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Abstract: The present research deals with the processing of the additively manufactured
Carbon-Fiber-Reinforced Polymer (CFRP) under dry and lubricated cutting conditions,
focusing on the generated surface roughness. The cutting speed, feed, and depth of
cut were selected as the continuous variables. A comparison between the generated
surface roughness of the dry and the lubricated cuts revealed that the presence of coolant
contributed towards reducing surface roughness by more than 20% in most cases. Next,
a regression analysis was performed with the obtained measurements, yielding a robust
prediction model, with the determination coefficient R2 being equal to 94.65%. It was
determined that feed and the corresponding interactions contributed more than 45% to the
model’s R2, followed by the depth of cut and the machining condition. In addition, the
cutting speed was the variable with the least effect on the response. The Non-Dominated
Sorting Genetic Algorithm 2 (NSGA-II) was employed to identify the front of optimal
solutions that consider both minimizing surface roughness and maximizing Material
Removal Rate (MRR). Finally, a set of extra experiments proved the validity of the model by
exhibiting relative error values, between the measured and predicted roughness, below 10%.

Keywords: additive manufacturing; CFRP; flooded cooling; machining; NSGA-II; PET-G;
regression analysis; surface roughness

1. Introduction
Surface quality during machining is a critical factor influencing the performance,

esthetics, and functionality of machined components. It encompasses parameters such as
surface roughness, waviness, and geometric accuracy, which collectively determine the
texture and precision of the finished surface. The average surface roughness, often denoted
as Ra, is particularly significant as it directly impacts fatigue resistance, wear resistance,
friction, and even the adhesion properties of coatings. Achieving an optimal surface finish
is essential in manufacturing industries that deal with components related to vehicles,
structures, and devices, where high-precision components are required. The machining
process variables, such as cutting speed, feed rate, depth of cut, and tool geometry, play a
vital role in determining surface quality. Additionally, factors like material properties, tool
wear, and machine vibrations can introduce variations, making it a complex area of study.
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Several investigations on the surface roughness are available in the bibliography, as
well as evaluations of the surface quality of a wide variety of materials, including Alu-
minum Alloys (AAs) such as 6061 [1,2] and 6063 [3], steels such as EN36 alloy steel [4],
316L stainless steel [5], and SS410 steel [6], as well as superalloys such as Nimonic C263 [7]
and Inconel 600 [8]. The technological advancements in material science, and especially
the advent of composite materials, dictated a new direction in surface quality evolution.
Kannan et al. [9] investigated the surface roughness, tool wear, and cutting forces induced
during the turning of AA7075/SiC/Gr hybrid composite by utilizing the Taguchi method.
Similarly, Bhushan [10] worked on the impact that tool tip radius and typical machining
parameters have on the generated surface quality of the AA7075/Si composite. The author
employed the design of experiments and experimental work to assess the aforementioned
parameters. Shanmugavel et al. [11] presented a work on the Al-Mg-MoS2 reinforced
composite Wire Electrical Discharge Machining (WEDM). The authors examined a vari-
ety of machining parameters on the produced surface quality. Besides the metal matrix
composites, the scientific community shows an increasing interest in another composite
material group, namely the fiber-reinforced polymers. John et al. [12] investigated the
machining parameters influence on the surface quality of Polypropylene (PP), reinforced
with natural fibers. The authors focused on the milling process and the reinforcement with
jute and rice husk fibers. In a similar manner, Ravikumar et al. [13] presented research
on the jute/polyester composite drilling, evaluating the delamination and the surface
roughness during the process. The surfaces of the used specimens were treated with
sodium bicarbonate solution. Altin Karataş et al. [14] worked on the abrasive waterjet
drilling of Carbon-Fiber-Reinforced Polymer (CFRP) with respect to the fiber orientation
angles. The surface roughness and the delamination factor were the output parameters
studied by the authors. Slamani et al. [15] used carbide end-mills to process the flax fiber
reinforced polymer, with epoxy resin matrix, for evaluating the slot milling parameters on
the generated surfaces.

