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Abstract: The present work is focused on the numerical solution of the complete energy equation
used in fluid film lubrication. The work was motivated by the fact that the complete energy equation
has no analytical solution that can be used for validations. Its accuracy and computation time are
related to the employed numerical method and to the grid resolution. The natural discretization
method (NDM) applied on different grids is systematically compared with the spectral method (the
Lobatto Point Colocation Method or LPCM) with different polynomial degrees. A one dimensional
inclined slider is used for the numerical tests, and the energy equation is artificially decoupled from
the Reynolds equation. This approach enables us to focus all the attention on the numerical solution
of the energy equation. The results show that the LPCM is one or two orders of magnitude more
efficient than the NDM in terms of computation time. The energy equation is then coupled with the
Reynolds equation in a thermo-hydrodynamic analysis of the same 1D slider; the numerical results
confirm again the efficiency of the LPCM. A thermo-hydrodynamic analysis of a two-lobe journal
bearing is then presented as a practical application.
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1. Introduction

The flow of thin lubricant films in journal and thrust bearings is most often described by the
Reynolds equation of lubrication coupled with the energy transport equation. The numerical solution
of these two coupled equations is a problem that has been solved for many decades [1]. However, it
requires a computational effort that can render transient analyses very time consuming. Therefore,
efficient solvers and adequate coupling strategies are of major importance to perform complex analyses
in a reasonable amount of time.

If film rupture and reformation (traditionally designated as “cavitation”) are absent, and if the
flow regime is laminar and isothermal, then the Reynolds equation is an elliptic linear differential
equation. A direct solver can be used after its discretization in the thin film plane.

The energy equation contains convective transport terms, conductive transport terms across
the thin film, and dissipative source terms arising from its coupling with the Reynolds equation.
Its character is therefore not entirely elliptic, and its solver is different from the one used for the
Reynolds equation. Moreover, the energy equation must also be discretized across the thin fluid film,
and the number of discretization points in this direction must be large enough to capture temperature
gradients near the walls. Therefore, the energy equation requires a substantially higher computational
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effort compared to the Reynolds equation. Developing an accurate and efficient solver for the energy
equation is then an important step toward solving non-isothermal lubrication problems. The task
is not simple because there is no analytical solution of the complete energy equation to be used for
validations. For example, if the analytical solution of the laminar and isothermal thin film flow in a
one dimensional (1D) slider can be used to validate the solver of the Reynolds equation, no similar
solution exists for the energy equation. For validation, a numerical solver for the energy equation will
have to be tested with different wall boundary conditions, and the numerical results must be checked
for various grid densities. Such results are absent from the literature.

As mentioned above, the energy equation must also be discretized over the film thickness.
The normal practice is to increase the number of discretization cells across the thin film until a grid
independent numerical solution is reached, and this renders its solution time consuming. In the natural
discretization methods (NDMs), such as the finite difference or finite volumes methods, the variation
of the temperature between two cells is linear. This leads to a significant number of discretization
cells across the thin film. An efficient approach for solving the energy equation was introduced by
Elrod and uses the Legendre polynomials to describe the temperature variation across the thin film [2].
The coefficients of the Legendre polynomials expansion were first calculated by using a Galerkin
approach. Later, Elrod used the collocation method at the Lobatto points; that is, the roots of the
derivative of the highest order of the used Legendre polynomial. This method, known as the “Lobatto
Points Collocation Method (LPCM)”, proved to be more efficient [3].

Despite its efficiency, the method is barely used, likely because of its complexity. Thus, Moraru [4]
extended the LPCM to compressible films by describing the variation of the density across the thin
film with Legendre polynomials. Feng and Kaneko [5] used the LPCM to solve the energy equation
in aerodynamic foil bearings. Lehne et al. [6] presented a comprehensive review of the numerical
solution strategies of the coupled Reynolds and energy equations, including the LPCM. Except for the
cited references, the literature is scarce in references dealing with the LPCM.

This work presents a systematic comparison between the natural discretization method (NDM)
of the energy equation and its LPCM approximation. In order to decouple the Reynolds and energy
equation, the viscosity is supposed to be constant and the flow laminar. A one dimensional (1D)
inclined slider is used for the numerical tests. The Reynolds equation then has an analytical solution,
and the analysis is entirely focused on the energy equation. The results for the 1D slider compare both
the number of points and the computational time required by the NDM and by the LPCM to obtain
grid independent solutions. The results show how the NDM is excessively time consuming when high
accuracy is sought, and the net economy of computational time brought by the LPCM approach.

A thermo-hydrodynamic analysis of the 1D slider with the coupled Reynolds and energy equation
is then performed. The analysis highlights the same conclusions, namely the large superiority of the
LPCM compared to NDM in terms of computational effort. Lastly, a two-lobe journal bearing with
axial supply grooves is analyzed to demonstrate the accuracy that can be expected with simple,
non-triggered boundary conditions for the energy equation.

