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Abstract: The production of vanadium and niobium carbides (VC and NbC) layers on AISI 8620,
8640, and 52100 steels may increase hardness and wear resistance of substrates. Thermochemical
treatments were performed at 1000 ◦C for 2 and 4 h. The characterization of the treated samples was
carried out by means of Knoop microhardness tests, “calotest” type microadhesive wear test, layer
adhesion test according to VDI 3198 standard, and X-ray diffraction. Compact and uniform layers of
VC and NbC were obtained in all treatments, with hardness up to 2500 HK and microadhesive wear
resistance far superior to that of the substrates, indicating the great efficiency of these treatments for
tribological applications.
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1. Introduction

The developments in the metal mechanical industry have been focused on the improvement of wear
and corrosion resistance, while maintaining ductility and tenacity [1]. Production of surface coatings is
a good solution for these purposes, significantly increasing service life, reducing operational costs,
and avoiding probable failures of engineering components. Transition metals carbides, like niobium
carbide (NbC) and vanadium carbide (VC), have a unique combination of physical properties, such as
high hardness, high melting point, and high thermal conductivity, that are desirable for many
technological applications [2,3]. These materials were successfully applied as coatings in metallic
substrates using physical vapor deposition (PVD), chemical vapor deposition (CVD), and thermal
spray methods with satisfactory results [4–6]. A technique called thermo-reactive deposition (TRD)
is attracting attention, because of its advantages over other processes: it does not need complex
equipment, costs less than the processes already mentioned, and the coatings provided by this method
present good adhesion to substrate [1,7,8].

There are three ways to carry out the TRD process: (1) fluidized bed method, which utilizes a
fluidizing gas with activators and carbide forming elements (CFE) powders at high speed to coat metal
parts in a controlled atmosphere; (2) powder pack method, in which the parts are placed in a crucible
filled with powders of CFE, activator, and inert filler, and; (3) salt bath immersion method, in which
the parts to be coated are immersed in a salt bath containing CFE [9,10]. The salt bath immersion
method was chosen because it does not need complex equipment such as CVD and PVD methods,
and due to its low cost. This method consists in immerse metal parts in a molten salt bath for 0.5
to 10 h, at temperatures from 800 to 1250 ◦C, depending on the desired layer thickness of the layer.
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The salt used is composed of Borax (Na2B4O7·10H2O) and CFE, which could be in form of pure metal,
ferroalloy, or oxide powders, and, when needed, a reducer, usually aluminum. The material of the bath
reacts with the surface of the substrate, meanwhile, carbon from substrate diffuses from the interior to
the surface. The combination of these elements will form the coating layer [9–12]. Therefore, the steel
substrate will be the source of carbon for chemical combinations with CFE present in the molten salt
bath and consequently the growth rate of the coating will be dependent on the carbon content of the
base material and the alloy elements added to the bath [13,14]. For this reason, a substrate with carbon
content of 0.3 wt.% or higher is required in order to produce carbides coatings.

In recent studies, researchers achieved promising results with this technique on different metallic
substrates, increasing wear resistance comparing with corresponding substrate. Soares et al. [15]
studied the formation of niobium carbide layer on ductile cast iron with salt bath TRD technique.
A regular coating with 31 µm thickness was obtained. The layer had good adhesion to substrate and
increased hardness from 379 ± 40 HV0.5 (substrate) to 2098 ± 115 HV0.5 (layer) and, consequently,
an increase of approximately 15 times in adhesive wear resistance.

Biesuz and Sglavo [16] evaluated vanadium carbide coatings applied on AISI 4140 steel by
salt bath TRD and its formation kinetics. Consistent and adhesive VC layers were produced in all
temperatures and times. VC layers with thickness up to 16 µm were obtained depending on the
treatment parameters. The coating had an outstanding microhardness value of 2451± 236 HV0.2, a clean
and flat interface with the steel, good adhesion, excellent surface finish, low porosity, and absence of
cracks. These characteristics are extremely important for a good wear resistant coating.

Ramírez-Ramos et al. [17] studied the tribological properties of NbC and VC coatings produced
by salt bath TRD on AISI D2 steel. The layers grew uniformly, with flat interfaces, high hardness,
and inferior coefficient of friction (COF) compared to the substrate, improving the steel durability
under high wear applications.