In general, both metal matrix composites and fiber-reinforced composites constitute
two material groups that are widely used in the industry. Especially the CFRP composites
have been widely studied due to their superior mechanical properties, in combination
with their light weight. In addition, the advent of additive manufacturing enabled the
production of specialized components made of CFRP filaments, which are commonly used
by industries such as aerospace and automotive. The fabricated components usually require
post-processing to acquire their final shape and dimensions, improving their functionality.
Despite the fact that AM is a relatively new technology, an increasing number of studies
are available for the post-processing of 3D-printed standardized polymers such as the
abrasive flow machining of Acryl Butadiene Styrene (ABS) and Polylactic Acid (PLA) [16],
laser cutting of ABS [17], acetone vapor jet drilling of ABS [18], and ultrasonic drilling of
PLA [19]. However, the number of studies related to the post-processing of composite
filaments, and especially CFRP, is still limited, with the machining processes focusing
mostly on either milling or orthogonal cutting. Gómez-García et al. [20] investigated
the machinability aspects of the 3D-printed Polyether Ether Ketone (PEEK), reinforced
with short carbon fibers composite, during orthogonal cutting. Hassan et al. [21] utilized
the Finite Element Method (FEM) to simulate and evaluate the milling process of 3D-
printed CFRP parts. Guo et al. [22] worked on the carbon-fiber-reinforced PEEK dry
milling by analyzing the machining behavior of additively manufactured parts of different
raster angles. Wei et al. [23] investigated the efficiency of the hole-making techniques
with the milling operation. The authors worked with 3D-printed, fiber-reinforced plastic
components. Similar studies focus on the 3D-printed CFRP material during face milling
under dry conditions [24], during slot milling under both dry and cooling conditions [25],
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as well as during dry milling with coated carbide tools [26]. Besides machining post-
processing, neosanding [27] and ironing [28] are equivalent methods used to post-process
the raw 3D-printed surfaces of parts for increased surface smoothness and quality.

Parallel to surface quality, the Material Removal Rate (MRR) is a key performance
metric in machining. MRR refers to the volume of material removed per unit of time
and directly influences productivity and cost-effectiveness. A higher MRR enables faster
manufacturing, reducing lead times and operational costs, which is crucial in mass pro-
duction [29–31]. However, achieving high MRR often conflicts with maintaining superior
surface quality, as aggressive cutting parameters can lead to increased surface roughness
and defects such as chatter marks or thermal damage. Balancing these conflicting objectives
requires a comprehensive understanding of machining dynamics and the optimization
of process parameters. The interplay between surface quality and MRR underscores the
importance of modern manufacturing technologies, including advanced tooling, process
monitoring, and data-driven optimization. By addressing these challenges, manufacturers
can achieve efficient production without compromising the functional integrity of the
components, contributing to sustainable and competitive industrial practices.

The literature survey revealed that a limited number of studies deal with the machining
of additively manufactured materials, and especially composites. In addition, a research
gap related to the post-processing turning of 3D-printed CFRP materials under lubricated
conditions has been identified. In light of the above, the present study investigates the
influence of the standard machining conditions, such as cutting speed, feed rate, and depth
of cut during turning, on the surface quality of the additively manufactured Polyethylene
Terephthalate Glycol (PET-G)-based CFRP, under both dry and lubricated conditions.
The interaction of the coolant with the machined surface is of particular interest in the
specific material group due to the lack of specialized coolants and systems. To assess the
influence of the aforementioned parameters, a regression analysis was performed, and the
Non-Dominated Sorting Genetic Algorithm 2 (NSGA-II) was used to identify the optimal
cutting parameters for achieving a compromise between acceptable surface finish and rapid
cutting operations.

2. Materials and Methods
The present study deals with the experimental investigation of the 3D-printed PET-G-

based CFRP during the turning process. It is divided into four steps as shown in Figure 1.
First, the experiments were designed according to the selected conditions, leading

to 54 experiments (27 experiments for dry conditions and 27 experiments for lubricated
conditions, respectively). In addition, the equivalent workpieces were fabricated. Next, the
CNC machine was set, and the cutting experiments were carried out with the BOXFORD
160TCL CNC lathe. During the third step, the surface roughness and the equivalent profiles
were measured with the DIAVITE DH-8 gauge. Finally, the collected data were organized,
and the regression analysis was realized.
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Figure 1. The experimental setup and workflow of this study.

2.1. Experimental Settings and Testing Materials

The selected material comprises 80 wt% PET-G and 20 wt% carbon fiber. It is known for
its increased stiffness and durability, as well as for the resistance in higher temperatures. The
previously mentioned advantages make it ideal for the manufacturing of shells intended
to be used in unmanned vehicles. Table 1 contains the basic properties of the filament. It
should be noted that according to the manufacturer, Yield strength σy, Yield strain εy and
Strain at break εb were tested at 50 mm/min speed, whereas the Young’s modulus E at
1 mm/min.

Table 1. Basic properties of the used CFRP filament [32].

