. Chaos theory has been successfully
applied to machine condition monitoring and fault diagnosis. Zhu et al. [15] demonstrated
that friction signals exhibit a broad continuous power spectrum, fractal dimension, and
maximum Lyapunov exponent, confirming the chaotic nature of friction systems. Sun
et al. [16] used chaotic attractor phase trajectories to characterize the chaotic properties and
evolution patterns of friction vibration signals during grinding. Lewis et al. [17] explored
methods for extracting weak signals from chaotic backgrounds, while Ziaja et al. [18]
applied chaos theory to diagnose rolling bearing faults. Despite the promise of chaos
theory, its application in dry gas seals remains underexplored. Based on our review of
the current state of research in the world’s leading scientific centers, we observe that the
judgment of the friction state in dry gas seals largely relies on empirical methods rather
than specific characteristic indicators.

Existing studies have shown a strong correlation between seal operating conditions
and the root mean square (RMS) value of AE signals, highlighting the effectiveness of chaos
theory as a framework for understanding mechanical operating conditions. However, the
friction state features of dry gas seal end faces have not been thoroughly investigated. This
study aims to address this gap by proposing an experimental investigation that employs
chaos theory as an analytical tool to determine the state features of the seal end face. The
goal is to provide valuable insights and methods for the effective identification and fault
diagnosis of dry gas seal states in future applications.

2. Theoretical Analysis
In studying the start–stop phase of a dry gas seal, traditional linear analysis methods

often fail to capture subtle changes in system behavior because of inherent nonlinearity
and complexity. Chaos theory provides a powerful framework for uncovering and un-
derstanding the system’s complex dynamics, thereby enhancing its ability to predict and
control its behavior. The chaos indicators employed in this study, including the Lyapunov
exponent and fractal dimension, are particularly effective in reflecting the system’s stability
and complexity. These indicators are highly sensitive, which allows them to detect minor
variations that traditional methods—such as linear regression or time series analysis—may
miss. In comparison with other analytical methods commonly utilized in related studies,
including Fourier transform or wavelet analysis, chaos theory stands out by effectively
revealing both short-term dynamics and long-term behavioral patterns. The literature
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review reports that numerous studies rely exclusively on linear models, which can result in
misinterpretations of system behavior. By contrast, the developed approach offers a more
comprehensive understanding of the underlying dynamics.

2.1. Phase-Space Reconstruction

The first step in analyzing time series signals of chaotic systems is the reconstruction of
phase-space, which is a crucial tool for understanding the system’s evolution and dynamics.
In the study of dynamical systems, phase-space is conceptualized as a multidimensional
domain generated by expanding the states or dimensions of the system’s variables. This
reconstruction is crucial for unraveling the complex behaviors characteristic of chaotic
systems. Using the delayed coordinate method, Takens [19] introduced the phase-space
reconstruction of a chaotic time series.

X =
{

Xi

∣∣∣Xi =
[

xi, xi+τ , · · · , xi+(m−1)τ

]
, i = 1, 2, · · · , M

}
(1)

where m is the embedding dimension, τ is the delay time, N is the series length, and
M is the number of vectors in phase-space, with M = N − (m − 1)τ. Takens’ theorem
provides a basis for selecting the embedding dimension under the assumption of a long
and noise-free time series. Nonetheless, because actual time series data are finite and noisy,
the appropriate embedding dimension m and delay time τ must be carefully chosen.

Currently, two perspectives on the selection of m and τ exist. One perspective is that
these methods operate independently, as shown by approaches including the autocorrela-
tion method [20] and the mutual information method [21] for determining time delay, as
well as the G–P algorithm [22] and the FNN method [23] for determining the embedding
dimension. The other perspective suggests that m and τ are related, as supported by
approaches including the embedding window method [24] and the C–C method [25].

The C–C method can simultaneously determine both the optimal delay time and the
embedding dimension of a time series employing correlation integrals. Before calculation,
several parameters must be specified. τs is the sampling interval of the time series, and τ

denotes the delay time. The actual delay time for the time series is expressed as τd = ττs,
and the delay time window is designated as τw. By analyzing the statistical properties, the
appropriate delay time τs can be accurately calculated, which then determines the time
window τ. Finally, the embedding dimension m is derived on the basis of the combination
of the time window τw and the determined time series delay time τd.

Using the formula provided in Equation (1), the correlation integral for the embedded
time series is calculated. This formula offers a quantitative measure of the relationship
between the embedded points in phase-space.

C(m, N, r, t) =
2

M(M − 1) ∑
1≤i≤j≤M

θ(r −
∥∥Xi − Xj

∥∥), r > 0 (2)

where θ(x) = 0, if x < 0, and θ(x) = 1, if x ≥ 0. The correlation integral is a cumulative
distribution function that represents the probability that the distance between any two
points in the phase–space is less than r.

Define the test statistic:

S1(m, N, r, t) = C(m, N, r, t)− Cm(1, N, r, t) (3)

The time series can be first divided into t disjoint subsequences, where t is a natural
number smaller than 200 in practical calculations.