Günen et al. [18] evaluated codeposition of vanadium and chromium on AISI D2 steel using
TRD by pack cementation. Higher treatment temperatures favored formation of vanadium carbides,
of higher hardness when compared to chromium carbides, besides allowing production of smoother
and uniform coatings. The coatings thickness obtained were from 11.3 µm to 23.2 µm. The COF values
of all coated samples were lower than the one for the bare substrate. The average COF values decreased
with increasing treatment temperature and time.

Stahin et al. [19] studied vanadium carbide coating formed utilizing TRD on AISI 52100. The coating
thickness obtained was approximately 4 µm, with a hardness of 35.5 ± 7.5 Gpa. The COF value in dry
conditions was reduced from 0.74 to 0.53 in the coated samples.

Table 1 summarizes the information presented.

Table 1. Summary of information presented in the introduction.

Coating Substrate Thickness
(µm) Hardness Variation CoF Variation Reference

NbC Ductile cast iron 31 4.5 times higher - [15]
VC AISI 4140 16 2.7 times higher - [16]

NbC VC AISI D2 16.3 15.8 2–4 times higher 0.17 substrate COF [17]
(V-Cr-C) AISI D2 11.3–23.2 2.7–3.4 times higher 0.95–0.47 substrate COF [18]

VC AISI 52100 4 - 0.72 substrate COF [19]

Fewer authors evaluated TRD coatings on AISI 8620 and 8640 steels that are widely used in the
manufacture of gears, crankshafts, pistons, and bearings, activities that the components are subject
to constant relative contacts during service, resulting in surface wear. Thus, in order to evaluate the
improvement of the tribological properties, vanadium and niobium carbide layers were produced on
AISI 8620, 8640, and 52100 steels and characterized in terms of their morphology, phase composition
and tribological behavior.
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2. Materials and Methods

Samples of the AISI 8620, 8640, and 52100 steels with dimensions of 25 × 20 × 5 mm were used in
this work. The chemical compositions were determined with an Oxford Foundry-Master Pro optical
emission spectrometer. The samples were ground with a SiC abrasive paper up to 600# grade. The AISI
8620 samples were pack carburized for 3 h at 900 ◦C and air cooled to increase the surface carbon
content, allowing greater efficiency of TRD treatment. All steels were treated by thermo-reactive
deposition at 1000 ◦C for 2 and 4 h in a molten salt bath composed of borax (81 wt.%), aluminum
(3 wt.%) and ferrovanadium or ferroniobium (16 wt.%), followed by air cooling.

The layers were initially characterized in an optical microscope (Carl Zeiss Axiotech 100HD,
Thornwood, NY, USA) to verify the formation and thickness of surface layers. X-ray diffraction
analyses were performed in a X-ray unit (Rigaku Rotaflex model RU 200 B, Akishima, Japan) with
normal scanning from 3 to 100 degrees, step width of ∆θ = 0.2 degrees per second, Cu anode rotational
with wavelength of 1.5418 Å, speed of 2 degrees per minute, and 40 kV of voltage and 60 mA of current.
The datasheets provided by the XRD equipment were analyzed using the Inorganic Crystal Structure
Database (ICSD) datasheets. Energy dispersion X-ray spectroscopy (EDS) analyses were carried out on
a Bruker EDS system coupled on a scanning electron microscope (Phillips XL-30 FEG, Peabody, MA,
USA) with operation voltage of 25 keV.

Knoop microhardness measurements (HK0.2) were carried out in perpendicular direction
(10 indentations) to the layers surface to evaluate the average hardness and in the cross section
(6 indentations) of the layers to evaluate the profile hardness (HK0.05). These measurements were made
according to the scheme of Figure 1a, in order to evaluate the variation of hardness from the surface
towards the substrate, the indentations were performed with a spacing of 5 µm between them in the
region of the layer. All microhardness measurements were determined using a microhardness testing
machine (Micromet 2100 Series Microhardness Testers, Buehler, Lake Bluff, IL, USA). Furthermore,
in order to determine the wear resistance of produced layers, a fixed sphere microadhesive wear test
“Calotest” type was used, as shown in Figure 1b.