2. The Numerical Solution of the Energy Equation Based on the Natural Discretization Method

The 1D inclined slider shown in Figure 1 is used in References [2,3] for the resolution of the
Reynolds equation coupled with the energy equation. The current work is focused on the resolution of
the energy equation decoupled from the Reynolds equation, for which an analytical solution is used.
This gives an accurate numerical solution of the energy equation without the influence of the coupling
with pressure and velocities affected by numerical uncertainties. The numerical data used is detailed
in Table 1.
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Figure 1. The 1D inclined slider.

Table 1. The data used for the 1D slider.

Physical Characteristics Values Physical Characteristics Values

Density ρ0 800
[
kg/m3] Inlet thickness h1 1.8288e−4 [m]

Specific Heat Capacity Cp 2000 [J/kgK] Outlet thickness h2 0.9144e−4 [m]
Thermal Conductivity λ 0.14 [ W/mK] Slider length L 0.18288 [m]

Dynamic Viscosity η0 0.081 [Pa·s] Ambient temperature Ta 20 [◦C]
Lower Wall Operating Speed U 31.946 [m/s] Ambient pressure Pa 1 [bar]

The conservative form of the energy equation for the lubrication thin film flow of an
incompressible fluid writes [1]:

ρ0Cp

[
∂(uT)

∂x
+

∂(vT)
∂y

]
= λ

∂2T
∂y2 + η0

(
∂u
∂y

)2
(1)

It contains the convection transport terms on its left hand side, and the temperature diffusion and
dissipation terms on its right hand side. The terms on the right hand side are simplified according to
the lubrication thin film assumption; that is, only derivatives across the thin film are taken into account.

The dimensionless coordinate y is introduced to take into account that the film thickness h is
not constant.

y = yh(x) (2)

Following this coordinate transformation, the energy Equation (1) for the 1D slider becomes:

ρ0Cp

[
∂(uT)

∂x
− y

h
dh
dx

∂(uT)
∂y

+
1
h

∂(vT)
∂y

]
= λ

1
h2

∂T
∂y

+ η0
1
h2

(
∂u
∂y

)2
(3)

The slider is discretized with 2D computational cells as depicted in Figure 2. Following the
variable change described by Equation (2), the computational domain is rectangular and orthogonal.
The computational cells have four plane faces, denoted by lower-case letters corresponding to their
direction (e, w, n, and s) with respect to the central node P.



Lubricants 2018, 6, 95 4 of 23

Lubricants 2018, 6, x FOR PEER REVIEW  3 of 22 

 

 

Figure 1. The 1D inclined slider. 

Table 1. The data used for the 1D slider. 

Physical Characteristics Values Physical Characteristics Values 
Density 𝜌 800 ሾkg/mଷሿ Inlet thickness ℎଵ 1.8288𝑒ିସ ሾmሿ 

Specific Heat Capacity 𝐶 2000 ሾJ/kgKሿ Outlet thickness ℎଶ 0.9144𝑒ିସ ሾmሿ 
Thermal Conductivity 𝜆 0.14 ሾ W/mKሿ Slider length 𝐿 0.18288 ሾmሿ 

Dynamic Viscosity 𝜂 0.081 ሾPa  sሿ Ambient temperature 𝑇𝑎 20 ሾ°Cሿ 
Lower Wall Operating Speed 𝑈 31.946 ሾm/sሿ Ambient pressure 𝑃𝑎 1 ሾbarሿ 

The conservative form of the energy equation for the lubrication thin film flow of an 
incompressible fluid writes [1]: 𝜌𝐶 ቈ𝜕(𝑢𝑇)𝜕𝑥 + 𝜕(𝑣𝑇)𝜕𝑦  =  𝜆 𝜕ଶ𝑇𝜕𝑦ଶ + 𝜂 ൬𝜕𝑢𝜕𝑦൰ଶ

 (1) 

It contains the convection transport terms on its left hand side, and the temperature diffusion 
and dissipation terms on its right hand side. The terms on the right hand side are simplified according 
to the lubrication thin film assumption; that is, only derivatives across the thin film are taken into 
account. 

The dimensionless coordinate 𝑦 is introduced to take into account that the film thickness ℎ is 
not constant. 𝑦 = 𝑦തℎ(𝑥) (2) 

Following this coordinate transformation, the energy Equation (1) for the 1D slider becomes: 𝜌𝐶 ቈ𝜕(𝑢𝑇)𝜕𝑥 − 𝑦തℎ 𝑑ℎ𝑑𝑥 𝜕(𝑢𝑇)𝜕𝑦ത + 1ℎ 𝜕(𝑣𝑇)𝜕𝑦ത  = 𝜆 1ℎଶ 𝜕²𝑇𝜕𝑦ത²  + 𝜂 1ℎଶ ൬𝜕𝑢𝜕𝑦ത൰ଶ
 (3) 

The slider is discretized with 2D computational cells as depicted in Figure 2. Following the 
variable change described by Equation (2), the computational domain is rectangular and orthogonal. 
The computational cells have four plane faces, denoted by lower-case letters corresponding to their 
direction (e, w, n, and s) with respect to the central node P. 