Lubricants 2025, 13, 40 4 of 21

{x1, xt+1, x2t+1, · · ·}
{x2, xt+2, x2t+2, · · ·}
· · · · · · · · · · · · · · · · · · · · ·
{xt, x2t, x3t, · · ·}

(4)

Using the strategy of chunked averaging, the statistics defined in Equation (3)
are calculated.

S2(m, N, r, t) =
1
t

t

∑
s=1

[Cs(m,
N
t

, r, t)− Cm
s (1,

N
t

, r, t)] (5)

When N → ∞ ,

S2(m, r, t) =
1
t

t

∑
s=1

[Cs(m, r, t)− Cm
s (1, r, t)] (6)

If the time series were independent and identically distributed, then N → ∞ and
S2(m, r, t) = 0 for all r and fixed m and t. However, in practice, the series is finite, and
its elements may be interrelated, which leads to S2(m, r, t) ̸= 0. Therefore, the zero point
of S2(m, r, t) or the time point of the minimum difference between each time point across
all radii r can be utilized to identify the local maximum time interval t, with these points
typically being nearly evenly distributed.

The difference ∆S2(m, t) can be defined as follows:

∆S2(m, t) = max{S2(m, r, t)} − min{S2(m, r, t)} (7)

Therefore, the local maximum time t corresponds to the zero point of S2(m, r, t) or
the minimum value of ∆S2(m, t). The time series delay τd is identified as the first value
among the largest local times t. At this point, these maxima are nearly evenly distributed,
and the reconstructed attractor is fully expanded in phase–space. Thus, the delay time
τd is determined by the first local maximum, and the delay time τ is calculated using the
formula τd = ττs.

When determining the embedded window τw, S2(m, r, t) and ∆S2(m, t) are assumed
to approach 0; thus, Scor(t) can be defined as the indicator as follows:

S2cor(t) = ∆S2(t) +
∣∣S2(t)

∣∣ (8)

The optimal estimation of the embedding window τw is obtained by identifying the
global minimum point. Using Equation (6), the embedding dimension m can then be
calculated. ∆S2(t) and S2(t) are determined by averaging S2(m, r, t) and ∆S2(m, t) for
different values of m and r. Based on the statistical analysis, the range for m and r can be
expressed as follows: 2 ≤ m ≤ 5, σ

2 ≤ r ≤ 2σ, where σ is the standard deviation of the
time series.

τw = (m − 1)τd (9)

Thus, using Equations (5)–(7), the delay time τ and the embedding dimension m can
be determined.

The improved C–C method [26] identifies the optimal delay τd by locating the first
local minimum of ∆S1(t). Equations (3) and (5) show similar undulation patterns, and
the optimal embedding window is determined at the periodic point

∣∣S1(t)− S2(t)
∣∣. Sub-

sequently, the embedding dimension m is calculated using Equation (9). The advan-
tage of the improved C–C method is its ability to clearly distinguish peaks at periodic
points while attenuating high-frequency undulations, thus simplifying the selection of
phase–space parameters.
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2.2. Lyapunov Exponent

The Lyapunov exponent is a crucial quantitative measure employed to characterize
the dynamical properties of a system. It represents the average exponential rate at which
neighboring orbits converge or diverge in phase-space, which provides a quantitative
description of chaotic motion and offers deep insights into the complex behaviors of
dynamical systems. For high-dimensional dynamical systems, xn+1 = F(xn), where F is an
m-dimensional map on Rm → Rm , the Lyapunov exponent is defined [15] as follows:

λi = lim
n→∞

1
n

ln
∣∣∣∣ Pi(n)
P0(n)

∣∣∣∣ i = 1, 2 · · ·m (10)

where λi is the Lyapunov exponent in the direction of the main axis of the first ellipsoid
and Pi(n) is the length of the main axis of the first ellipsoid.

The system Lyapunov exponent is typically calculated using the small quantity
method [27]. This approach involves reconstructing the phase–space of the xi, i = 1, 2, · · · , N
time series to obtain Xi, identifying the nearest neighbor Xi for each point Xj in the phase–
space Xj, and then calculating the Euclidean distance between these points:

dj(0) = min
∥∥∥Xj − X ĵ

∥∥∥,
∣∣∣∣j − ∧

j
∣∣∣∣ > p (11)

where dj(0) is the initial distance from the jth point to its nearest neighbor, ∥..∥ denotes the
Euclidean norm, and p denotes the average period of the time series.

When each Xi point passes through i time steps, the distance becomes

dj(i) =
∥∥∥∥Xj+i − X∧

j+i

∥∥∥∥,

i = 1, 2 · · · , min(M − j, M −
∧
j )

(12)

For each i, calculate the average value y(i) of all ln dj(i) of j:

y(i) =
1

q∆t

q

∑
j=1

ln dj(i) (13)

where q is the number of non-zero elements and ∆t is the evolutionary time-step growth.
Take the linear region i − y(i), and fit a sequential regression curve using the least

squares method. The slope of this curve represents the maximum Lyapunov exponent. If
this exponent is greater than 0, the system exhibits chaotic behavior, with larger values
indicating greater levels of chaos.