In these tests were used tempered AISI 52100 steel spheres with 25.4 mm diameter and 60 HRC,
submitted to a loading of 4 N, rotating at 400 rpm for 5, 10, 20, and 40 min, corresponding respectively
to sliding distances of 160, 320, 640, and 1280 m. The volume of removed material (V) was calculated
according to Equation (1), where d is the diameter of the caps measured by optical microscope and R
corresponds to the radius of the sphere [13,14,20].

V =
π·d4

64·R
, for d� R (1)

The adhesion of the layers was determined by Rockwell C hardness test according to VDI
standard 3198. According to this norm, there are four indentations maps, namely HF1 to HF4, which
indicates great adhesion between layer and substrate. The indentations maps HF5 and HF6, which are
characterized by occurrence of delamination or flakes in the failure area, are not acceptable results,
indicating poor adherence [21–23].
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Figure 1. Schematic representation of the (a) profile hardness in the cross section of the sample and 
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Ni 0.43 0.42 0.03 
Cr 0.43 0.46 0.42 
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Figure 1. Schematic representation of the (a) profile hardness in the cross section of the sample and (b)
microadhesive wear of the calotest type.

3. Results

3.1. Metallography Analysis

The chemical compositions of the steels used were determined before the treatments by optical
emission spectrometer and are presented in Table 2.

Table 2. Chemical compositions of steels.

Element (wt.%) AISI 8620 AISI 8640 AISI 52100

C 0.24 0.45 0.85
Mn 0.85 0.78 0.32
Ni 0.43 0.42 0.03
Cr 0.43 0.46 0.42
Si 0.32 0.21 0.05

Mo 0.16 0.15 -
P 0.03 0.02 0.01
S 0.038 0.013 0.001

Fe Balance Balance Balance
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In Figure 2 is presented the optical micrographs of VC layers produced at 1000 ◦C for 2 and 4 h.
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layer was produced on the AISI 8640, due to their relative low carbon content as in the case of vanadium 
layers produced on the same substrate. 

Figure 2. Optical micrographs of vanadium carbide (VC) layers produced on AISI 8620 (a,d), 8640 (b,e)
and 52100 (c,f) steels at 1000 ◦C for 2 h (a–c) and 4 h (d–f).

In all substrates, compact carbides layers with a well-defined substrate interface were observed as
indicated by the literature for this type of thermochemical treatment [1–3]. The thickness of the layers
produced on AISI 8640 steel was inferior, due to its lower carbon content with relation to AISI 8620 and
52100, since AISI 8620 steel was carburized and its surface carbon content increased to approximately
0.8 wt.%. Matijević [24] explained that the absence of substantial interdiffusion is probably the reason
for formation of the distinct and flat interface without transition zone, which is, in the layer/substrate
interface, occurred a sharp decrease of V and carbon with increase of Fe atoms, indicating that there
was not interdiffusion of V and Fe atoms.

The Figure 3 shows the optical micrographs of NbC layers formed on all steels for 2 and 4 h
of treatment.
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Figure 3. Optical micrographs of niobium carbide (NbC) layers produced on AISI 8620 (a,d), 8640 (b,e)
and 52100 (c,f) steels at 1000 ◦C for 2 h (a–c) and 4 h (d–f).

As observed in VC layers, thickness of NbC layer increased with treatment time and the thinner
layer was produced on the AISI 8640, due to their relative low carbon content as in the case of vanadium
layers produced on the same substrate.
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In all cases, a thin and flat carbide layer was formed on the substrates, which agrees with results
reported by Fan et al. [25], who produced vanadium carbide layers by TRD in molten salt bath
containing borax, V2O5, and Al powder. The authors explained that the formation of flat interface
should be attributed to the low solubility products of vanadium carbide in austenite at treating
temperature. Furthermore, at first, a thin carbide layer is formed and diffusion of CFE into substrate is
suppressed, then the carbide coatings grow outwards due to reaction between CFE and carbon atoms
supplied by the substrate [25]. In other words, there will be no transition zone and thus a distinct
and flat interface would form due the outward growth of carbide layer [25]. Therefore, is clear that
temperature is the most important parameter to control aiming the increase of the layer thickness
layer, but treatment time is also a great option for this purpose. Soltani et al. [7] evaluated niobium
carbide coatings produced on AISI L2 steel by TRD and observed that the thickness of coating increases
according to time as a function of a parabolic law on the basis of classical kinetic theory as in the
Equation (2) [7,25]:

X2
layer = K·t (2)

where, Xlayer is the thickness of layer (cm), K is the parabolic growth rate constant related with the
diffusion coefficient of the carbon carbide coating (cm2/s). Then, the parabolic nature of the growth
is due to the linear dependency of thickness on time. Assuming that, the diffusion of carbon in the
carbide coating is the dominant factor affecting the coating layer thickness [7,25].

