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Abstract: To improve the friction performance and service life of protective coatings in
humidity-fluctuating environments, porous hard titanium nitride (TiN)–molybdenum
disulfide (MoS2) composite coatings were prepared by using direct current magnetron
sputtering (DCMS) with the mode of oblique angle deposition (OAD) and chemical vapor
deposition (CVD) technologies. The structure and chemical component were characterized
by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer
(EDS), grazing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), X-ray
photoelectron spectroscopy (XPS), and Raman spectroscopy. The tribological properties
of these TiN–MoS2 composite coatings were investigated. The results indicate that the
porous TiN–MoS2 composite coating exhibited outstanding friction performance and long
service life under humidity-fluctuating environments. At the initial 20% relative humidity
(RH) stage, the MoS2 on the porous TiN–MoS2 composite coating surface worked as an
effective lubricant; thus, the coating demonstrated excellent lubrication performance, and
the friction coefficient (COF) was about 0.05. As the humidity was alternated to 70% RH,
the lubrication effect diminished due to the production of molybdenum oxide (MoO3),
and the COF was about 0.2, which was attributed to the degradation of MoS2 on the wear
track and the release of fresh MoS2 from the porous TiN matrix. After the environmental
conditions shifted from 70% to 20% RH, the MoO3 was removed, and the lubrication
effect was restored. In summary, TiN–MoS2 porous composite coating offers a promising
approach for lubrication in humidity-fluctuating environments.

Keywords: oblique angle deposition; low surface roughness; porous structure; TiN–MoS2

composite coating; humidity-fluctuating environments

1. Introduction
In the aerospace field, a molybdenum disulfide (MoS2) coating is widely used as a

lubricant in precise bearings because of its excellent friction properties in vacuum and dry-air
environments [1,2]. The low shear strength of MoS2 originates from the weak interatomic
interactions between its layered structure, resulting in very low friction [3–5]. However, in
practical applications, the precision moving components of spacecraft are often exposed
to humid environments for a while during operation (especially in coastal cities) [6] or

Lubricants 2025, 13, 61 https://doi.org/10.3390/lubricants13020061

https://doi.org/10.3390/lubricants13020061
https://doi.org/10.3390/lubricants13020061
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com
https://orcid.org/0000-0002-9630-0395
https://orcid.org/0000-0002-1324-9302
https://orcid.org/0000-0003-1643-0155
https://doi.org/10.3390/lubricants13020061
https://www.mdpi.com/article/10.3390/lubricants13020061?type=check_update&version=1


Lubricants 2025, 13, 61 2 of 17

encounter humidity fluctuations during the flight cycle [7]. In general, MoS2 easily adsorbs
water molecules and oxygen in wet-air environments, leading to oxidation and deterio-
ration of the tribological properties. In addition, the low hardness, weak adhesion, and
poor wear resistance of MoS2 also limit its wide application [8–11]. Compared with MoS2,
a titanium nitride (TiN) coating has the characteristics of chemical stability, wear resistance,
and high hardness. Thus, it is always widely used in many fields, such as high-speed
steel-cutting tools and punches and metal-forming parts [12–14]. In practical applications, a
protective coating for precision moving components has to possess the excellent low friction
characteristics of a solid lubricant, high wear resistance, and the high bearing capacity of
hard ceramic materials. Therefore, it is crucial to design and fabricate an anti-wear coating
that can slowly release the solid lubricant phase in order to maintain low friction in high or
humidity-fluctuating environments.