2.3. Correlation Dimension

The correlation dimension, a type of fractal dimension, is sensitive to the temporal
dynamics of a system. Consequently, it is a valuable tool for determining the fractal
dimension characteristics of time series data. By analyzing the correlation dimension, the
chaotic properties of a system, as represented by its time series signals, can be effectively
determined. The correlation dimension using the G–P method is calculated as follows.
In the reconstructed phase-space described by Equation (1), the distance dij between
two points is calculated, as detailed in [28]:

dij =
∣∣Xi − Xj

∣∣ (14)
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A series of positive numbers ε is chosen, and for each ε, the number N1(ε) of rij < ε is
calculated, defining the correlation function:

C(ε) =
N1(ε)

N(N − 1)
=

1
N(N − 1) ∑

1≤i≤j≤N
θ(ε − dij) (15)

where θ(·) is the Heavisde step function and the association dimension D is defined when
ε approaches to infinity:

D = lim
ε→0

ln C(ε)
ln(ε)

(16)

Create a double logarithmic plot of ln C ∼ ln ε, and fit the slopes of the linear regions
on this curve using the least squares method. When the slope obtained from the fit begins
to stabilize with increasing embedding dimension m, the value at this point is D. A higher
D indicates greater system instability.

2.4. K-Entropy

Kolmogorov entropy, also known as K-entropy, is a fundamental concept for quantify-
ing the degree of randomness in a system’s dynamics. It is a key measure that captures the
variations in the state of a dynamical system, which provides a quantitative assessment of
its randomness or disorder. This entropy metric provides valuable insights into the com-
plexity and unpredictability of the system’s behavior, helping researchers better understand
its dynamic properties. Common methods for calculating K-entropy involve the maximum
likelihood method and the correlation integral algorithm. In the maximum likelihood
approach, the process examines two initially close points on different orbits; the time they
remain separated before becoming spaced apart follows an exponential distribution.

c(b) = e−kb, b = 1, 2, 3 (17)

where k is the K-entropy and b is the number of evolution steps in phase-space required
for a point, initially separated by a distance smaller than r0, to exceed r0 for the first time.
After b evolution steps, the probability that the distance between two neighboring points is
greater than r0 is as follows:

p(b) = c(b − 1)− c(b) = (ek − 1)e−kb (18)

The joint probability of b1, b2, · · · bW and k is obtained by randomly selecting W pairs
of uncorrelated points in the phase-space:

pk = p(b1, b2, · · · bW, k) =
W
∏
i=1

p(bi)

= (ek − 1)
We(−k∑ bi)

(19)

The maximum likelihood estimate of the K-entropy can be determined using
Equation (19):

K = − ln(i − 1
b
) (20)

If K = 0, the system exhibits regular motion. If K → ∞ , the system shows random
motion. If K > 0, the system is in chaotic motion, with larger values of K indicating greater
degrees of chaos in the system.
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2.5. Chaotic Attractor Phase Trajectories

A chaotic attractor is a geometric structure in phase–space that encapsulates the long-
term behavioral patterns of a dynamical system. It represents the final form achieved
through the temporal evolution of a system in phase–space. By analyzing this attractor,
one can effectively distinguish between chaotic operation, random motion, and periodic
or quasi-periodic behavior, hence gaining deep insights into the complex dynamics of the
system. To reconstruct the chaotic system attractor and enable its visualization, phase-space
reconstruction theory is employed to map the AE signal sequence of the sealing system into
a high-dimensional space. From this high-dimensional space, the three principal vectors are
extracted to construct the chaotic attractor for the unsealed system under various operating
states. The first step involves calculation of the inner product matrix from the reconstructed
matrix as described in Equation (1):

Y = XTX (21)

To reconstruct the matrix, using Equation (21), the eigenvalues of the inner product
matrix are calculated. Then, the three largest eigenvalues are selected from the eigenvalues
λ1, λ2, λ3 of the inner product matrix to serve as the principal eigenvalues. Next, determine
the eigenvectors that correspond to these three principal eigenvalues to serve as the prin-
cipal vectors. A new projection matrix is obtained by projecting the reconstructed matrix
along these three principal vectors. This projection matrix α, derived from the AE signals
of the sealing system, represents the chaotic attractor matrix for the system.

α = X[ξ1, ξ2, ξ3] (22)

2.6. Chaos Characterization Methods for AE Signals

Each AE time series is associated with a specific set of embedding dimensions and
delay times. In this study, using the 0.5 s AE data from the start–stop phase of a dry gas
seal as the computational time series, with calculations performed sequentially, the chaotic
feature parameters are calculated. The detailed steps for characterizing the AE signals of
the friction state in a dry gas seal using chaos theory are outlined as follows.

(1) Chaos assessment: The chaotic nature of the AE signal is evaluated by calculating the
maximum Lyapunov exponent during the start–stop phase of the dry gas seal. This
step is designed to confirm whether the signal exhibits chaotic behavior.

(2) Phase-space reconstruction: The modified C–C method is employed to simultaneously
determine the optimal delay time and embedding dimension for phase-space recon-
struction. This reconstruction is crucial for understanding the dynamic properties of
the system.