The thickness (µm) of the produced layers on all treated steels are shown in Table 3.

Table 3. Thickness of layers produced by thermo-reactive deposition (TRD) for all treatments time.

Treatment
Time

AISI 8620
(VC)

AISI 8620
(NbC)

AISI 8640
(VC)

AISI 8640
(NbC)

AISI 52100
(VC)

AISI 52100
(NbC)

2 h 8.57 µm 8.28 µm 4.29 µm 4.14 µm 8.6 µm 8.31 µm
4 h 15.30 µm 15.17 µm 8.89 µm 8.25 µm 14.86 µm 14.79 µm

It can be observed that the increase of treatment time produced thicker layers for the same
temperature. It suggests that the time is also important parameter to control the layer growth.
Fan et al. [25] studied formation of vanadium carbide layers on an AISI H13 steel for 1 and 6 h at
920 ◦C and 1000 ◦C. They observed that the dominant factor affecting the coating mechanism is the
diffusion of carbon in the vanadium carbide, which is in agreement with the classical kinetic theory.
Besides that, the growth kinetics of vanadium carbide layers on several steel substrates are significantly
different from each other on at the same treating temperature, which suggests that the characteristics
of substrates is other important factor to thickness layer, as well as temperature and treatment time.

Furthermore, the type of TRD process is another important factor. Considering that fact, the salt
bath processes showed excellent efficiency, practically doubling the layer thickness when compared to
others processes, as pack method. From this result, authors observed that the CFE content did not
affect strongly the carbide layers produced. [25]

The substrates treated for 4 h showed thicker layers, therefore, those were the samples selected to
proceed with the XRD, EDS, microhardness and microadhesive wear tests.

3.2. X-ray Diffraction and EDS Analysis

The diffractograms of the layers produced on all the substrates in the bath with ferrovanadium
and ferroniobium addition are presented in Figure 4.
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Figure 4. X-ray diffraction of vanadium carbide (VC) and niobium carbide (NbC) layers formed on
AISI 8620, 8640, and 52100 steels treated for 4 h. Dashed lines represent the position of VC and NbC
references, respectively.

From these diffractograms, it was possible to verify the formation of VC phase (Pessal and
Yashima, 1968; ICSD code 619057), typical in the TRD treatments, and also the formation of V8C7

(De Novion et al., 1966; ICSD code 43259) and probably V4C3 (Ghaneya and Carlson, 1985; ICSD code
619052) compounds, as observed by Strahin et al. [16]. Such complex crystalline structures are formed
due to the fact that the vanadium carbide is a non-stoichiometric transition metal carbide [24,26].
The occurrence of more than one phase is possibly due of some closely small peaks to each peak line
in high diffraction angle region which is induced by the heterogeneity of C/V ratio in the layer [25].
In addition, diffraction peaks occurred at incidence angles of approximately 37◦, 43◦, 63◦, 75◦, 80◦,
and 95◦ (2θ) for the crystallography planes (111), (200), (220), (311), (222), and (400), respectively.

In the case of niobium carbides, diffractograms confirm the formation of a single phase of NbC
(Rudy et al., 1963; ICSD code 108170) on all substrates and the diffraction peaks occurred at incidence
angles of approximately 34◦, 40◦, 58◦, 69◦, 73◦, 87◦, and 97◦ (2θ) for the crystallography planes (111),
(200), (220), (311), (222), (400), and (331), respectively. For both VC and NbC, these results are also
similar to those found in the literature for this type of treatment and CFE used [27–30].

The EDS analysis was used to verify the vanadium and niobium distribution from the specimen
surface as showed in Figure 5. It can be observed that the vanadium and niobium contents are high
at the surface and decrease in abrupt form when the substrate is reached. Furthermore, the results
indicate no chemical contamination from the molten bath, for this purpose was applied a high beam
energy (25 keV) to determine any contamination of other heavy metals that could form other carbides.
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Figure 5. EDS depth profiles of (a) vanadium carbide and (b) niobium carbide layers produced on AISI
8620, 8640, and 52100 steels for 4 h.