Property Value

Density, ρ 1.19 g/cm3

Young’s modulus, E 3.8 GPa
Yield strength, σy 52.5 MPa
Yield strain, εy 4.2%
Strain at break, εb 8%
Heat deflection temperature, Td 80 ◦C

Table 2 presents the settings used to fabricate the specimens with the CreatBot D600
Pro printer by utilizing the Fused Deposition Modeling (FDM) method. A nozzle with a
0.6 mm diameter was utilized, and filaments of 1.75 mm size. All settings were set according
to the suggestions provided by the manufacturer (NEEMA3D™) [32] through personal
communication. The specific shell thickness, the infill density, and the infill pattern were
selected with the depth of cut in mind. Moreover, the rigidity of the workpieces was also
taken into account.
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Table 2. The settings for the additively manufactured workpieces.

Setting Value

Nozzle temperature 255 ◦C
Bed temperature 70 ◦C
Layer thickness 0.2 mm
Printing speed 40 mm/s
Flow rate 1.0
Shell thickness 3 mm
Infill density 50%
Infill pattern Rectilinear

Table 3 presents the selected cutting conditions: cutting speed (Vc), feed (f ), and depth
of cut (ap), as well as the boundaries of their values. In addition, Table 3 indicates that this
study was performed under both dry and lubricated conditions. The selection of the range
of the cutting conditions was based on the recommendations of the tool manufacturer for
light to finishing operations, in addition to the study by Venkatesh et al. for pure PET-G [33].
The used cutting inserts and the tool holder have designation numbers DCGT090202N-SC
and SDJCL1010-03S, respectively. Additionally, the lubricated cuts were performed with
the flooded cooling method by applying the Refan 150 mineral coolant, mixed with water
at proportions of 5–95%.

Table 3. The predictors of the regression analysis.

Continuous Predictors Categorical
Predictor

Vc (m/min) f (mm/rev) ap (mm) Condition

Upper boundary 285 0.11 2.0 1 (lubricated)
Lower boundary 115 0.05 0.5 0 (dry)

2.2. Design of Experiments and Measured Responses

The experiments were designed according to the full factorial design for acquiring a
dense dataset. Table 4 shows the measured surface roughness arithmetic mean for both dry
(Ra,0) and lubricated (Ra,1) conditions. In addition, Table 4 includes the calculated MRR
for each one of the condition combinations, which were used in Section 3.2 for determining
the optimal solutions that minimize the generated surface roughness on the one hand and
maximize the MRR on the other. To calculate the MRR, Equation (1) was used.

MRR(cm 3 /min) = Vc × f × ap (1)

The comparison between the experimental measurements of the dry and the lubricated
experiments revealed that the summation of the lubricated cuts exhibited improved surface
quality compared to the dry ones. Figure 2 illustrates this comparison, highlighting that
the improvement in surface quality is significant for the majority of the experiments, with
the exception of experiment number 24. In addition, it is shown that the average decrease
in surface roughness for the three cutting speed levels: 115 m/min, 200 m/min, and
285 m/min, is approximately 20.7%, 21.6%, and 26.1%, respectively. The results during
dry conditions testing are of similar magnitude to the ones reported by Alzyod et al. [27]
for neosanding of PLA and subtractive processing [34] of ABS. In addition, the work of
Juneja et al. [18] on ABS acetone vapor processing presented findings related to the surface
roughness that match the ones of the present study. Cococcetta et al. [25] reported reduced
burr and better overall surface quality for both edge and slot milling of 3D-printed CFRP
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specimens under Minimum Quantity Lubrication (MQL) conditions. A more thorough
discussion on the influence of the parameters on the generated roughness is made in
Section 3. Despite the fact that the non-machining post-processing methods mentioned
earlier provide good results in general, the surface finish and dimensional accuracy that
the machining methods provide are superior, especially under lubricated conditions. The
drawback when utilizing machining is the more complicated setup and the requirement of
CNC machines. Specifically, ironing and neosanding can be realized with the 3D printer
itself, whereas acetone vapor deposition can be realized with simple equipment of low
cost. However, these methods cannot be applied with the same efficiency to all types of
3D-printed materials [35]. Finally, when evaluating the lubricated machining, flooded
cooling provides equal results compared to MQL, with a simpler setup.

Table 4. The experiments according to the full factorial design and the corresponding results.