In previous reports, MoS2 was incorporated into the metal, oxide, or TiN matrix to form
a composite material [15–19]. Yuhang Yao et al. [15] prepared a Ni–MoS2 composite coating
on an LST-treated SS substrate using the ECD process. The application of microgrooves
changed the growth pattern of the coating, reduced the wear of the coating, and was able
to store and collect MoS2 flakes to produce secondary lubrication. Yijing Wang et al. [16]
prepared Al2O3 coating and Al2O3/Ag composite coating using the APS technology and
synthesized MoS2 in situ at the coating defects using the hydrothermal method to obtain
Al2O3/MoS2 composite coating and Al2O3/Ag/MoS2 composite coating. The composite
coating surface is denser and has better mechanical properties and lubrication properties.
Gangopadhyay et al. [17] investigated the effect of substrate bias voltage on the structure
and mechanical properties of TiN–MoS2 composite coatings fabricated by a pulsed direct-
current closed-field unbalanced magnetron sputtering (CFUBMS) technology. The results
showed that the composite coating became dense under a certain substrate bias voltage,
which improved the mechanical properties and wear resistance of TiN–MoS2 composite
coatings. Gilmore et al. [19] altered the position of the substrate and target material to
adjust the coating composition, and the prepared TiN–MoS2 composite coating presented
high hardness and low friction. Although these approaches can improve the mechanical
and tribological properties of coatings, they still have certain limitations. The sputtering
deposition rates of TiN and MoS2 are different during the fabrication process due to the
different sputtering yields of their phases, resulting in a lack of order in the structure of
the coating. Additionally, there are no channels for releasing lubricants outside from the
interior of the TiN–MoS2 composite coating to achieve robust lubrication performance in
high or humidity-fluctuating environments.

To prepare an ordered and controllable coating structure, laser texturing technol-
ogy [20] and reactive ion etching [21] techniques were employed to texture the coating
surface with regular reservoirs, which could be filled with solid lubricants. The size
reservoirs at the micron scale were too large to achieve robust lubrication performance
for the precision moving component due to the limitation of the fabrication techniques.
Notably, the oblique angle deposition (OAD) [22] technique is a promising, attractive
physical vapor deposition (PVD) pathway for producing nanostructured and sculpted thin
films with open porosity, controlled texture, and anisotropic characteristics [23–25]. Our
group [22] reported a TiCN coating with lots of small surface reservoirs that was prepared
by combining multi-arc ion plating with OAD technology. Solid lubricants were then
filled into these reservoirs to prepare a TiCN–MoS2 composite coating, which exhibited a
low friction coefficient in an environment with variable humidity. However, the surface
particles of the TiCN coatings were relatively large, which limited their use in certain
precision instruments. In comparison, the coating without large surface particles prepared
by magnetron sputtering was relatively smooth [26,27]. Ren et al. [26] reported that a TiCN
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coating prepared by combining multi-arc ion plating and magnetron sputtering techniques
exhibited smooth morphologies and better corrosion resistance. Zhang et al. [27] found
that a TiN–WC coating prepared on the TiN interlayer using magnetron sputtering technol-
ogy exhibited smooth surface particles and improved tribological performance. However,
the porous structure of the nitride ceramic coating was not easy to modulate via the
sputtering technique.

Herein, porous TiN coatings with different modulated microstructures were prepared
by combining direct current magnetron sputtering (DCMS) and OAD technologies. The
effect of OAD on porosity and pore size was investigated at various target currents. The
structural variation of the coatings was investigated by using field emission scanning
electron microscope (FESEM), grazing incidence X-ray diffraction (GIXRD), and atomic
force microscopy (AFM). Nanoindentation tests were carried out to evaluate the effect of
OAD on the mechanical properties of the coatings. Finally, MoS2 was filled into the pores
by chemical vapor deposition (CVD), and the tribological properties were investigated
in various humidity as well as humidity-fluctuating environments. The result indicated
that porous TiN–MoS2 composite coating exhibited excellent friction performance. Energy-
dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Raman
measurement of the wear tracks further revealed its self-lubricating mechanism in these
environments.