3.3. Microhardness and Wear Tests

Average hardness measurements of vanadium and niobium carbide layers produced on all
substrates for 4 h of treatment were performed. It is important to note that the average hardness
and wear resistance of the substrates were evaluated in the samples after the layers were removed.
The reason for this is that the same treatment conditions must be preserved for the coated and uncoated
substrate, respectively, for comparison purposes. Hardness values achieved approximately 2448 ± 60
HK0.2 for materials coated with vanadium carbide, which is 7 times higher than the average hardness
of the substrates (350 ± 5 HK0.2). In the case of niobium carbides layers, the hardness values reached
2394 ± 34 and 360 ± 8 HK0.2, respectively to material coated and uncoated, that is 6.6 times high than
the average of the substrates. These results are in accordance with the ones presented by others authors,
in which the layers achieved average hardness in the range of 2175–22,270 HK and 2180–2512 HK,
respectively to vanadium and niobium carbide layers [27–29].

The hardness profiles of the VC and NbC layers are shown in Figure 6.
The hardness of VC and NbC layers was higher at surface and decreased as the distance towards the

substrate increase. There was an abrupt microhardness decrease in the region near the coating-substrate
interface. The values become constant when the substrate is reached due to carbon diffusion from the
substrate to the surface, which cause depletion of carbon in the substrate near the carbide layer [31].

In all TRD treatments was possible to observe three similar behaviors: (I) measurements of
microhardness are approximately equal in the layer; (II) the microhardness decreases into interface
and (III) there is an abrupt drop in the region near the layer-substrate interface, due to the reduction in
C content by diffusion of this element from the substrate towards the surface.
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The microadhesive wear test results are shown in Figure 7 for VC and NbC layers produced.
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produced for 4 h.

An increase up to 15 times in the microadhesive wear resistance of all VC layers in relation to
the substrates was observed. The volume of removed material of VC layers in all substrates was
approximately the same, indicating the coating high wear resistance independently of the substrate.
The NbC layers presented wear performance up to 15 times higher than the substrates. The regions
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inside the caps formed in wear test on the VC and NbC layers, and their respectively substrates for a
sliding distance of 1280 m are presented in Figure 8.
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Figure 8. Optical micrographs of wear regions inside the caps produced on vanadium carbide (VC)
(a–c) layers and uncoated substrates (d) AISI 8620, (e) 8640, and (f) 52100 treated for 4 h.

The wear mechanism in each sample could be determined. Thus, three-body abrasive wear in the
caps of Figure 8a,b and an adhesive wear region, with larger regions of layer transfer in Figure 8b were
detected. Besides, Figure 8c showed two-body abrasive wear and small spots of adhesive wear. Images
of the caps formed on uncoated substrates are presented in Figure 8c–e for comparison purposes.
In the case of samples coated with niobium carbide and their respectively uncoated substrates, caps are
showed in Figure 9. The cap Figure 9a, the mechanisms observed were two-body abrasive wear and
also adhesive wear with transfer and detachment of material during the relative sliding between
the carbide layers and the sphere [32]. The two-body abrasive mechanism also occurred in sample
Figure 9b,c showed regions of grooves.

Lubricants 2019, 7, 63 10 of 13 

 

inside the caps formed in wear test on the VC and NbC layers, and their respectively substrates for a 
sliding distance of 1280 m are presented in Figure 8. 

 
Figure 8. Optical micrographs of wear regions inside the caps produced on vanadium carbide (VC) 
(a–c) layers and uncoated substrates (d) AISI 8620, (e) 8640, and (f) 52100 treated for 4 h. 

The wear mechanism in each sample could be determined. Thus, three-body abrasive wear in 
the caps of Figure 8 a,b and an adhesive wear region, with larger regions of layer transfer in Figure 
8b were detected. Besides, Figure 8c showed two-body abrasive wear and small spots of adhesive 
wear. Images of the caps formed on uncoated substrates are presented in Figure 8c–e for comparison 
purposes. In the case of samples coated with niobium carbide and their respectively uncoated 
substrates, caps are showed in Figure 9. The cap Figure 9a, the mechanisms observed were two-body 
abrasive wear and also adhesive wear with transfer and detachment of material during the relative 
sliding between the carbide layers and the sphere [32]. The two-body abrasive mechanism also 
occurred in sample Figure 9-b,c showed regions of grooves. 