(3) Calculation of chaotic characterization parameters: Using the small data volume
method, the maximum Lyapunov exponent of the reconstructed signal is calculated.
Moreover, to determine the correlation dimension of the signal, the G–P algorithm is
applied, and to calculate its K-entropy, the maximum likelihood estimation method is
employed. These parameters collectively reveal the chaotic nature of the system.

(4) Chaos characterization: The relationship between the three calculated parameters
and the friction state of the dry gas seal is analyzed. This analysis provides a deeper
understanding of how the chaotic properties relate to the friction behavior of the seals.
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3. Experimental Setup
3.1. Dry Gas Seal Working Principle and Test System

This study examines the friction state of the sealing end face in a double-end-face
dry gas seal, which is composed mainly of a rotating ring, stationary ring, spindle, spring,
and seal seat, and its structure is depicted diagrammatically in Figure 1. On the basis
of the working principle of the dry gas seal, sealing gas enters the sealing gap and, as
rotational speed increases, a micrometer-thin fluid film forms between the rotating and
stationary rings. During normal and stable operation of the sealing system, the moving
and stationary rings are separated by a thin gas film that effectively reduces leakage while
being sufficiently rigid to prevent contact between the rotating and stationary rings. Based
on the Stribeck curve, the dry gas seal can experience various friction states, which include
boundary lubrication (BL), mixed lubrication (ML), and hydrodynamic lubrication (HL), as
shown in Figure 2. Dry gas seals operate most effectively under HL, where friction and
leakage are minimized.
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Figure 3 presents the dry gas sealing experimental bench and the AE monitoring sys-
tem, which includes the main experimental unit (rotational speed range: 0–3000 r/min), an
AE acquisition system, a gas circuit, a gas supply system (maximum pressure: 6 MPa), and
an industrial control calculator. The AE sensor (model PXR15RMH, sampling frequency:
2 MHz) is positioned outside the seal cavity. The preamplifier utilized is PXPA3, offering a
40-dB gain, and the acquisition card is the ADLINK USB1210.
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This experiment employs a double-end face tree groove dry gas seal, presented in
Figure 4. The rotating ring is constructed from silicon carbide, whereas the stationary ring
is made of M120D. During normal and stable operation of the sealing system, the moving
and stationary rings are separated by a thin gas film that effectively reduces leakage while
being sufficiently rigid to prevent contact between the rotating and stationary rings.
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3.2. Test Program

AE signals are recorded under both pressure and no-load conditions in order to gain a
deeper understanding of the chaotic characteristics of the dry gas seal during the start–stop
phase. With the air supply system’s maximum pressure set at 6 MPa and the dry gas seal’s
design pressure at 3.0 MPa, experimental pressures are adjusted to 0.5, 1.0, 1.5, 2.0, 2.5,
and 3.0 MPa. The low-speed test bench is employed, with the rotational speed gradually
increasing from 0 to 2000 r/min during the startup process. After reaching the desired
speed, the system operates stably for 5 s before being stopped. During the start–stop
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process, the contact state of the sealing ring transitions from initial contact to opening and
back to contact, with corresponding changes in the lubrication state. The specific steps are
shown in Figure 5.
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4. Results and Discussion
4.1. Seal End Face Friction State Analysis

Studies have shown that AE energy can be quantified using the RMS, which cor-
responds to the multiple interactions of the AE source mechanism in touch-grinding
contact [3,13]. Hence, in this study, the RMS value is selected to analyze the AE signals of
the dry gas seals. It is calculated using the following equation:

RMS =

√
1

∆T

∫ ∆T

0
V2(τ)dτ (23)

where ∆T is the waveform sampling time and V(τ) is the time-varying signal voltage.
To investigate the relationship between AE energy and the contact friction state of the

dry gas seal interface, the RMS value of the AE signal is employed as a substitute for AE
energy. Using a working pressure of 1.0 MPa as an example, a full-cycle operation plot of
RMS versus RPM is created. As shown in Figure 6, the RMS value of the dry gas seal during
startup and operational states fluctuates considerably compared with the no-load signal
RMS, with a peak value of 1.6 V observed during a 2–3 s duration. In other operational
states, the RMS value is approximately 0.2–0.4 V, which is consistent with the no-load signal.
When the dry gas seal operates normally at a pressure of 1.0 MPa, the RMS value quickly
reaches a peak after the power is turned on, then decreases, and subsequently increases
slowly over time, reaching a steady state by the fifth second. This transformation trend
mirrors that observed in the no-load state. Figure 6 presents the relationship between AE
energy and rotational speed during both normal and no-load operations of the dry gas seal.
Evidently, under normal operation at 1.0 MPa, the RMS of the signal exhibits three distinct
states in relation to rotational speed, particularly when the speed is below 100 r/min. The
RMS of the AE signal initially increases with rotational speed. Nevertheless, in the range
of 100–350 r/min, the RMS decreases as the rotational speed increases. Above 350 r/min,
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the RMS starts to increase again with higher rotational speeds, following a trend similar to
that observed under no-load conditions. During no-load operation, the RMS consistently
increases with rotational speed, which aligns with the trend observed at higher speeds.
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Figure 6. RMS and speed diagram of dry gas seal start–stop phase.