2. Experimental Details
2.1. Sample Preparation

DCMS technology was used to prepare TiN coatings on 304 stainless steel slices
(20 mm × 20 mm × 5 mm) and silicon wafers at various target currents and deposition an-
gles. The 304 steel slices with abrasive SiC papers from 400 to 2000 grit, followed by mirror
polishing with a diamond suspension. To ensure uniform coating, the surface roughness
parameter Ra of the surface must be less than 50 nm. The 304 stainless steel slices and
silicon wafers were first ultrasonically treated with acetone for 15 min, followed by ethanol
for 5 min. Before coating deposition, the substrate was bombarded with argon ions in a
vacuum chamber to remove surface contaminants. Subsequently, a titanium intermediate
layer was deposited on the substrate to increase the coating–substrate adhesion [28,29].
The final step involved depositing the TiN coatings. During the deposition procedure, the
deposition angle (the angle between the substrate normal and the target normal) was set as
0◦ and 80◦, respectively. TiN coatings with deposition angles of 0◦ and 80◦ were referred to
as TiN (0◦) and TiN (80◦) coatings, respectively. Moreover, to modulate the pore size and
density, the TiN (80◦) coating was further deposited at various target currents. The detailed
parameters for the specific deposition of TiN coatings are summarized in Table 1.

Table 1. Preparation parameter of TiN coatings.

Item Parameter

Target to substrate distance 14 cm
Bias voltage 0 V

Gas ratio (N2/N2 + Ar) 1:3
Base pressure 8 × 10−3 Pa

Deposition time 120 min
Temperature 30 ◦C

Current 6 A,8 A,10 A
Pressure 0.3 Pa
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MoS2 was added into the TiN (0◦) and TiN (80◦) coatings by the CVD method.
(NH4)2MoS4, the precursor of MoS2, was purchased from Aladdin Biotech (CAS 15060-55-
6). It was dissolved in deionized water and sonicated to guarantee full dissolution, yielding
an aqueous solution with a 20 mg/mL concentration. The as-prepared TiN coatings were
completely immersed in the (NH4)2MoS4 solution and ultrasonically treated for 3 h to
ensure that the solution permeated all the pores of the coatings. Subsequently, the samples
were dried and placed in a tube furnace with a based vacuum of 10 Pa. A mixed gas of
H2 with a flow rate of 40 sccm and N2 with a flow rate of 80 sccm was introduced as the
reaction gas, and the pressure was 100 kPa during the reaction process. The tube furnace
temperature was gradually increased to 400 ◦C at a rate of 10 ◦C/min and maintained for
60 min. After treatment, the (NH4)2MoS4 in the coating pores could react to generate MoS2,
and, thus, a TiN–MoS2 composite coating was completely fabricated.

2.2. Coating Structure Characterization

The surface and cross-sectional morphologies of the TiN coatings were observed by
using a field emission scanning electron microscope (FESEM, JSM-7610F, JEOL Ltd., Tokyo,
Japan). The element distribution on the cross-section and wear scar of the TiN–MoS2

composite coating was observed by using energy-dispersive X-ray spectroscopy (EDS,
NORAN System 7, Thermo Fisher Scientific, Waltham, MA, USA). FESEM images were
analyzed by the open-source ImageJ software (v1.8.0) to evaluate the surface pore size
and porosity of the coating. For ImageJ analysis, the FESEM images were converted to
8-bit mode. Brightness and contrast (B&C) adjustment was used to remove the noise in
the background of the images. Automatic thresholding was then used to convert images
to binary (black and white), in which the black areas represent the pores, and the white
areas represent the coating surface. Atomic force microscopy (AFM, Dimension 3100, Veeco
Instruments Inc., Plainview, NY, USA) was used to observe the surface roughness of the
coatings. The scan range of the coating was an area of 50 × 50 µm2. The images obtained
at a resolution of 256 × 256 pixels were processed by the Gwyddion software. The crystal
structure of the coating was characterized by grazing incidence X-ray diffraction (GIXRD,
D8, Bruker, Mannheim, Germany) using Cu-Kα radiation, a scanning rate of 10◦/min,
and a scanning range of from 5◦ to 90◦. The nanohardness (H) and Young’s modulus
(E) of the deposited coatings were measured by using a nanoindenter (UNHT, Anton
Paar, Graz, Austria) with a diamond Berkovich diamond tip with a radius of 20 nm. The
indentation depth was kept at approximately 10% of the coating thickness to ensure that the
substrate hardness did not affect the coating. All TiN coatings specimens were subjected to
a maximum load of 1 mN with a dwell time of 0 s at the maximum load, and the loading
and unloading rates were 1 mN/min, respectively. Five indentation measurements were
performed for each coating sample to calculate the average value. The elastic modulus was
calculated by using the following equation:

1
Er

=
1 − ν2

E
+

1 − ν2
i

Ei

where E and v represent the substrate’s modulus of elasticity and Poisson ratio, and Ei

and Vi are the indenter’s parameters, respectively. The Poisson ratio of the TiN coating is
about 0.23.