 
Figure 9. Optical micrographs of wear regions inside the caps produced on niobium carbide (NbC) 
(a–c) layers and uncoated substrates (d) AISI 8620, (e) 8640, and (f) 52100 treated for 4 h. 

3.4. VDI 3198 Standard Adhesion Test 
The layers adhesion in the substrates was evaluated according VDI 3198 standard and the results 

are presented in Figure 10. 

Figure 9. Optical micrographs of wear regions inside the caps produced on niobium carbide (NbC)
(a–c) layers and uncoated substrates (d) AISI 8620, (e) 8640, and (f) 52100 treated for 4 h.

3.4. VDI 3198 Standard Adhesion Test

The layers adhesion in the substrates was evaluated according VDI 3198 standard and the results
are presented in Figure 10.
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Figure 10. Vanadium carbide (a–c) and niobium carbide (d–f) coating adhesion on the substrates AISI
8620, 8640, and 52100 treated for 4 h.

All the layers presented excellent adhesion on the respective substrates, without occurrence of
large areas of delamination, characterizing acceptable failure patterns according to the VDI standard.
Furthermore, regions of indentations are in accordance to the four indentation maps (HF1–HF4),
indicating great adhesion between layer and substrate. In this case, no delamination or flakes failures
areas at the perimeter of indentations craters were observed [21].

4. Conclusions

Uniform vanadium and niobium carbides layers were obtained with high hardness and good
adhesion to the respective substrates.

For all treatment conditions, increases in the carbide coating thickness occurred with the increase
of treatment time. All layers presented superior microadhesive wear resistance than the respective
substrates, indicating its great effectiveness.

The formation of carbides layers by TRD is an excellent alternative for protection of engineering
components applied in aggressive wear situations. Besides that, it is a low-cost method, with good
reproducibility and easy application. This, combined with lubricants, can drastically increase the
performance of engineering components.

Author Contributions: Conceptualization, R.M.T., F.E.M. and L.F.D.A.G.; Formal Analysis, P.G.B.D.O.; Funding
Acquisition, L.C.C.; Investigation, R.M.T.; Methodology, R.M.T.; Validation, L.C.C.; Visualization, G.E.T.;
Writing—Original Draft, R.M.T.; Writing—Review & Editing, R.M.T., P.G.B.D.O. and L.C.C.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES)—Finance Code 001.

Acknowledgments: The authors would also like to thank the University of São Paulo (USP) and Laboratory of
Structural Characterization (LCE/DEMa/UFSCar) for the general facilities.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. OrjuelaG, A.; Rincón, R.; Olaya, J.J. Corrosion resistance of niobium carbide coatings produced on AISI 1045
steel via thermo-reactive diffusion deposition. Surf. Coat. Technol. 2014, 259, 667–675. [CrossRef]

2. Cuppari, M.G.D.V.; Santos, S.F. Physical Properties of the NbC Carbide. Metals 2016, 6, 250. [CrossRef]

http://dx.doi.org/10.1016/j.surfcoat.2014.10.012
http://dx.doi.org/10.3390/met6100250


Lubricants 2019, 7, 63 12 of 13

3. Johansson, L.I. Electronic and structural properties of transition-metal carbide and nitride surfaces. Surf. Sci. Rep.
1995, 21, 177–250. [CrossRef]

4. Zhang, K.; Wen, M.; Cheng, G.; Li, X.; Meng, Q.; Lian, J.; Zheng, W. Reactive magnetron sputtering deposition
and characterization of niobium carbide films. Vacuum 2014, 99, 233–241. [CrossRef]

5. Aguzzoli, C.; Figueroa, C.; De Souza, F.; Spinelli, A.; Baumvol, I. Corrosion and nanomechanical properties
of vanadium carbide thin film coatings of tool steel. Surf. Coat. Technol. 2012, 206, 2725–2731. [CrossRef]