 
Figure 2. A typical 2D computational cell and the notation used for a 2D grid. Figure 2. A typical 2D computational cell and the notation used for a 2D grid.

In the natural discretization numerical approach, the energy equation is solved using the finite
volume method [7]. Equation (3) is therefore integrated over the control volumes corresponding to the
2D computational cells:

ρ0Cp
∫ xe

xw

∫ yn
ys

[
∂(uT)

∂x −
y
h

dh
dx

∂(uT)
∂y + 1

h
∂(vT)

∂y

]
dxdy

= λ 1
h2

P

∫ xe
xw

∫ yn
ys

∂2T
∂y2 dxdy + η0

1
h2

P

(
∂u
∂y

)
P

2∆x∆y
(4)

For example, the convection transport terms in the x direction can be expressed as:

∫ xe

xw

∫ yn

ys

∂(uT)
∂x

dxdy = [(uT)e − (uT)w]∆y (5)

An upwind discretization technique is used for the convective transport terms to avoid numerical
instabilities [7]. For example, at the east face of the control volume, the temperature Te is up-winded
based on the fluid flow direction. Mathematically, this can be expressed as:

(uT)e = ue

[
−TP

1− sgn(ue)

2
+ TE

1− sgn(ue)

2
+ TP

]
(6)

This yields the discretization form of Equation (3):

(ae + aw + an+ as)TP − aeTE − awTW − anTN − asTS − aP(TN − TS)

= λ
ρ0Cph2

P
(TN − 2TP + TS)

∆x
∆y + η0

ρ0Cph2
P

(
∂u
∂y

∣∣∣
P

)2
∆x∆y

(7)

where:

ae =
ue[sgn(ue)− 1]

2
∆y; aw =

uw[sgn(uw)− 1]
2

∆y;

an =
vn[sgn(vn)− 1]

2
∆x
hP

; as =
vs[sgn(vs)− 1]

2
∆x
hP

;

aP =
uPyP

2
dh
dx

∣∣∣∣
P

∆x
hP

(8)

As stated in the introduction, the goal of the present work is to investigate the accuracy of the
numerical solution of the energy equation given by the NDM and LPCM methods. Therefore, in order
to avoid the uncertainties introduced by the numerical solution of the Reynolds equation, its analytic
solution for the 1D slider is used.
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Several other simplifying assumptions are needed for decoupling the Reynolds and the energy
equations. Thus, the viscosity is considered constant and the flow regime laminar. Following the
analytical solution, the pressure and the velocity in the 1D slider are [1]:

p(x) =
6η0UL
h1 − h2

(
h−1 − h1h2

h1 + h2
h−2 − 1

h1 + h2

)
(9)

u(x, y) = h2 y(y− 1)
2η0

dp
dx

+ (1− y)U (10)

The velocity v component across the thin film is deduced by integrating the continuity
Equation (11) over the film thickness:

∂u
∂x

+
1
h

∂v
∂y
− y

h
dh
dx

∂u
∂y

= 0 (11)

With the boundary conditions v(x, y = 0) = 0 and v(x, y = 1) = 0, this yields:

v(x, y) = −h
∫ y

0

∂u
∂x

dy +
dh
dx

∫ y

0
y

∂u
∂y

dy (12)

It is to be underlined that in the following approach only the boundary condition at y = 0 is used,
while the second boundary condition at y = 1 is used to check the accuracy of the numerical integration.

The discretized system given by Equation (7) is solved using any numerical procedure for a linear
system with a positive definite matrix. Grids with 80 equidistant cells in the x direction and different
numbers of cells across the film thickness were used. The number of equidistant grid cells across the
film thickness are Ny = 10, 20, 40, 50, 80, 100, and 160. In a first test, the ambient temperature of 20 ◦C
was imposed on the lower and upper walls and at the inlet. The dimensionless wall temperature
gradient was monitored (This is equivalent to monitoring the wall heat fluxes). This dimensionless
wall temperature gradient is defined by:

∂T(x, y)
∂y

=
1
Ta

∂T(x, y)
∂y

(13)

where Ta = 20 ◦C is a reference temperature.
The results are depicted in Figures 3 and 4, and show that the curves become superposed starting

with Ny = 40 cells. An estimation of the accuracy is obtained by using the relative difference of the
wall temperature gradients which is defined in Equation (14):

ε =

√
1
n ∑n

i=1

(
∂TNy(xi ,y)

∂y − ∂Tre f (xi ,y)
∂y

)2

√
1
n ∑n

i=1

(
∂Tre f (xi ,y)