The elemental valence states and phase structures of the wear tracks were analyzed by
using X-ray photoelectron spectroscopy (XPS, Thermo escalab 250Xi, Thermo Fisher, MA,
USA) with monochromatic Al Kα (hv = 1486.6 eV) radiation. To obtain high-resolution
spectra, the electron energy analyzer was operated at a pass energy of 50 eV. The step
size of 0.05 eV was employed and each peak was scanned five times. The binding energy
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(BE) scale was calibrated using the C 1 s peak of graphite at BE = 284.8 eV. The Sherry
method was used to subtract the background, and the Gaussian–Lorentz fitting method
was used for peak fitting. Raman spectroscopy (DXR2, Thermo Fisher Scientific, Waltham,
MA, USA) with a laser wavelength of 532 nm was used for surface mapping to measure
the distribution of MoS2 on the composite coating surface and wear tracks.

2.3. Friction Properties

The tribological properties of the composite coatings were investigated with a ball-
on-disk rotating friction tester at room temperature and various humid conditions. The
friction tests were conducted with a constant load of 2 N, a rotation speed of 200 rpm, and a
rotation radius of 4 mm. The counterpart is an 8 mm diameter Si3N4 ball with a maximum
Hertzian contact pressure of 0.35 GPa. The friction tests were carried out in air at 20 and
70% RH, respectively, with the corresponding test times of 3000 s. In the variable humid
friction test, the humidity was changed between 20 and 70% RH. Each humidity stage
lasted for 300 s, and the total sliding cycle time was 2700 s. Wear rates were determined
using a three-dimensional white light microscope (LSCM, DCM8, Leica, Germany), which
measured the three-dimensional topography.

3. Results and Discussion
3.1. Structural Analysis

The surface and cross-sectional morphology of the TiN (0◦) and TiN (80◦) coatings
are shown in Figure 1. The surface morphology of the TiN (0◦) coating presents a dense
structure, as shown in Figure 1a. In comparison, the surface morphology of the TiN (80◦)
coating has a loose structure (Figure 1b). The loose structure is a characteristic of OAD
coatings, and the pores are created by the shielding effect during the coating growth
process [30,31]. In addition, the cross-sectional morphology of the TiN (0◦) coating reveals a
vertical columnar structure. The columns are tightly bonded together to thus form a dense
structure (Figure 1c). Compared with the TiN (0◦) coating, the TiN (80◦) coating presents an
inclined nanocolumn structure. The columnar structures are separated from each other to
thus form a loose structure, as illustrated in Figure 1d, resulting from the shadowing effect
of plasma deposition during film formation [32]. Additionally, the thickness of the TiN
(0◦) coating is 1.852 µm, while the thickness of the TiN (80◦) coating is 1.131 µm after the
same deposition time. This was because the incident particle flux received by the substrate
decreased as the deposition angle increased [33]. Thus, the TiN (80◦) coating is thinner than
the TiN (0◦) coating.