The working principle of dry gas seals shows that, as rotational speed increases,
lubrication conditions improve, which leads to a decrease in the RMS value. A transition
from the ML to the HL state occurs at point A, which corresponds to a rotational speed of
350 r/min. At this point, the sealing surface becomes fully disengaged. In Figure 7, during
the initial startup phase from 0 to 100 r/min, the system is considered to be in the BL state.
This occurs because, in these early stages, the dynamic pressure is insufficient to generate
a rigid and stable air film. As the rotational speed increases from 100 to 350 r/min, the
dynamic pressure effect progressively strengthens. At 350 r/min, the sealing ring opens
to form an air film, signaling the transition from the ML to the HL state. Once the speed
reaches 350–2000 r/min, the system operates normally. In this range, the dynamic pressure
effect stabilizes, and the system remains in the HL state.
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4.2. Phase-Space Reconstruction of AE Signal During the Start–Stop Process

Using the AE signal at an operating pressure of 1.0 MPa as an example, the phase-
space reconstruction parameters for the AE signals of the dry gas seal in the BL, ML, and
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HL states are calculated using the improved C–C method. The results of these calculations
are shown in Figure 8.
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To reconstruct the phase-space of the time series, the optimal time delay τ and time
window τw are determined using Equations (3) and (5). The local minima are visible as
sharp peaks in Figure 8. The embedding dimension m is calculated using Equation (9).
Figure 8a shows the time delay τ = 5, time window τw= 25, and embedding dimension
m = 6 based on Equation (6). Likewise, Figure 8b shows τ = 2 and the time window
τw= 61, corresponding to m= 32. Figure 8c shows τ= 6 and the time window τw= 83,
corresponding to m= 15. Using this approach, the optimal delay time τ and embedding
dimension m are also calculated for other AE sequences.

4.3. Maximum Lyapunov Exponent Analysis

Figure 9 shows the AE signals for the three states of the sealing system at an operating
pressure of 1.0 MPa. Using the small data volume method, the maximum Lyapunov
exponent for each state is calculated. The slope of the red line in Figure 10 represents the
maximum Lyapunov exponents for each state, which are 0.0123, −0.0682, and −0.1074,
respectively. The positive values of the maximum Lyapunov exponents for the BL state
indicate that the AE signals in this state exhibit chaotic characteristics, with the level of
chaos increasing gradually over time. Upon transitioning to the ML state, the maximum
Lyapunov exponent becomes negative immediately and then increases gradually over time.
In the HL state, the maximum Lyapunov exponent fluctuates around the X-axis and remains
below 0. Figure 10a–f shows the maximum Lyapunov exponents at pressures of 0.5, 1.0, 1.5,
2.0, 2.5, and 3.0 MPa, respectively. The fluctuation trends are similar across these pressures,
which indicates that pressure has minimal impact on the maximum Lyapunov exponent.

From the AE data collected at six different pressures, 10 groups of data were selected
for each friction state period. With the resulting average value representing the maximum
Lyapunov exponent for each friction state, the Lyapunov exponents for these data sets were
calculated and averaged. As shown in Table 1, the maximum Lyapunov exponent for the
BL state of the dry gas seal is greater than 0. This shows that the chaotic characteristics of
the signal in the BL state are due to the contact at the seal ring end-face, as explained by the
working principle of the dry gas seal. For the ML state, the maximum Lyapunov exponent
ranges from −0.0123 to 0.0022. In the ML state, the sealing ring intermittently contacts and
separates due to increasing rotational speed and enhanced dynamic pressure effects. These
factors cause the sealing end face to disengage, but the instability of the air film results in
intermittent contact with the sealing ring, leading to a maximum Lyapunov exponent that
fluctuates between positive and negative values. In the HL state, the maximum Lyapunov
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exponent is consistently less than 0. This indicates that the sealing rings are completely
disengaged, preventing the generation of chaotic signals, such as dry friction and contact
wear. Consequently, the AE signals do not exhibit chaotic characteristics in the HL state.
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Table 1. Relationship between the friction state of the dry gas seal and the maximum Lyapunov
exponent.

Friction State Maximum Lyapunov Exponent Distribution Range

BL state 0.0021~0.0063
ML state −0.0123~0.0022
HL state −0.0020~0
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Notably, due to the interference of ambient noise and experimental errors in the sealing
system, there are periods when the maximum Lyapunov exponent is greater than 0 in the
HL state, but these errors are acceptable and do not affect the overall trend.