Number Vc (m/min) F (mm/rev) ap (mm) MRR (cm3/min) Ra,0 (µm) Ra,1 (µm)

1 115 0.05 0.50 2.88 1.823 1.402
2 115 0.05 1.25 7.19 2.198 1.960
3 115 0.05 2.00 11.50 2.301 1.874
4 115 0.08 0.50 4.60 2.009 1.568
5 115 0.08 1.25 11.50 2.580 2.065
6 115 0.08 2.00 18.40 2.308 2.001
7 115 0.11 0.50 6.33 2.566 1.899
8 115 0.11 1.25 15.81 3.090 2.790
9 115 0.11 2.00 25.30 3.362 2.863

10 200 0.05 0.50 5.00 1.762 1.455
11 200 0.05 1.25 12.50 1.989 1.949
12 200 0.05 2.00 20.00 2.253 1.878
13 200 0.08 0.50 8.00 2.020 1.512
14 200 0.08 1.25 20.00 2.744 2.041
15 200 0.08 2.00 32.00 2.466 2.089
16 200 0.11 0.50 11.00 2.788 1.893
17 200 0.11 1.25 27.50 3.067 2.700
18 200 0.11 2.00 44.00 3.255 2.865
19 285 0.05 0.50 7.13 2.121 1.562
20 285 0.05 1.25 17.81 2.262 2.102
21 285 0.05 2.00 28.50 2.453 2.247
22 285 0.08 0.50 11.40 2.429 1.788
23 285 0.08 1.25 28.50 3.288 2.541
24 285 0.08 2.00 45.60 2.616 2.510
25 285 0.11 0.50 15.68 3.199 1.975
26 285 0.11 1.25 39.19 3.566 2.856
27 285 0.11 2.00 62.70 3.890 2.905

To assess whether the surface roughness measurements follow a normal probability
distribution, the probability plot of Figure 3 was plotted, according to the Anderson–Darling
test, with the confidence level set to 95%. It is evident that the data points (blue dots) mostly
align well with the straight line representing the distribution, indicating that the Ra values
follow the normal distribution reasonably well. There may be minor deviations at the
tails (extreme low and high Ra values). However, it is shown that these two points do
not fall significantly outside the confidence bands (curved lines). Finally, the points’ tight
clustering around the distribution line suggests that the Ra measurements have a consistent
variance, supporting the validity of the normality assumption.
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2.3. Multiple Regression Analysis

Multiple regression analysis is a statistical method used to model the relationship be-
tween a dependent variable and multiple independent variables. It predicts the dependent
variable by fitting a linear equation that minimizes the difference between observed and
predicted values. In machining studies [36–38], it helps identify how factors like cutting
speed, feed rate, and depth of cut influence surface roughness. The method can include
interaction terms to capture combined effects of variables.

Equations (2) and (3) represent the regression model derived from the analysis of the
experiential data. Specifically, Equation (2) can be used to predict the surface roughness
of the process under dry conditions, whereas Equation (3) is for the surface roughness
prediction under lubricated conditions. Both mathematical representations are expressed
by considering the predictors and their cross-term interactions, as well as the quadratic
terms. The regression analysis was carried out by employing the backward elimination [39]
for simplifying the derived model.
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Ra, 0(µm) = 1.933 − 0.00614Vc − 16.16 f + 1.217ap + 0.000021Vc
2 + 184.3 f 2 − 0.4775ap2 + 3.59 f × ap (2)

Ra, 1(µm) = 1.951 − 0.00713Vc − 22.28 f + 1.364ap + 0.000021Vc
2 + 184.3 f 2 − 0.4775ap2 + 3.59 f × ap (3)

To determine the statistical significance of the terms and evaluate their contribution,
the analysis of variance (ANOVA) of the response data was performed. Table 5 shows
the ANOVA results in terms of the mean square values, the f -value, and the p-value. The
goodness of fit, the variance, and the prediction capabilities were analyzed by setting a
95% confidence level. The coefficients R2, R2 (adjusted), and R2 (predicted) were calculated
equal to 94.65%, 93.24%, and 91.26%, respectively, indicating a strong fit and adequate
prediction accuracy due to the increased variability explained. To assess the statistical
significance of the model, the p-values were used. Therefore, each term with a p-value
lower than α = 0.05 is considered statistically significant. However, this does not imply
that all statistically significant terms influence the response to a considerable degree. The
contribution was evaluated with the f -value of each term, which is described as the ratio of
the mean square to the error mean square. It was found that the three continuous predictors
and the categorical term are responsible for influencing the response by 87%.

Table 5. Analysis of variance results for the multiple regression model.