To modulate the pore size of the TiN (80◦) coatings, the deposition processes were
applied at different target currents of 6, 8, and 10 A, which were labeled as TiN (80◦) 6A,
TiN (80◦) 8A, and TiN (80◦) 10A, respectively. The same deposition processes were also
conducted for the TiN (0◦) coatings deposition for comparison, which were labeled as TiN
(0◦) 6A, TiN (0◦) 8A, and TiN (0◦) 10A, respectively. As shown in Figure 2a–c, the TiN (0◦)
6A and TiN (0◦) 8A coatings possess a dense and smooth surface, but a coarser texture
appears in TiN (0◦) 10A. This can be attributed to an increase in the deposition species
and ion bombardment [31]. The TiN (80◦) 6A coating exhibits a dense surface structure
(Figure 2d). In contrast, the TiN (0◦) 8A and TiN (0◦) 10A coatings reveal a pretty loose and
porous structure (Figure 2e,f). To further investigate the porosity and pore size of the TiN
(80◦) coatings, the ImageJ program was used to semi-quantitatively assess the looseness
and to differentiate between the columnar structure and the pores. The results are given in
Figure 3. It can be seen that the porosity and pore size of the TiN (80◦) 8A are 13.02% and
110 nm, respectively. As the target current increased from 8 to 10 A, the porosity reduced
marginally while the pore size increased to 123 nm. As the target current increases, the
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atomic ionization rate can also strengthen, leading to a rise in the number of argon ions
sputtering the target. The heightened bombardment results in an increase in the amount
of the ejected atoms of the target. These atoms can more freely reach the surface of the
substrate, promoting coating growth and formation of the column gaps [31]. Therefore, the
size of these column gaps can expand when the target current, as well as the number of
ejected atoms, increases.
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Figure 2. FESEM images of top views of (a–c) TiN (0◦) coatings and (d–f) TiN (80◦) coatings deposited
under different target currents.

AFM was employed to analyze the surface morphology of the nano-columnar TiN
coatings on the silicon substrate, as shown in Figure 4. The roughness of the TiN coating
increased with the target current increase, and the TiN (80◦) coatings were rougher than
the TiN (0◦) coatings. The TiN (80◦) coatings had a ridge-like featured surface, which made
the surface fluctuate greatly and resulted in high roughness. As previously reported [24],
the surface roughness of the coating prepared by OAD was higher than those deposited by
conventional methods due to the self-shadowing effect during the coating growth process.
Furthermore, the increased roughness indicates that the coatings made by OAD have a
larger surface disorder and porosity.
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Figure 4. Surface characterization of (a–c) TiN (0◦) and (d–f) TiN (80◦) coating by AFM topography
(with average roughness parameters shown in (g)).

Figure 5 displays the GIXRD patterns of TiN (0◦), TiN (80◦), TiN (0◦)–MoS2, and TiN
(80◦)–MoS2 composite coating. It could be observed that both the TiN (80◦) and TiN (0◦)
coatings show a predominantly face-centered cubic structure and prominent (220) texture.
The main diffraction peaks of the TiN coatings at 36.82◦, 42.77◦, 62.08◦, 74.41◦, and 78.33◦

correspond to the (111), (200), (220), (311), and (222) planes, respectively, indicating the
formation of polycrystalline TiN coatings [34,35]. Compared with the TiN coatings, the TiN
(80◦)–MoS2 and TiN (0◦)–MoS2 composite coatings display a diffraction peak at a 2θ angle
of 14.37◦, corresponding to the (002) plane of MoS2. Furthermore, the (002) plane of MoS2,
which is aligned parallel to the substrate surface, can contribute to excellent tribological
properties and enhance oxidation resistance in humid environments [36,37].
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Figure 6 presents the EDS results of the cross-sectional TiN (0◦)–MoS2 and TiN (80◦)–
MoS2 composite coatings. It can be found that the TiN (0◦)–MoS2 composite coating has a
few molybdenum (Mo) and sulfur (S) elements. However, the TiN (80◦)–MoS2 composite
coating has a great amount of Mo and S elements. This is because the TiN (0◦) coating has
a compact structure that prevents infiltration of the (NH4)2MoS4 solution during ultrasonic
treatment. In contrast, the TiN (80◦) coating possesses an open and porous structure.
Consequently, due to diffusion during ultrasonic treatment, a large quantity of (NH4)

2MoS4 solution becomes trapped in the pores of the TiN (80◦) coating, which could be
subsequently converted into MoS2 after high-temperature heat treatment.
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3.2. Mechanical and Tribological Properties