4.4. Correlation Dimension Analysis

Using the AE signal from the friction state of the seal boundary as an example, the
ln C ∼ ln ε double logarithmic curve is plotted while calculating the correlation dimension
using the G–P algorithm, as depicted in Figure 11.
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As shown in Figure 12, the graph plots the correlation dimension versus the em-
bedding dimension. The correlation dimension increases as the embedding dimension
increases. When the embedding dimension is m= 46, the correlation dimension stabilizes.
For the AE time series in the BL state of the sealing system, the correlation dimension is
D= 4.426.
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The correlation dimension for each state of the sealing system can be calculated
accordingly. For example, as shown in Figure 13, the correlation dimension is calculated
with the G–P algorithm using AE signals from the entire start–stop process at working
pressures of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 MPa. In both the BL and ML states, the correlation
dimension increases over time and reaches a peak value. In the HL state, however, the
correlation dimension suddenly decreases and fluctuates between 3 and 5.5. During the
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stopping state of the sealing system, the correlation dimension initially decreases and then
increases, reaching a trough at the state transition point B.
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To generate Figure 14, the average correlation dimensions for each lubrication state
are compared across different pressures. In the order of BL, ML, and HL states, the corre-
lation dimensions exhibit an increasing trend with pressure. Specifically, the correlation
dimension is highest in the HL state and lowest in the BL state. As pressure increases, the
correlation dimension in each state gradually increases.
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4.5. Comparison of Association Digits in Various States

As shown in Figure 15, using the maximum likelihood method, the K-entropy of the
AE signal time series in the BL state of the sealing system is calculated. For example, in
the BL state, the K-entropy value decreases as the embedding dimension increases and
eventually stabilizes when the embedding dimension m > 22. At this point, the K-entropy
of the AE time series in the BL state is 0.0083.
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Likewise, the K-entropy of the AE time series can be calculated for each pressure
condition. The trends observed at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 MPa are shown in Figure 16.
In both the BL and ML states, K-entropy increases considerably, which indicates increasing
chaotic characteristics and complexity. In the HL state, K-entropy initially decreases and
then increases with rising rotational speed during the startup process and decreases before
increasing again as the rotational speed drops during the stopping phase. During the
stopping process, K-entropy decreases as the rotational speed in both the ML and BL
states decreases.
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In terms of the friction mechanism, in the BL and ML states, the dry gas seal provides
insufficient dynamic pressure at low speeds, which results in abrasive contact on the sealing
end face. This leads to increased AE activity, with corresponding increases in the maximum
Lyapunov exponent, correlation dimension, and K-entropy. In the HL state, the sealing
end face is fully disengaged, eliminating the abrasive contact. Consequently, the maximum
Lyapunov exponent, correlation dimension, and K-entropy experience a sharp decrease,
stabilizing at a lower level as the rotational speed increases. During the stopping phase, as
the system transitions back to ML and BL states, the maximum Lyapunov exponent reflects
these changes, and correlation dimension and K-entropy decrease with the decrease in
rotational speed.

The K-entropy values for each state at various pressures are averaged and depicted
in Figure 17. For instance, at 1.5 MPa, the BL state exhibits the lowest K-entropy value,
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whereas the HL state shows the highest value. Moreover, it is observed that pressure has
only a minor effect on the K-entropy values at different states.
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4.6. Changes in Attractors

Using the AE signal of the 1.0 MPa sealing system as an example, Figures 18–20 show
the evolution of chaotic attractors across three states. In the BL state (Figure 18), the chaotic
attractor appears agglomerated and concentrated, with amplitude variations in the X, Y,
and Z directions in the range of [−5, 5]. In the ML state (Figure 19), the attractors change
from a “clustered” configuration to one that is centered with dispersion on the surface,
with amplitude changes in the X, Y, and Z directions in the range of [−1, 1]. In the HL
state (Figure 20), the attractor is fully diffused, and amplitude variations in the X, Y, and Z
directions are in the range of [−2, 2].

Lubricants 2025, 13, x FOR PEER REVIEW 17 of 21 
 

 

whereas the HL state shows the highest value. Moreover, it is observed that pressure has 
only a minor effect on the K-entropy values at different states. 

 

Figure 17. Comparison of K-entropy at various states. 

4.6. Changes in Attractors 

Using the AE signal of the 1.0 MPa sealing system as an example, Figures 18–20 show 
the evolution of chaotic attractors across three states. In the BL state (Figure 18), the chaotic 
attractor appears agglomerated and concentrated, with amplitude variations in the X, Y, 
and Z directions in the range of [−5, 5]. In the ML state (Figure 19), the attractors change 
from a “clustered” configuration to one that is centered with dispersion on the surface, 
with amplitude changes in the X, Y, and Z directions in the range of [−1, 1]. In the HL state 
(Figure 20), the attractor is fully diffused, and amplitude variations in the X, Y, and Z 
directions are in the range of [−2, 2]. 

From the perspective of friction mechanisms, in the BL state, the presence of dry fric-
tion and surface wear on the seal end face increases the chaos in the AE signal, which 
results in dense attractors with higher amplitude. In the ML state, as dry friction and fric-
tion force decrease, the AE energy continues to decrease, leading to a gradual dispersion 
of the attractors. In the HL state, with the absence of dry friction and a stabilized sealing 
system, the AE signal lacks chaotic characteristics, and the attractors become fully dis-
persed. 

   
(a) (b) (c) 

Figure 18. Evolution diagram of the attractor in the BL state. (a) at 2.1 s. (b) at 2.2 s. (c) at 2.3 s. Figure 18. Evolution diagram of the attractor in the BL state. (a) at 2.1 s. (b) at 2.2 s. (c) at 2.3 s.