Source Degrees of
Freedom

Sum of
Squares

Mean
Square f -Value p-Value Contribution %

Model 11 16.2236 1.47487 67.49 0.000
Error 42 0.9178 0.02185
Total 53 17.1414

R-sq = 94.65%, R-sq (adj) = 93.24%, R-sq (pred) = 91.26%

Term

Vc 1 0.8867 0.8867 40.58 0.000 5.47
f 1 7.0561 7.0561 322.89 0.000 43.49

ap 1 2.9843 2.9843 136.56 0.000 18.39
condition 1 3.1848 3.1848 145.74 0.000 19.63

Vc2 1 0.2816 0.2816 12.88 0.001 1.73
f 2 1 0.3302 0.3302 15.11 0.000 2.04

ap2 1 0.8656 0.8656 39.61 0.000 5.34
Vc × condition 1 0.0643 0.0643 2.94 0.094 0.40

f × ap 1 0.1567 0.1567 7.17 0.011 0.97
f × condition 1 0.3032 0.3032 13.88 0.001 1.87

ap × condition 1 0.1101 0.1101 5.04 0.030 0.68

The contribution of each one of the independent variables is shown in Figure 4. It is
evident that feed has the largest impact on the model, contributing approximately 45% to
the coefficient of determination R2 increase. This finding aligns with the fact that feed rate is
typically the most significant factor influencing surface roughness, as it directly determines
the spacing between tool marks. Depth of cut contributes the second most to the model,
with a noticeable but smaller effect than feed. This is expected because deeper cuts increase
cutting forces, vibrations, and tool deflection, thereby affecting roughness. The condition
adds a moderate amount to the explained variance. This indicates that lubrication plays an
important role in controlling friction, heat dissipation, and chip evacuation, all of which can
influence surface finish. Finally, cutting speed contributes the least to the model, suggesting
that its effect on surface roughness is relatively minor compared to the other variables. The
reason for this is probably the fact that cutting speed affects surface roughness indirectly, as
it modifies the thermal and dynamic effects and does not directly relate to the geometrical
aspects of the process. To further visualize the order of variables’ contributions, the Pareto
graph from Figure 5 was added.
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In summary, feed rate dominates, as it has the most significant impact on surface
roughness, likely due to its direct relationship with tool mark spacing. Depth of cut and
lubrication conditions provide additional explanatory power, likely through their influence
on cutting forces and material behavior, whereas cutting speed is less influential, likely
because its effects are secondary compared to the geometric and force-driven variables.

3. Results and Discussion
3.1. Analysis of Predictors’ Behaviors on the Generated Surface Roughness

The mean effect plot of Figure 6 provides detailed insights into how the four variables
influence surface roughness in additively manufactured CFRP turning. It is evident that
the produced surface roughness in dry conditions is noticeably higher (~2.6 µm), indicating
rougher surfaces when no lubrication is used. On the contrary, lubricated conditions
reduce roughness significantly (~2.1 µm), suggesting that lubrication improves the surface
finish by reducing friction and thermal effects. Cutting speed exhibits a more complex
pattern. At low speed (115 m/min), Ra values start close to 2.25 µm, showing acceptable
levels of roughness. Medium speed (200 m/min) does not seem to affect Ra, showing
no significant change. On the contrary, cutting speed beyond 200 m/min increases Ra
significantly (~2.7 µm), indicating poorer surface quality, possibly due to thermal effects
and material degradation at high speeds. Lower feeds are responsible for the production of
low Ra values (<2.0 µm), reflecting smoother surfaces. Medium feeds increase roughness
moderately (~2.4 µm), whereas at the highest feed (0.11 mm/rev), Ra peaks (~2.9 µm),
indicating significantly rougher surfaces due to higher material removal rates and tool
vibrations. Therefore, it is obvious that feed rate has the most pronounced effect, with
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roughness increasing sharply as feed increases. This effect was expected as it is standard for
a wide variety of materials such as CFRPs [25], aluminum [40], and Ti6Al4V [41]. Moreover,
a similar pattern for feed rate was identified in a previous work of the authors [42] for
the same material. Finally, it is observed that depth of cut acts increasingly when shifting
from low to medium depths. Specifically, the lowest depth (0.50 mm) yields Ra values
below 2.0 µm, indicating a smoother finish. At medium depth (1.25 mm), Ra increases
sharply at ~2.55 µm, reflecting a rapid deterioration in surface finish due to increased
cutting forces and tool interaction. In contrast, beyond this point, Ra continues to increase
slightly (~2 µm). The sudden increase in Ra when shifting depth of cut from lower to
higher values, followed by a recession when further increasing depth of cut was reported
by El Mehtedi et al. [43] for the PET-G milling. Additionally, Abena et al. [44] correlated
the deeper cuts with the surface deterioration for the orthogonal cutting of CFRP.