6. Wei, Y.; Zhang, D.W.; Wang, J.; Cai, H.Z.; Zhang, X.X.; Chen, L.; Guo, J.M.; Hu, C.Y. Microstructure and
deposition kinetics of Nb prepared by chemical vapor deposition. Mod. Phys. Lett. B 2018, 32, 1–11.
[CrossRef]

7. Soltani, R.; Sohi, M.H.; Ansari, M.; Haghighi, A.; Ghasemi, H.M.; Haftlang, F. Evaluation of niobium carbide
coatings produced on AISI L2 steel via thermo-reactive diffusion technique. Vacuum 2017, 146, 44–51.
[CrossRef]

8. Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C.; de Oliveira, C.K.N.; Neto-Lombardi, A.; Totten, G.E. Pack and
salt bath diffusion treatments on steels. Heat Treat. Prog. 2009, 9, 49–52.

9. Ghadi, A.; Saghafian, H.; Soltanieh, M.; Yang, Z.G. Diffusion mechanism in molten salt baths during the
production of carbide coatings via thermal reactive diffusion. Int. J. Miner. Met. Mater. 2017, 24, 1448–1458.
[CrossRef]

10. Mittemeijer, E.J.; Somers, M.A. Thermochemical Surface Engineering of Steels; Woodhead Publishing: Cambridge,
UK, 2015; Chapter 19; p. 703.

11. Arai, T.; Fujita, H.; Sugimoto, Y.; Ohta, Y. Diffusion carbide layers formed in molten borax systems.
J. Mater. Eng. 1987, 9, 183–189. [CrossRef]

12. Arai, T.; Komatsu, N. Carbide Coating Process by Use of Salt Bath and its Application to Metal Forming Dies.
In Proceedings of the 18th International Machine Tool Design and Research Conference, London, UK, 14
September 1977.

13. Trezona, R.; Hutchings, I. Three-body abrasive wear testing of soft materials. Wear 1999, 233, 209–221.
[CrossRef]

14. Oliveira, C.; Riofano, R.M.; Casteletti, L. Micro-abrasive wear test of niobium carbide layers produced on
AISI H13 and M2 steels. Surf. Coat. Technol. 2006, 200, 5140–5144. [CrossRef]

15. Soares, C.; Mariani, F.E.; Casteletti, L.C.; Lombardi, A.N.; Totten, G.E. Characterization of Niobium Carbide
Layers Produced in Ductile Cast Iron Using Thermo-Reactive Treatments. Mater. Perform. Charact. 2017, 6,
20160093. [CrossRef]

16. Biesuz, M.; Sglavo, V.M. Chromium and vanadium carbide and nitride coatings obtained by TRD techniques
on UNI 42CrMoS4 (AISI 4140) steel. Surf. Coat. Technol. 2016, 286, 319–326. [CrossRef]

17. Antonio, R.R.M.; Jairo, O.F.J.; Jesús, T.A.V. Evaluación tribológica de recubrimientos de nbc y VC sobre acero
AISI D2 producidos por la técnica deposición difusión termo-reactiva. Ing. Investig. Y Tecnol. 2015, 16,
287–294. [CrossRef]

18. Günen, A.; Kurt, B.; Milner, P.; Gök, M.S. Properties and tribological performance of ceramic-base chromium
and vanadium carbide composite coatings. Int. J. Refract. Met. Hard Mater. 2019, 81, 333–344. [CrossRef]

19. Strahin, B.L.; Shreeram, D.D.; Doll, G.L. Properties and Tribological Performance of Vanadium Carbide
Coatings on AISI 52100 Steel Deposited by Thermoreactive Diffusion. JOM 2017, 69, 1160–1164. [CrossRef]

20. Petersen, D.; Link, R.; Rutherford, K.; Hutchings, I. Theory and Application of a Micro-Scale Abrasive Wear
Test. J. Test. Eval. 1997, 25, 250. [CrossRef]

21. Vidakis, N.; Antoniadis, A.; Bilalis, N. The VDI 3198 indentation test evaluation of a reliable qualitative
control for layered compounds. J. Mater. Process. Technol. 2003, 143, 481–485. [CrossRef]

22. Kayali, Y.; Yalçin, Y.; Taktak, S.; Yalcin, Y. Adhesion and wear properties of boro-tempered ductile iron.
Mater. Des. 2011, 32, 4295–4303. [CrossRef]
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