Lubricants 2025, 13, x FOR PEER REVIEW 18 of 21 
 

 

   
(a) (b) (c) 

Figure 19. Evolution diagram of the attractor in the ML state. (a) at 3.0 s. (b) at 3.2 s. (c) at 3.4 s. 

   

(a) (b) (c) 

Figure 20. Evolution diagram of the attractor in the HL state (a) at 7.0 s. (b) at 12.0 s. (c) at 18.0 s. 

In summary, analyzing the chaotic characteristics of the AE signal from the dry gas 
seal shows that the maximum Lyapunov exponent is a crucial metric for determining the 
friction state. Specifically, a maximum Lyapunov exponent greater than 0 indicates that 
the system is in the BL state. Conversely, a lower value suggests that the system is in the 
HL state. A transition from a negative to a positive maximum Lyapunov exponent, along 
with a decrease in its value, depicts the ML state. The correlation dimension and K-en-
tropy show similar trends, providing a broader perspective on assessing the friction state 
of the dry gas seal. In the HL state, the characteristic parameters show relative stability 
whereas, in the BL state, they generally increase and, in the ML state, they present a de-
creasing trend. Moreover, the attractor’s dynamic behavior offers an intuitive way to as-
sess the system’s state. A regular clustering pattern of the attractors indicates the BL state, 
whereas a central clustering with surface divergence characterizes the ML state. Complete 
diffusion of the attractor indicates the HL state. Thus, the attractor provides a complemen-
tary method for determining the friction state of the dry gas seal, enhancing the analysis 
derived from chaotic characteristic parameters. 

4.7. Performance Comparison 

To further validate the effectiveness of the method presented in this paper, the same 
AE data were processed to determine recognition accuracies for different friction states, 
as depicted in Table 2. The results in Table 2 show that the method achieved satisfactory 
results in identifying the friction states of the dry gas seal. Notably, Huang et al. [10] and 
Sun et al. [12] reported the lowest detection accuracy using the RMS method. This method 
primarily reflects the contact conditions of the seal end face and is less effective in distin-
guishing the intermittent contact and non-contact scenarios typical of the ML state. Xu et 
al. [11] determined different friction states based on the amplitude of the AE signal, which 
is prone to interference from external noise and offers limited improvements in detection 
accuracy. Towsyfyan et al. [13] employed the three-dimensional short-time Fourier time–
frequency diagram method, which offers high detection accuracy. However, this method 

Figure 19. Evolution diagram of the attractor in the ML state. (a) at 3.0 s. (b) at 3.2 s. (c) at 3.4 s.



Lubricants 2025, 13, 40 18 of 21

Lubricants 2025, 13, x FOR PEER REVIEW 18 of 21 
 

 

   
(a) (b) (c) 

Figure 19. Evolution diagram of the attractor in the ML state. (a) at 3.0 s. (b) at 3.2 s. (c) at 3.4 s. 

   

(a) (b) (c) 

Figure 20. Evolution diagram of the attractor in the HL state (a) at 7.0 s. (b) at 12.0 s. (c) at 18.0 s. 

In summary, analyzing the chaotic characteristics of the AE signal from the dry gas 
seal shows that the maximum Lyapunov exponent is a crucial metric for determining the 
friction state. Specifically, a maximum Lyapunov exponent greater than 0 indicates that 
the system is in the BL state. Conversely, a lower value suggests that the system is in the 
HL state. A transition from a negative to a positive maximum Lyapunov exponent, along 
with a decrease in its value, depicts the ML state. The correlation dimension and K-en-
tropy show similar trends, providing a broader perspective on assessing the friction state 
of the dry gas seal. In the HL state, the characteristic parameters show relative stability 
whereas, in the BL state, they generally increase and, in the ML state, they present a de-
creasing trend. Moreover, the attractor’s dynamic behavior offers an intuitive way to as-
sess the system’s state. A regular clustering pattern of the attractors indicates the BL state, 
whereas a central clustering with surface divergence characterizes the ML state. Complete 
diffusion of the attractor indicates the HL state. Thus, the attractor provides a complemen-
tary method for determining the friction state of the dry gas seal, enhancing the analysis 
derived from chaotic characteristic parameters. 

4.7. Performance Comparison 

To further validate the effectiveness of the method presented in this paper, the same 
AE data were processed to determine recognition accuracies for different friction states, 
as depicted in Table 2. The results in Table 2 show that the method achieved satisfactory 
results in identifying the friction states of the dry gas seal. Notably, Huang et al. [10] and 
Sun et al. [12] reported the lowest detection accuracy using the RMS method. This method 
primarily reflects the contact conditions of the seal end face and is less effective in distin-
guishing the intermittent contact and non-contact scenarios typical of the ML state. Xu et 
al. [11] determined different friction states based on the amplitude of the AE signal, which 
is prone to interference from external noise and offers limited improvements in detection 
accuracy. Towsyfyan et al. [13] employed the three-dimensional short-time Fourier time–
frequency diagram method, which offers high detection accuracy. However, this method 

Figure 20. Evolution diagram of the attractor in the HL state (a) at 7.0 s. (b) at 12.0 s. (c) at 18.0 s.