∂y

)2
f or y = 0 or y = 1 (14)

where Tre f is the solution obtained with the finest grid Ny = 160.
The variation of these errors with the number of grid cells across the film thickness is depicted in

Figure 5a, and the computational time is depicted in Figure 5b. A rapid increase in the computational
time with the grid cells must be underlined. For example, the calculation case with Ny = 80 grid
cells required 1.844 s, while the computational time for the case with Ny = 160 cells was one order
of magnitude higher. However, for the purpose of accuracy, the mesh with Ny = 160 was chosen as
the reference solution in the following and its numerical values of the wall temperature gradients are
given in Table A1 in Appendix B.
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3. The Numerical Solution of the Energy Equation Based on the Lobatto Points
Collocation Method

The Lobatto Point Collocation Method (LPCM) is based on the approximation of the temperature
with Legendre polynomials across the film thickness. Because Legendre polynomials are defined on
the interval [−1, 1], the following coordinate transformation is used:

y =
(ζ + 1)h

2
(15)

where ζ is the new dimensionless coordinate across the film thickness.
Following the coordinate transformation, the energy Equation (1) becomes:

ρCp

[
∂(uT)

∂x
− (ζ + 1)

h
dh
dx

∂(uT)
∂ζ

+
2
h

∂(vT)
∂ζ

]
= λ

4
h2

∂T
∂ζ

+ η0
4
h2

(
∂u
∂ζ

)2
(16)

For an incompressible lubricant with constant viscosity, only the variable temperature T is
approximated across the film thickness:

T(x, ζ) =
N

∑
j=0

T̂j(x)Pj(ζ) (17)

where N is the highest order of the Legendre polynomials, Pj(ζ) is the Legendre polynomial of degree
j, and T̂j(x) is the polynomial coefficients of temperature of degree j.

This description holds for every point in the 2D computational domain. Compared to the NDM,
which computes directly the temperature by solving the energy equation discretized over the film
thickness, the LPCM calculates the polynomial coefficients of temperature T̂j. Based on the work
of Mahner et al. [6], the coefficients of the Legendre polynomials expansion can be obtained using
different methods, but it is accepted that the most reliable is the collocation method using the Lobatto
points. The Lobatto points are the roots of the derivative of the Legendre polynomial of the highest
degree (i.e., the roots of dPN/dζ).

For a given position in the x direction, the temperature is replaced by its approximation from
Equation (17) across the fluid film, and the energy Equation (16) is enforced to hold true for each
Lobatto point, ζ j, j ∈ [1, . . . , N − 1]. This leads to N − 1 partial differential equations with the unknown
T̂j. The boundary conditions are applied at the two walls, ζ = −1 and ζ = 1, which leads to the other
two equations. In total, a system of N + 1 equations for the N + 1 unknown T̂j is obtained.

Figures 6 and 7 depict the dimensionless wall temperature gradient obtained with an increasing
degree of the Legendre polynomials. The difference between the NDM solution and the LPCM
solution at the lower wall (Figure 6) in the inlet section is reduced by increasing the degree of the
Legendre polynomial.
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The reference results used for comparison are given by the NDM with Ny = 160 grid cells.
The relative difference between the reference results and the wall temperature gradient obtained with
the LPCM is defined as:

ε =

√
1
n ∑n

i=1

(
2∂TNLobbato

(xi ,ζ)
∂ζ − ∂Tre fNDM

(xi ,y)
dy

)2

√
1
n ∑n

i=1

(
dTre fNDM

(xi ,y)
dy

)2
(18)

where ζ = 1 or ζ = −1 for LPCM, and y = 1 or y = 0 for NDM.
The relative difference is depicted in Figure 8a. This relative difference decreases rapidly with the

increase of the degree of the Legendre polynomial. However, the lower and upper wall results show
different trends. A higher degree of the Legendre polynomial is required to reach a grid independent
solution at the lower wall. This is due to the more predominant thermal effect at the driving wall; that
is, the lower wall.
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The computational effort is depicted in Figure 8b. Compared with the reference solution, the
computational time of the LPCM solution is divided by ten, since only a limited expansion of the
Legendre polynomials is necessary to obtain grid independent results.

For comparison, the temperature fields obtained with the LPCM (N = 12) and the NDM (Ny = 160)
are depicted in Figures A1 and A2 in Appendix A, respectively. The obtained polynomial coefficients
of temperature of degree j, T̂j

(
X
)
, are given in Table A2 in Appendix B. The present analysis indicates

that the LPCM results are more accurate for the same grid density.
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4. Further Comparison of Numerical Results Obtained by NDM and LPCM

The previous results were obtained for a linear converging 1D slider with an inlet/outlet film
thickness ratio h1/h2 = 2, imposed wall temperatures (Dirichlet boundary condition), and completely
decoupled from the Reynolds equation. Other simple cases of the converging 1D slider were also
investigated and bring interesting conclusions.