The hardness (H) and elastic modulus (E) variation of the TiN coatings are presented
in Figure 7. Under a load of 1 mN, the hardness of the TiN (0◦) and TiN (80◦) coatings
is approximately 8.3 ± 0.3 and 6.2 ± 0.6 GPa, respectively. The elastic modulus (E) for
these coatings is approximately 216.8 ± 19.7 and 183.1 ± 24.6 GPa, respectively. The
mechanical properties of the TiN (80◦) coating degraded due to the separation of TiN
columnar structure, whereas the high porosity reduced the dense coating’s load-carrying
capacity. Overall, the TiN (0◦) and TiN (80◦) coatings have comparable mechanical proper-
ties. Furthermore, the hardness of the porous coating exceeds that of the 304 steel substrate
(3.4 GPa) [38], indicating that the coating can also provide a modest enhancement in the
load-bearing capacity.
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To investigate the tribological behavior of the TiN-based coatings with the filled
lubricant MoS2, ball-on-disc friction tests were performed at 20 and 70% RH. As shown in
Figure 8a, the COF of the TiN (0◦)–MoS2 composite coating is about 0.05 for 1500 s before
gradually increasing to about 0.1 at 20% RH. At 70% RH, the COF of the TiN (0◦)–MoS2

composite coating gradually increases to about 0.7 with the increase in the times. However,
at 20% RH, the COF of the TiN (80◦)–MoS2 composite coating remains stable at 0.05 with
minimal fluctuation. At 70% RH, the COF of the TiN (80◦)–MoS2 composite coating is about
0.3 for 2400 s before gradually increasing, as shown in Figure 8b. This finding indicates
that the TiN (80◦)–MoS2 composite coating has an extended service life. The difference
in lubrication performance of the TiN –MoS2 composite coatings at 20% RH and 70% RH
can be attributed to the distribution of the MoS2 lubricant. The TiN (0◦) coating features a
dense structure that leads to the MoS2 lubricant accumulating on the surface rather than
penetrating the interior of the coating. During the friction process, the MoS2 lubricant on
the surface may continuously degrade or detach, increasing the friction coefficient over
time. In contrast, the MoS2 lubricant was filled into the pores of the TiN (80◦) coating. As a
result, the MoS2 lubricant can be released from these pores, helping to maintain a stable
friction coefficient during the friction process. Figure 8c,d shows the friction coefficients
of the TiN (0◦)–MoS2 and TiN (80◦)–MoS2 composite coatings in humidity-fluctuating
environments. The friction test consists of an initial 20% RH stage, followed by an elevation
to a 70% RH stage, and, finally, a return to a 20% RH stage, of which each stage is sustained
for 300 s. In the initial stage of the friction test at 20% RH, both the COFs of the TiN
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(0◦)–MoS2 and TiN (80◦)–MoS2 composite coatings quickly decrease to approximately 0.05
following a brief running-in period. When the ambient humidity is transformed to 70%
RH, the COF of the TiN (0◦)–MoS2 composite coating gradually increases, while the COF of
the TiN (80◦)–MoS2 composite coating stabilizes at approximately 0.2. When the ambient
humidity returns to 20% RH, the COF of the TiN (0◦)–MoS2 composite coating initially
decreases after a brief running-in period before steadily increasing. In contrast, the COF of
the TiN (80◦)–MoS2 composite coating stabilizes at 0.05 following a short running-in period.
It is noteworthy to notice that, during the subsequent stage of humidity fluctuation, the
COF of the TiN (0◦)–MoS2 composite coating gradually increases, whereas the COF of the
TiN (80◦)–MoS2 composite coating is almost reversible under humidity fluctuation. In the
initial stage of 20% RH, the low COF was primarily influenced by the shear strength of the
MoS2 that remained on the coating surface or was released from the internal pores, as they
were not entirely removed from the coating surface during the friction process. At 70% RH,
MoS2 reacts with H2O and O2 to produce MoO3, which diminishes the lubrication effect.
Therefore, the COF of the TiN (0◦)–MoS2 composite coating gradually increases, while the
TiN (80◦)–MoS2 composite coating maintains its lubrication performance, and the COF is
about 0.2. This is because MoS2 is continuously released from the interior of the porous
TiN (80◦) matrix.
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Analyses of the worn surface and the wear rate of TiN–MoS2 composite coatings are
shown in Figure 9a–f. For the TiN (80◦)–MoS2 composite coatings, the wear tracks are
very shallow, indicating the excellent wear resistance of the TiN (80◦)–MoS2 composite
coating. In contrast, the wear tracks of the TiN (0◦)–MoS2 composite coatings are deeper
than those of the TiN (80◦)–MoS2 coatings. Wear grooves along the sliding direction could
be clearly seen. The MoS2 lubricant in the pores of the TiN (80◦)–MoS2 composite coatings
is released during the sliding process and plays a lubricating and wear-reducing role. In
addition, it can be clearly observed that there is debris accumulation on both sides of the
wear tracks. Figure 9g summarizes the wear rate of the TiN (0◦)–MoS2 and TiN (80◦)–MoS2
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composite coatings at different times. The wear rates of both coatings increase over time.
However, the TiN (80◦)–MoS2 composite coatings exhibit a lower wear rate than that of the
TiN (0◦)–MoS2 composite coatings at the same time, indicating superior wear resistance.
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To elucidate the wear mechanisms of the TiN (0◦)–MoS2 and TiN (80◦)–MoS2 composite
coatings in a humidity-fluctuating environment, the surface morphology and elemental
distribution of the wear tracks were observed. Figures 10 and 11 show the FESEM and
corresponding EDS images of the wear tracks during the final three stages of the friction
test in humidity-fluctuating environments (i.e., 20% RH for 2100 s, 70% RH for 2400 s,
and 20% RH for 2700 s). As shown in Figure 10a–c, it can be seen that there is wear
debris powder distributed around the wear tracks, and the elements Mo and S are more
concentrated at the edge of the wear tracks. A similar phenomenon has also been observed
in Figure 11a–c. This finding indicates that MoS2 served as a lubricant during the friction
process and was subsequently transferred to the edge of the wear tracks. It can also be
found that the signals of the elements Mo and S on the wear track of the TiN (0◦)–MoS2