Lubricants 2025, 13, x FOR PEER REVIEW 10 of 21 
 

 

3. Results and Discussion 
3.1. Analysis of Predictors’ Behaviors on the Generated Surface Roughness 

The mean effect plot of Figure 6 provides detailed insights into how the four variables 
influence surface roughness in additively manufactured CFRP turning. It is evident that 
the produced surface roughness in dry conditions is noticeably higher (~2.6 µm), indicat-
ing rougher surfaces when no lubrication is used. On the contrary, lubricated conditions 
reduce roughness significantly (~2.1 µm), suggesting that lubrication improves the surface 
finish by reducing friction and thermal effects. Cutting speed exhibits a more complex 
pattern. At low speed (115 m/min), Ra values start close to 2.25 µm, showing acceptable 
levels of roughness. Medium speed (200 m/min) does not seem to affect Ra, showing no 
significant change. On the contrary, cutting speed beyond 200 m/min increases Ra signif-
icantly (~2.7 µm), indicating poorer surface quality, possibly due to thermal effects and 
material degradation at high speeds. Lower feeds are responsible for the production of 
low Ra values (< 2.0 µm), reflecting smoother surfaces. Medium feeds increase roughness 
moderately (~2.4 µm), whereas at the highest feed (0.11 mm/rev), Ra peaks (~2.9 µm), in-
dicating significantly rougher surfaces due to higher material removal rates and tool vi-
brations. Therefore, it is obvious that feed rate has the most pronounced effect, with 
roughness increasing sharply as feed increases. This effect was expected as it is standard 
for a wide variety of materials such as CFRPs [25], aluminum [40], and Ti6Al4V [41]. 
Moreover, a similar pattern for feed rate was identified in a previous work of the authors 
[42] for the same material. Finally, it is observed that depth of cut acts increasingly when 
shifting from low to medium depths. Specifically, the lowest depth (0.50 mm) yields Ra 
values below 2.0 µm, indicating a smoother finish. At medium depth (1.25 mm), Ra 
increases sharply at ~2.55 µm, reflecting a rapid deterioration in surface finish due to 
increased cutting forces and tool interaction. In contrast, beyond this point, Ra continues 
to increase slightly (~2 µm). The sudden increase in Ra when shifting depth of cut from 
lower to higher values, followed by a recession when further increasing depth of cut was 
reported by El Mehtedi et al. [43] for the PET-G milling. Additionally, Abena et al. [44] 
correlated the deeper cuts with the surface deterioration for the orthogonal cutting of 
CFRP. 

 

Figure 6. The main effect plots for the experimental surface roughness with respect to the condition, 
cutting speed, feed, and depth of cut. 
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In summary, feed is the most critical variable, causing a sharp rise in Ra at higher
levels. Lubrication significantly reduces roughness, making it essential for improving
surface finish. Low depths of cuts produce a smooth surface, but a sharp increase occurs at
the medium level, with no further effect at the high level. Low and medium speeds produce
acceptable levels of Ra, while high speeds degrade the surface considerably. In addition,
the analysis highlights that controlling feed and depth of cut at low levels, combined with
lubrication, is key to achieving optimal surface quality during CFRP turning.

The contour plots of Figure 7 illustrate the interaction effects between the cutting
parameters on the surface roughness during turning under dry conditions. The color
gradient represents ranges of Ra, where blue shades correspond to smoother surfaces and
green shades indicate rougher surfaces. Figure 7a illustrates the interaction between feed
and speed. It is observed that surface roughness remains low (Ra < 2.5 µm) at low feed
rates (f < 0.072 mm/rev) irrespective of Vc. Higher feed rates (f > 0.08 mm/rev) increase
Ra significantly, especially as Vc approaches higher levels (280 m/min). This is due to the
dominant influence of feed on the surface geometry. At low feed, Vc has a marginal effect
on Ra, while at high feed, Ra increases notably at higher Vc values). Figure 7b describes the
interaction between depth of cut and speed. Lower depths of cuts contribute towards lower
surface roughness values, even as Vc increases, indicating minimal influence of cutting
speed at small depths. There is a noticeable rise in Ra at higher speeds, for both medium
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and high levels of ap. However, the pattern beyond ap = 1.5 mm suggests that extreme
depths of cut do not significantly affect Ra further. The interaction between depth of cut and
feed (Figure 7c) revealed that at low feed (f < 0.072 mm/rev), surface roughness remains
low across all depth values, indicating a smooth finish at these settings. On the contrary, at
high feed (f > 0.096 mm/rev), Ra increases drastically, especially for larger depths, as both
feed and depth of cut strongly influence surface roughness through chip formation and
material deformation.
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Summarizing, these plots emphasize that surface roughness is highly dependent on
the interaction between the parameters, with feed being the most critical factor. Cutting
speed primarily influences Ra in combination with high feed or depth of cut but has a
minor effect at low levels of feed and depth of cut. Finally, depth of cut significantly affects
Ra, only when combined with high feed rates.