4.1. Different Geometrical Configurations of the 1D Slider

Two other inlet/outlet film thickness ratios, h1/h2 = 4 and h1/h2 = 8, were investigated while
keeping the same wall temperature boundary conditions and the decoupled Reynolds equation.
The increased inlet/outlet film thickness ratio leads to a slower convergence of the NDM results with
the y grid refinements. The best NDM solution obtained with Ny = 160 was considered as the reference
results, and the number of computational cells in the x direction was kept the same (Nx = 80 cells).

The results obtained for h1/h2 = 4 are depicted in Figures 9–11. Again, the lower and upper wall
results show different trends. The upper wall temperature gradient reaches grid convergence starting
with the Legendre polynomials of 11 degrees, while the resolution of the lower wall gradient needs
N = 16 Legendre polynomials. However, Figure 11b shows that even when using a high number of
Legendre polynomials, the LPCM requires one order of magnitude less computational time than the
NDM for the same accuracy.
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The results obtained for h1/h2 = 8 are depicted in Figures 12–14. The same remarks as for h1/h2 = 4
can be drawn, except for the fact that this time, a higher order of the Legendre polynomials was needed
for the grid convergence solution, and this is related to the increased inlet/outlet film thickness ratio.
Figure 14b shows that the computational time of the NDM with Ny = 160 increases for this calculation
case. It can be seen from Figures 11b and 14b that the computational effort of the NDM increases one
order of magnitude with increasing the ratio h1/h2 from 4 to 8. This was not the case for the LPCM,
which required the same computational time for these two cases, one or two orders of magnitude lower
than the NDM. Therefore, LPCM remains largely superior to NDM in terms of the computational time.

The temperature fields obtained with the LPCM (N = 16) and the NDM (Ny = 160) are depicted in
Figures A3–A6 in Appendix A and its numerical values of the wall temperature gradients are given in
Table A1 in Appendix B.Lubricants 2018, 6, x FOR PEER REVIEW  11 of 22 
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4.2. Different Thermal Boundary Conditions Applied to 1D Slider

The previous cases dealt with imposed wall temperatures, while the wall temperature gradient
was a calculation result. In the following test, the lower wall of the 1D slider was adiabatic; that is,
(∂T/∂y)LowerW = 0 while the temperature of the upper wall is TUpperW = 30 ◦C. The film thickness
ratio is h1/h2 = 4 and the inlet temperature Tinlet = 20 ◦C. For the LPCM, 10 and 14 Lobatto points were
used and the results were compared to the NDM (Nx = 160 cells and Ny = 160 cells, all equidistant).
Figures 15 and 16 show the consistent resolution of the upper wall temperature gradient and of the
lower wall temperature.

Lubricants 2018, 6, x FOR PEER REVIEW  12 of 22 

 

4.2. Different Thermal Boundary Conditions Applied to 1D Slider 

The previous cases dealt with imposed wall temperatures, while the wall temperature gradient 
was a calculation result. In the following test, the lower wall of the 1D slider was adiabatic; that is, (∂𝑇 ∂y⁄ )୭୵ୣ୰ = 0 while the temperature of the upper wall is T୮୮ୣ୰ = 30 °C. The film thickness 
ratio is h1/h2 = 4 and the inlet temperature T୧୬୪ୣ୲ = 20 °C. For the LPCM, 10 and 14 Lobatto points 
were used and the results were compared to the NDM (Nx = 160 cells and Ny = 160 cells, all 
equidistant). Figures 15 and 16 show the consistent resolution of the upper wall temperature gradient 
and of the lower wall temperature.  

 

Figure 15. Dimensionless temperature gradient at the upper wall. 

 

Figure 16. Temperature at the lower wall. 

A different test case consists of imposing different wall temperatures, T୮୮ୣ୰ = 30 °C , T୭୵ୣ୰ = 20 °C, and  T୧୬୪ୣ୲ = 20 °C. The LPCM was performed with 10 and 14 Lobatto points, and 
the previous resolution was used for the NDM. The results are depicted in Figures 17 and 18, and 
show that discrepancies exist between the NDM solution and the LPCM solution at the lower wall 
(Figure 18) in the inlet section. Again, this difference is reduced with the increase of the degree of the 
Legendre polynomials. It is necessary to highlight that the LPCM method approximates the 
temperature gradient at the walls based on the polynomial coefficients of temperature over the film 

Figure 15. Dimensionless temperature gradient at the upper wall.