From the perspective of friction mechanisms, in the BL state, the presence of dry
friction and surface wear on the seal end face increases the chaos in the AE signal, which
results in dense attractors with higher amplitude. In the ML state, as dry friction and friction
force decrease, the AE energy continues to decrease, leading to a gradual dispersion of the
attractors. In the HL state, with the absence of dry friction and a stabilized sealing system,
the AE signal lacks chaotic characteristics, and the attractors become fully dispersed.

In summary, analyzing the chaotic characteristics of the AE signal from the dry gas
seal shows that the maximum Lyapunov exponent is a crucial metric for determining the
friction state. Specifically, a maximum Lyapunov exponent greater than 0 indicates that
the system is in the BL state. Conversely, a lower value suggests that the system is in the
HL state. A transition from a negative to a positive maximum Lyapunov exponent, along
with a decrease in its value, depicts the ML state. The correlation dimension and K-entropy
show similar trends, providing a broader perspective on assessing the friction state of the
dry gas seal. In the HL state, the characteristic parameters show relative stability whereas,
in the BL state, they generally increase and, in the ML state, they present a decreasing trend.
Moreover, the attractor’s dynamic behavior offers an intuitive way to assess the system’s
state. A regular clustering pattern of the attractors indicates the BL state, whereas a central
clustering with surface divergence characterizes the ML state. Complete diffusion of the
attractor indicates the HL state. Thus, the attractor provides a complementary method
for determining the friction state of the dry gas seal, enhancing the analysis derived from
chaotic characteristic parameters.

4.7. Performance Comparison

To further validate the effectiveness of the method presented in this paper, the same
AE data were processed to determine recognition accuracies for different friction states,
as depicted in Table 2. The results in Table 2 show that the method achieved satisfactory
results in identifying the friction states of the dry gas seal. Notably, Huang et al. [10]
and Sun et al. [12] reported the lowest detection accuracy using the RMS method. This
method primarily reflects the contact conditions of the seal end face and is less effective
in distinguishing the intermittent contact and non-contact scenarios typical of the ML
state. Xu et al. [11] determined different friction states based on the amplitude of the AE
signal, which is prone to interference from external noise and offers limited improvements
in detection accuracy. Towsyfyan et al. [13] employed the three-dimensional short-time
Fourier time–frequency diagram method, which offers high detection accuracy. However,
this method requires analysis of the entire start–stop process and cannot identify the friction
state of a specific section of the AE signal alone. In comparison, the maximum Lyapunov
exponent method proposed in this paper effectively detects the sealing system’s friction
state with an average accuracy of 98.6%. Furthermore, the correlation dimension and
K-entropy methods achieve accuracies of 96.9% and 96.5%, respectively.
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Table 2. Detection accuracy for different friction states.

Method/Friction States BL ML HL Average

Huang et al. [10] 89.2% 89.1% 95.9% 91.3%
Xu et al. [11] 95.3% 91.0% 93.2% 93.2%
Sun et al. [12] 90.7% 88.8% 90.3% 89.9%
Towsyfyan et al. [13] 96.2% 97.2% 98.3% 97.2%
Maximum Lyapunov 98.3% 98.8% 98.8% 98.6%
Correlation dimension 97.6% 96.3% 96.9% 96.9%
K-entropy 96.2% 96.3% 97.0% 96.5%

Table 3 presents the computational speeds of various methods, indicating that the
method proposed in this study has relatively low computational speed. However, this ap-
proach achieves considerable improvements in detection accuracy, which is advantageous
in practical applications. The results reveal that the proposed method is highly effective for
monitoring the friction and lubrication status of dry gas seals.

Table 3. Detection speed for different friction states.

Method/Friction States BL ML HL Average

Huang et al. [10] 13 s 14 s 15 s 14 s
Xu et al. [11] 18 s 17 s 17 s 17 s
Sun et al. [12] 20 s 22 s 23 s 21 s
Towsyfyan et al. [13] 160 s 162 s 161 s 161 s
Maximum Lyapunov 153 s 156 s 160 s 156 s
Correlation dimension 140 s 145 s 141 s 142 s
K-entropy 112 s 118 s 120 s 117 s

5. Conclusions
(1) The maximum Lyapunov exponent provides a precise quantitative measure for identi-

fying the friction state of dry gas seals, while the correlation dimension and K-entropy
offer qualitative insights into the system’s behavior. This integrated approach facili-
tates a comprehensive evaluation and optimization of seal performance.

(2) Comparisons of the correlation dimension, maximum Lyapunov exponent, and K-
entropy under varying pressure conditions indicate that pressure variations have
minimal influence on these characteristic metrics.

(3) The chaotic properties of the sealing system can be intuitively visualized through
attractor trajectories, providing a clear method to distinguish between different
friction states.

(4) Chaotic time series analysis of AE signals during the start–stop phase reveals that
the correlation dimension, maximum Lyapunov exponent, and K-entropy exhibit
consistent trends and correlate directly with the friction state. These metrics serve as
reliable indicators for identifying friction states, offering a novel approach to state
recognition and fault detection in dry gas seals. This comprehensive analysis sheds
new light on the dynamic behavior of seals during the start–stop process, enhancing
the understanding and monitoring of their performance.
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