Similarly, Figure 8 illustrates the interaction effects of cutting speed, feed, and depth
of cut on the surface roughness under lubricated conditions. The color gradient indicates
Ra, with blue representing smoother surfaces (Ra < 1.75 µm) and green indicating rougher
surfaces (Ra > 2.75 µm). Figure 8a shows the interaction between feed and speed. At low
feeds, surface roughness is minimal (Ra < 2.0 µm) across all speed values, highlighting the
benefits of lubrication in achieving a smoother finish. Ra increases significantly at higher
feeds, particularly at higher speed values (above 240 m/min). The combined effect of
increased f and Vc causes a rougher finish. In addition, higher cutting speeds mitigate
roughness at lower feeds, but at high feeds, the influence of speed becomes less significant.
The interaction between depth of cut and speed is shown in Figure 8b. Surface roughness
remains below 2.0 µm across all speed values for lower depths. At medium to high depth
of cut values, Ra increases moderately, particularly at high speed values. However, the
roughness is less severe compared to dry conditions, showing that lubrication reduces the
adverse effects of increasing depth of cut. In general, lower depths and speed provide
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smoother surfaces. Finally, Figure 8c illustrates the interaction between depth of cut and
feed. At low feed rates, surface roughness remains minimal (Ra < 1.75 µm) across all ap
values. At high feed rates, as expected, Ra increases sharply, particularly at depths above
1.5 mm. This shows that even with lubrication, high f and ap contribute significantly to
roughness. Moreover, even though roughness increases with increasing ap, lubrication
helps control the extent of this rise.
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Summarizing, it is evident that lubrication significantly reduces Ra compared to
dry conditions, particularly at low feed and depth-of-cut levels. Feed remains the most
influential factor, as higher feed rates consistently increase Ra, regardless of lubrication.
Cutting speed has a minor effect at low feed and depth of cut, but it interacts more strongly
at high levels of these parameters. Finally, depth of cut has a moderate influence, with
higher values leading to rougher surfaces, but lubrication reduces its overall impact. These
results emphasize the importance of lubrication in minimizing surface roughness, especially
at lower feed rates and depths of cut.

Figures 9 and 10 constitute a graphical representation used to visualize the relation-
ships between the three variables in the dataset, supplementing the contour plots. Moreover,
these plots visualize the solutions of Equations (2) and (3) respectively, within the studied
range of cutting conditions. Specifically, Figure 9 illustrates this relationship for the dry
conditions, whereas Figure 10 is for the lubricated conditions. Summarizing, it is shown
that higher cutting speeds contribute towards higher surface roughness values. Increased
feed rates consistently result in higher surface roughness, making it the most influential
parameter for Ra. While depth of cut exhibits a strong effect, its impact is less significant
than feed rate in determining surface roughness, with lower values of depth of cut con-
tributing towards better surface quality. Finally, it is evident that above a certain depth,
surface roughness is no longer influenced.
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3.2. Optimization of the Cutting Conditions by Utilizing the NSGA-II Algorithm

To optimize the process, both MRR and Ra were taken into account because during
light and finishing, the final production cost is a compromise between quality and time.
For this purpose, the NSGA-II algorithm was employed. It is a popular multi-objective
optimization algorithm, widely used for solving problems with conflicting objectives [45,46].
It employs a population-based approach to identify a set of Pareto-optimal solutions in a
single run. NSGA-II ranks solutions using non-dominated sorting and maintains diversity
through a crowding distance mechanism. It combines crossover and mutation operators for
exploration and refinement of solutions. Fast sorting, elitism (retaining the best solutions),
and reduced computational complexity make it efficient and scalable. For the problem
stated in this study with the three continuous variables, the population was set to 200, the
maximum number of generations to 50, and no stopping criteria were set. Figure 11 depicts
the optimization process. In specific, Figure 11a,b are the Pareto fronts of solutions for the
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dry and lubricated experiments accordingly. Similarly, Figure 11c,d illustrate the variable
combinations that generated the solutions.
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3.3. Performance Validation of the Regression Model

The scatter plots of Figure 12 were used to compare the experimental surface roughness
values measured during the experiments and the predicted values, calculated by the
regression model for the two conditions: dry and lubricated. By observing Figure 12a for
the dry conditions, the red line represents the ideal relationship, where the predicted and
experimental values perfectly match. The scatter points closely align with the red line,
indicating that the regression model performs well under dry conditions. Slight deviations
at higher Ra values (between 3.0 µm and 3.5 µm) suggest that the model may slightly
underpredict or overpredict surface roughness for extreme cases. Figure 12b shows that the
scatter points are closer to the fit line compared to Figure 12a, indicating that the regression
model is more accurate under lubricated conditions. Deviations appear smaller overall,
suggesting that lubrication conditions reduce variability and improve predictability.