composite coating gradually diminish as friction progresses, while the signals from the
elements Mo and S on the wear track of the TiN (80◦)–MoS2 composite coating remain
detectable. In addition, compared to 70% RH, the Mo and S signals on the wear track of
the TiN (80◦)–MoS2 composite coating are more pronounced at 20% RH. These results
indicate that, during the friction test with fluctuating ambient humidity, the MoS2 lubricant
can be released from the pores of the TiN (80◦)–MoS2 composite coating and aggregate
at the friction-sliding interface to play a lubricating role. Due to its dense structure, the
TiN (0◦)–MoS2 composite coating hardly stores the MoS2 lubricant at all. During friction
testing, the MoS2 lubricant on the surface degraded and was removed, leading to lower
lubrication performance than that of the TiN (80◦)–MoS2 composite coating. Additionally,
the oxygen signal on the wear track of the TiN–MoS2 composite coatings is faint at 20%
RH but becomes more pronounced at 70% RH, which can be attributed to the reaction
among the MoS2, H2O, and O2 during friction at 70% RH. Subsequently, during the friction
process at 20% RH, the oxide product was mechanically removed.
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70% RH, 2400 s; (c) TiN (0◦)–MoS2, 20% RH, 2700 s.

Figure 12 shows the XPS spectra of the wear tracks from the TiN (0◦)–MoS2 and TiN
(80◦)–MoS2 composite coatings that were acquired in the 70% RH condition. It can be
seen that both the TiN (0◦)–MoS2 and TiN (80◦)–MoS2 composite coatings have a peak at
a binding energy of 226.28 eV corresponding to the S 2 s peak of MoS2 [39], two peaks at
229.01 eV and 232.18 eV correspond to the Mo 3d5/2 and Mo 3d3/2 of MoS2−x, and two
peaks at 233.08 eV and 230.09 eV correspond to the Mo 3d5/2 and Mo 3d3/2 of MoS2 (Mo4+),
respectively. In addition, the peak in binding energy at 235.67 eV corresponds to the Mo6+