A different test case consists of imposing different wall temperatures, TUpperW = 30 ◦C, TLowerW =

20 ◦C, and Tinlet = 20 ◦C. The LPCM was performed with 10 and 14 Lobatto points, and the previous
resolution was used for the NDM. The results are depicted in Figures 17 and 18, and show that
discrepancies exist between the NDM solution and the LPCM solution at the lower wall (Figure 18)
in the inlet section. Again, this difference is reduced with the increase of the degree of the Legendre
polynomials. It is necessary to highlight that the LPCM method approximates the temperature gradient
at the walls based on the polynomial coefficients of temperature over the film thickness, while the
NDM method calculates the temperature gradient with finite differences over a limited number
of boundary cells. Thus, the two methods have different approximation orders. In some extreme
configurations, it is necessary to increase the degree of the Legendre polynomial in order to reach the
grid independent solution.
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The temperature fields of these two last cases are depicted in Figures A7–A10 of Appendix A
and its numerical values of the wall temperatures and temperature gradients are given in Table A1
in Appendix B.
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5. Results for the Energy Equation Coupled with the Reynolds Equation

The above presented results showed the grid refinements required for obtaining accurate solutions
of the energy equation when decoupled from the Reynolds equation. In reality, the viscosity of a liquid
lubricant depends strongly on the temperature, and therefore decoupling is very difficult. For this
reason, the data found in the literature always considered the complete thermo-hydrodynamic analysis.

This thermo-hydrodynamic (THD) coupled analysis was subsequently performed for the 1D
slider case. The results of the LPCM were compared with the data from Ref. [3]. Their grid convergence
and the computational time were analyzed by comparisons with NDM results. This step completes the
validation of the decoupled energy equation described in the previous sections.

A temperature dependent viscosity following an exponentially decaying law η(T) =

0.13885e−0.045(T−Tambient) was used to replace the constant viscosity η0. The rest of the geometrical
and physical parameters were the same as in the previous case. The inlet and wall temperatures were
equal to the ambient reference temperature. As for the variations of the temperature across the thin
film, the terms in the generalized Reynolds equation with variable viscosity were also discretized by
Legendre polynomials, and the coefficients were obtained by collocation at the Lobatto points.

As for Ref. [3], the computational domain of the 1D slider was discretized using Nx = 30 equidistant
cells in the main flow direction and 10 Lobatto points across the film thickness. The Reynolds and the
energy equations were numerically solved following a segregated approach.

Figure 19a compares the pressure variation in the 1D slider obtained with the LPCM and the one
given in Ref. [3]. Figure 19b presents the variation of the outlet temperature difference across the film
thickness. Both the pressure and the temperature variations obtained with the LPCM are in agreement
with Ref. [3].
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This 1D non-isothermal slider was also used to compare the efficiency of the LPCM with the NDM.
Several calculations were performed with the NDM method in order to check the grid convergence
and for obtaining results that could serve as a reference. These tests used seven grid refined in the
y direction (Ny = 10, 20, 40, 60, 80, 100, and 120 equally spaced control volumes), while a constant
number of 30 control volumes was used in the x direction. The relative difference εK in terms of wall
temperature gradients between two successive grids is defined as:

εK =

√
1
n ∑n

i=1

(
∂TK(y)

∂y − ∂TK+1(y)
∂y

)2

√
1
n ∑n

i=1

(
∂TK+1(y)

∂y

)2
(19)
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where the subscript K indicates the grid refinement level in the y direction.
Figure 20a shows that a minimum number of 40 cells in the y direction is necessary to reach a

satisfactory grid-independent solution. The computational time is depicted in Figure 20b. The solution
obtained by the NDM with 120 equally spaced cells over the film thickness is considered as the
reference for the 1D thermo-hydrodynamic slider test case.Lubricants 2018, 6, x FOR PEER REVIEW  15 of 22 
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The LPCM results obtained with different numbers of Lobatto points were compared with the
reference NDM solution. In Figure 21a, the relative difference drops rapidly and remains below 1%,
starting with 13 Lobatto points. Figure 21b shows that the computational time for the LPCM does not
exceed 2 s, while the reference method takes about 54 s.
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6. Example of a Two-Lobe Journal Bearing

The coupled Reynolds and energy equations represent a solver for thermo-hydrodynamic
problems in lubricated journal and thrust bearings. However, pure validations are more difficult
in the context of lubricated bearings because of the additional effects, such as the film rupture and
reformation (cavitation), which must be modeled and dealt with Ref. [8,9].

Not the least, several user-defined heat transfer parameters must be specified, and this is
mainly done on a trial and error basis. The uncertainties in this kind of problem may therefore
be quite important, and comparisons with experimental data are not exactly validations of the
numerical approaches.
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For the completeness of the present work, the numerical analysis of a real journal bearing is
presented in the following. The recent experimental results published by Giraudeau et al. [10] in
2016 for a two-lobe journal bearing with axial supply grooves were used for comparing numerical
predictions with experimental results. The length of the tested bearing was 68.4 mm and its diameter
was 100 mm. The radial assembly clearance was 68 µm, while the radial bearing clearance was 143 µm.
The bearing was lubricated by an ISO VG 46 oil supplied at a constant pressure of 0.17 MPa and a
temperature of 43 ◦C. The following oil characteristics were used for the calculations: ρ = 850 kg/m3,
Cp = 2000 J/(kgK), and λ = 0.13 W/(mK). The viscosity of the oil was 0.0416 Pa·s at 40 ◦C and
0.0191 Pa·s at 60 ◦C. The variation is described by an exponentially decaying law. The angular speed
was 3500 rpm and the static load was 6 kN. Only the results for the lower loaded lobe are shown here.
Cavitation was dealt with by using the algorithm introduced in Ref. [11]. This algorithm uses a free
boundary formulation of the incompressible Reynolds equation. The problem was then solved with an
efficient solver based on the Fischer–Burmeister form, Newton algorithm, and Shur’s complement.