In summary, both plots demonstrate a strong correlation between experimental and
predicted Ra, showing the regression model’s capability to capture key trends in surface
roughness. The tighter clustering of points around the fit line in Figure 12b suggests that the
model is more reliable when lubrication is used, likely because the process is less influenced
by uncontrolled factors like heat or friction.
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Figure 12. Scatter plots for the comparison between the experimental and the predicted surface
roughness values: (a) for the dry conditions and (b) for the lubricated conditions.

A set of validation experiments was performed to assess the prediction capabilities
of the model within the range of the selected cutting conditions. The six experiments
are shown in Table 6, along with the measured surface roughness and the equivalent
predicted values. The computed relative error being below 10% suggests that the model
can sufficiently predict the surface roughness under various conditions, within the limits of
this study.

Figure 13 depicts sample surface profiles at Vc = 115 m/min, f = 0.05 mm/rev, and
ap = 0.50 mm, and the corresponding roughness measurements for the unmachined material
(Figure 13a), as well as the machined surface under both dry (Figure 13b) and lubricated
(Figure 13c) conditions. By observing Figure 10, the considerable improvement in quality is
noted when considering the change between the unmachined and the machined surfaces.
The most noticeable change is the drop in the Ra value, from 15.1 µm to 1.60 µm and 1.00 µm
for the dry and lubricated surfaces, respectively. Similarly, the improvement is noticeable
in the other surface profile parameters, such as the average maximum profile height Rz, the
total profile height Rt, and the maximum profile height Rmax. The finding that the use of
coolant contributes towards reducing Ra and significantly improving the surface quality
is supported by the measurements and the macro images. In addition, it is noted that
measurements such as Rmax are greatly reduced with the use of coolant, further supporting
the importance of the lubrication conditions during 3D-printed CFRP machining. Even
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between dry and lubricated conditions, the reduction is about 78%. This fact is probably
based on the abrasive structure of the material [47], as well as on the rougher surfaces that
are generally produced by the 3D printing method.

Table 6. Validation experiments and comparison with simulated values.

Test No. Condition Vc (m/min) f (mm/rev) ap (mm) Ra, exp (µm) Ra, pred (µm) Relative Error (%)

1 0 125 0.10 0.60 2.595 2.494 4.04
2 0 175 0.08 1.50 2.678 2.570 4.19
3 0 250 0.06 1.20 2.195 2.436 −9.88
4 1 125 0.10 0.60 1.800 1.865 −3.47
5 1 175 0.08 1.50 2.071 2.146 −3.49
6 1 250 0.06 1.20 2.098 2.015 4.10
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4. Conclusions
Concluding, this work presents an investigation on the dry and lubricated machining

of the 3D-printed PET-G based CFRP. This study includes a regression analysis and an
optimization study with the NSGA-II algorithm. The most critical observations derived
from this study are as follows:
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• The use of coolant acted decreasingly on the generated surface roughness. The average
decrease was calculated to be equal to 20.7%, 21.6%, and 26.1% for the three different
cutting speed levels, respectively.

• The regression model yielded coefficient values equal to 94.65%, 93.24%, and 91.26%
for the R2, R2 (adjusted), and R2 (predicted) respectively.

• Feed was determined to be the most significant predictor, followed by the depth of
cut and the condition. Cutting speed had the least significant effect from the four
predictors. However, it cannot be considered negligible.

• The contribution percentages were estimated equal to approximately 46.5%, 24.5%,
22%, and 7% for the feed, the depth of cut, the condition, and the cutting speed,
including their interactions, respectively.

• The Pareto fronts of optimal solutions identified combinations that contribute to-
wards minimization of Ra and maximization of MRR. The majority of the solutions
highlighted cutting speed between 170 m/min and 280 m/min, feed ranging from
0.06 mm/rev to 0.10 mm/rev, and depth of cut close to either 0.5 mm or 2.0 mm as the
optimal combinations.

• Validation testing revealed relative error values below 10%, supporting the increased
accuracy of the model.

5. Limitations and Future Work
The present study does not take into account any dynamic variables such as the

vibrations and temperature. Therefore, the model relies purely on continuous variables that
cannot capture the sudden changes in the machining state. For these reasons, future work
will implement sensory systems that are able to measure the acceleration and temperature
changes, with an aim to develop a dynamic prediction system of superior prediction
capabilities, by utilizing the appropriate sensors and data acquisition systems. Furthermore,
it is anticipated that the dynamic system can become the basis for the development of a
digital twin monitoring system.
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