(Mo-O bond) in MoO3 [40,41], meaning that the MoS2 is oxidized to generate the MoO3

under a highly humid environment.
It is noteworthy that the formation of MoO3 can significantly reduce friction. However,

the COF of the TiN (80◦)–MoS2 composite coating remains low and stable under humidity
fluctuations. Raman spectroscopy was used to analyze the distribution of MoS2 and MoO3,
further investigating the lubrication mechanism of the composite coating (Figure 13). The
A1g and the E1

2g peaks of MoS2 are attributed to the out-of-plane vibration of molybdenum
and sulfur atoms and the in-plane vibration of sulfur atoms, respectively [42,43]. It can
be seen that MoS2 signals on the wear tracks of the TiN (0◦)–MoS2 composite coating
gradually weaken (Figure 13a–c). However, the peak intensity of the MoS2 signals on
the TiN (80◦)–MoS2 wear track at 20% RH is higher than that at 70% RH (Figure 13d–f).
In addition, the MoO3 signal intensity on the wear scars of all the TiN–MoS2 composite
coatings is weak at 20% RH but stronger at 70% RH. This result is consistent with the
EDS analysis.
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Based on these findings and analysis of the wear tracks, the tribological mechanism
schematics of the TiN (80◦)–MoS2 composite coatings in humidity-fluctuating environments
are given in Figure 14. At the initial stage of 20% RH, the MoS2 on the coating surface
acted as a lubricant and exhibited effective lubrication. As the humidity was alternated to
70% RH, the MoS2 lubricant on the wear track of the coating was degraded owing to the
oxidation and then removed by the fraction. At the same time, the fresh MoS2 lubricant
stored in the pores of the TiN columnar matrix could be released. The degradation of MoS2

on the wear track and the release of fresh MoS2 from the pores kept the COF was about
0.2 during this stage. After the environmental conditions shifted from 70% to 20% RH,
the MoS2 in TiN (80◦)–MoS2 composite coating could be released from the pores to play a
lubricating role in a low-humid environment. In addition, all the oxidation products of the
MoS2 were removed, leading to a decrease in the COF. In contrast, TiN (0◦)–MoS2 cannot
store MoS2 due to its dense structure. During the humidity transition friction process,
the MoS2 lubricant on the surface was continuously consumed and removed, leading to a
gradual increase in COF.
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4. Conclusions
In this study, porous TiN coatings were prepared by DCMS technologies. Subsequently,

MoS2 was filled into the porous TiN coating through CVD to prepare the TiN–MoS2

composite coating. The porous TiN coating not only stored a solid lubricant phase but
also possessed a certain load-bearing capacity. The TiN (80◦)–MoS2 composite coating
demonstrated an extended service life at 20% RH, 70% RH, and in a humidity-fluctuating
environment. The results of the EDS, XPS, and Raman analyses of the wear tracks indicated
that, at 20% RH, the MoS2 stored in the pores of the TiN (80◦)–MoS2 composite coating was
gradually released to the wear track surface, showing an excellent lubrication effect, and
the COF was about 0.05. However, at 70% RH, MoS2 reacted with H2O and O2 to produce
MoO3, which diminished the lubrication effect. At this stage, the COF was about 0.2, which
was attributed to the degradation of the MoS2 on the wear track and the release of fresh
MoS2 from the pores. After the environmental conditions shifted from 70 to 20% RH, all the
oxides of the MoS2 were removed, and the COF decreased. The TiN (80◦)–MoS2 composite
coating exhibited excellent friction performance across various humidity environments,
indicating its self-lubricating capabilities in these environments.

Compared with the previous research works mentioned in the introduction section,
the porous TiN (80◦)–MoS2 composite coating presented a longer service life. However, the
porous TiN (80◦)–MoS2 composite coating had a COF that resulted in it being higher than
that of the TiCN–MoS2 composite coating in the high humidity environment. Consequently,
in future work, we will try to fill out the pores with another kind of solid lubricant in order
to maintain the low COF of the coating in different environments.
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