The shaft was considered to have a constant temperature estimated from experiments, while
adiabatic wall conditions were imposed on the bushing. The computational domain was discretized
using 32 × 16 cells in circumferential and axial directions, while 11 Lobatto points were used to
describe the temperature variation across the fluid film.

Figure 22a,b depicts the pressure and the temperature variations in the circumferential direction
of the bearing mid plane. The predicted pressures show good agreement with the measurements,
while the predicted temperatures show a reasonable agreement. The quality of the prediction could be
improved by including the thermal deformation of the bushing and refining the boundary conditions
for the energy equation.

Lubricants 2018, 6, x FOR PEER REVIEW  16 of 22 

 

μm. The bearing was lubricated by an ISO VG 46 oil supplied at a constant pressure of 0.17 MPa and 
a temperature of 43 °C. The following oil characteristics were used for the calculations: 𝜌 =850 kg/mଷ, 𝐶 = 2000 J/(kgK), and 𝜆 = 0.13 W/(mK). The viscosity of the oil was 0.0416 Pa ∙ s at  40 °C and 0.0191 Pa ∙ s at 60 °C. The variation is described by an exponentially decaying law. The 
angular speed was 3500 rpm and the static load was 6 kN. Only the results for the lower loaded lobe 
are shown here. Cavitation was dealt with by using the algorithm introduced in Ref. [11]. This 
algorithm uses a free boundary formulation of the incompressible Reynolds equation. The problem 
was then solved with an efficient solver based on the Fischer–Burmeister form, Newton algorithm, 
and Shur’s complement. 

The shaft was considered to have a constant temperature estimated from experiments, while 
adiabatic wall conditions were imposed on the bushing. The computational domain was discretized 
using 32 ൈ 16 cells in circumferential and axial directions, while 11 Lobatto points were used to 
describe the temperature variation across the fluid film. 

Figure 22a,b depicts the pressure and the temperature variations in the circumferential direction 
of the bearing mid plane. The predicted pressures show good agreement with the measurements, 
while the predicted temperatures show a reasonable agreement. The quality of the prediction could 
be improved by including the thermal deformation of the bushing and refining the boundary 
conditions for the energy equation. 

 
(a) 

 
(b) 

Figure 22. (a) Comparison of measured pressures and current numerical results in the mid plane of 
the loaded lobe (3500 rpm, 6 kN load), and (b) comparisons of measured temperatures and current 
numerical results in the mid plane of the loaded lobe. 

7. Conclusions 

The present work focused on the numerical solution of the energy equation in very simple test 
cases as part of thin fluid films lubrication. The work was motivated by the fact that the complete 
energy equation has no analytical solution that can be used for comparisons in validations. Therefore, 
an energy equation decoupled from the Reynolds equation in the case of a 1D slider was imagined, 
for which the analytical solution of the velocity field was used. The reference values used in all cases 
presented are detailed in Appendix B. The second concern was an efficient solver for the energy 
equation. Two numerical methods were compared: The NDM based on a finite volume discretization, 
and the LPCM based on a Legendre polynomial approximation of the temperature across the film 
thickness. The LPCM proved to be one or two orders of magnitude more efficient than the NDM in 
terms of computation time. This is not negligible if one takes into account that when coupled, the 
Reynolds and the energy equations are numerically solved in a segregated and iterative manner. The 
thermo-hydrodynamic calculation of a 1D slider (i.e., for coupled Reynolds and energy equations) 
confirms this conclusion. 

Comparisons of the LPCM thermo-hydrodynamic analyses with the experimental results 
obtained in a two lobe journal bearing were also presented. However, they are not considered as real 
validations of the numerical model, since very simple and intuitive boundary conditions of the 

Figure 22. (a) Comparison of measured pressures and current numerical results in the mid plane of
the loaded lobe (3500 rpm, 6 kN load), and (b) comparisons of measured temperatures and current
numerical results in the mid plane of the loaded lobe.

7. Conclusions

The present work focused on the numerical solution of the energy equation in very simple test
cases as part of thin fluid films lubrication. The work was motivated by the fact that the complete
energy equation has no analytical solution that can be used for comparisons in validations. Therefore,
an energy equation decoupled from the Reynolds equation in the case of a 1D slider was imagined,
for which the analytical solution of the velocity field was used. The reference values used in all cases
presented are detailed in Appendix B. The second concern was an efficient solver for the energy
equation. Two numerical methods were compared: The NDM based on a finite volume discretization,
and the LPCM based on a Legendre polynomial approximation of the temperature across the film
thickness. The LPCM proved to be one or two orders of magnitude more efficient than the NDM
in terms of computation time. This is not negligible if one takes into account that when coupled,
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the Reynolds and the energy equations are numerically solved in a segregated and iterative manner.
The thermo-hydrodynamic calculation of a 1D slider (i.e., for coupled Reynolds and energy equations)
confirms this conclusion.

Comparisons of the LPCM thermo-hydrodynamic analyses with the experimental results obtained
in a two lobe journal bearing were also presented. However, they are not considered as real validations
of the numerical model, since very simple and intuitive boundary conditions of the energy equation
were used. Alternatively, the results presented for the 1D slider may be used for validating the first
development steps of any solver based on the energy equation for thin film flows.
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Case 3: h1/h2 = 8, TUpperW = 20 ◦C, TLowerW = 20 ◦C, Tinlet = 20 ◦C, Toutlet = 20 ◦C.
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Case 4: h1/h2 = 4, TUpperW = 30 ◦C, (∂T/∂y)LowerW = 0, Tinlet = 20 ◦C, Toutlet = 20 ◦C.
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Case 5: h1/h2 = 4, TUpperW = 30 ◦C, TLowerW = 20 ◦C, Tinlet = 20 ◦C, Toutlet = 20 ◦C.Lubricants 2018, 6, x FOR PEER REVIEW  20 of 22 
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Appendix B. Reference Values

Table A1. Result of the all cases obtained by the best NDM mesh.

X [-] 0.00625 0.11900 0.24400 0.36900 0.49400 0.61900 0.74400 0.86900 0.99400

Case 1
dT/dy_LowerW 1.55718 5.21441 6.77197 7.44975 7.53430 7.14248 6.36616 5.34304 4.35192
dT/dy_UpperW −0.13495 −0.96439 −1.92252 −3.09524 −4.61156 −6.64528 −9.46179 −13.49330 −19.48457

Case 2
dT/dy_LowerW 1.43830 5.35156 7.30481 8.42416 8.87026 8.57660 7.37678 5.21935 3.57358
dT/dy_UpperW −2.46419 −2.34816 −2.24448 −2.22769 −2.42486 −3.13238 −5.03152 −10.04817 −24.05486

Case 3
dT/dy_LowerW 0.830646 3.894458 5.609075 6.852488 7.746559 8.195229 7.845554 5.840858 3.052226
dT/dy_UpperW −5.17655 −4.86225 −4.47603 −4.02043 −3.49895 −2.97106 −2.75667 −4.76198 −25.4916

Case 4
T_LowerW [◦C] 20.276 22.293 24.839 27.649 30.669 33.738 36.470 38.132 38.967
dT/dy_UpperW −0.41141 −0.33314 −0.28279 −0.32754 −0.59665 −1.37867 −3.38145 −8.58824 −23.9895

Case 5
dT/dy_LowerW 0.938225 5.39037 7.32993 8.39752 8.86711 8.55326 7.32938 5.15078 3.62624
dT/dy_UpperW −0.42745 −0.34021 −0.28590 −0.32154 −0.59344 −1.36122 −3.32850 −8.46418 −23.39503

Table A2. Coefficients of Legendre polynomials T̂j
(
X
)

describing temperature variations for Case 1, N = 12.

jth Degree
X [-]

0.00625 0.11900 0.24400 0.36900 0.49400 0.61900 0.74400 0.86900 0.99400

1 20.39 23.98 27.32 30.51 33.61 36.64 39.70 42.97 46.43
2 −0.09 −1.09 −1.70 −1.73 −1.04 0.54 3.24 7.36 12.66
3 −0.16 −2.41 −5.04 −7.85 −10.74 −13.60 −16.28 −18.67 −20.42
4 −0.07 −0.07 0.28 0.43 0.09 −1.00 −3.10 −6.52 −11.08
5 −0.10 −0.99 −1.76 −2.35 −2.77 −3.14 −3.62 −4.55 −6.18
6 0.03 0.78 1.18 1.20 0.93 0.47 −0.14 −0.90 −1.72
7 −0.04 −0.37 −0.43 −0.30 −0.11 0.06 0.17 0.20 0.12
8 0.06 0.32 0.24 0.12 0.03 0.00 0.00 0.05 0.12
9 −0.04 −0.19 −0.10 −0.02 0.02 0.03 0.03 0.04 0.05

10 0.04 0.07 0.01 −0.01 −0.01 −0.01 0.00 0.00 0.01
11 −0.04 −0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00
12 0.03 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00
13 −0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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