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Abstract: This work examines friction properties of smooth-honed thermal spray (TS) low carbon
steel coatings produced on an Al-9.0% Si alloy using a plasma transferred wire arc (PTWA) method
and an AISI 1010 wire used as feedstock in comparison with the ASM type D grey cast iron (CI)
samples subjected to the same (smooth) honing process. CI samples prepared using a standard
honing process were also tested for comparison. Reciprocating sliding tests were performed using a
Cameron–Plint tribometer against CrN-coated counterfaces within a speed range of 0.06–1.20 m/s
covering the boundary and mixed lubrication conditions. Stribeck curves were constructed to show
the coefficient of friction (COF) variations with the ratio (λ) of lubricant film thickness to composite
surface roughness of TS and CI samples at the mid-stroke position where sliding speeds and surface
roughnesses were measured. Examination of the Stribeck curves showed that the TS coated surfaces
provided lower COF values compared to CI surfaces given the same smooth honing treatment, e.g.,
for λ = 2.7 a COF of 0.029 was observed for TS and 0.035 for CI, whereas conventional honing of
CI provided a COF of 0.047 under the same condition. Metallographic evidence was given for the
surface features and formation of tribolayers on the contact surfaces. The arithmetic mean heights of
the surfaces, Sa measured after the tests remained similar for the smooth-honed TS and CI samples.
The low COF values of the TS samples were discussed in terms of the surface pores generated during
their manufacturing process, and the high oil retention depth ratio (Svk/Sk) of the TS coated surfaces
due to the presence of these pores.

Keywords: thermal spray coating; cast iron; surface roughness; coefficient of friction; boundary and
mixed lubrication; Stribeck curves

1. Introduction

Deposition of low carbon steel coatings on the inner walls of cylinder bores of hypoeutectic Al-Si
engine blocks using thermal spray (TS) processes, including plasma transferred wire arc (PTWA), and
high-velocity oxygen fuel (HVOF) spraying represents an emerging tribological method for vehicle
mass reduction by replacing the conventional role of cast iron (CI) liners [1–3]. The PTWA spraying
process produces a coating structure consisting of thin oxide (FeO) layers surrounding α-Fe splats [4].
The coating structure also incorporates microscopic pores, usually at a small volume fraction of 1–3%
generated during rapid solidification of the splats, and they are generally regarded as metallurgical
defects [5].

The surface roughness of engine cylinder bore surfaces is among the important parameters that
control the lubricated friction and wear properties of internal combustion engines [6]. The surfaces
of engine cylinder bores are honed to a precise surface finish to produce a sliding surface with low
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friction and high oil retention capability [7,8]. The arithmetic mean height (Sa) values of honed surfaces
typically range from 0.12 µm to 1.20 µm, and the cylinder wall surfaces are usually ground to have
continuous grooves with a cross-hatched pattern [9]. The oil retention achieved with a cross-hatch finish
was considered to be beneficial in preventing scuffing under the boundary lubrication condition [10].
Ma et al. [11] found that under the boundary lubrication condition, increasing the roughness of honed
iron liners prolonged the running-in stage of lubricated sliding followed by a steady-state stage
with a higher coefficient of friction (COF). Morawitz et al. [8] studied the frictional responses of CI
liners with standard-honed (Sa = 650 nm) and smooth-honed (Sa = 150 nm) surfaces subjected to
sliding tests with speed changes, and reported that the transition from the mixed lubrication to the
hydrodynamic lubrication regime occurred at a lower sliding speed on the smooth-honed CI liner.
Similar observations were made on low carbon steel surfaces where friction reduction brought about
by a low surface roughness was observed in the mixed lubrication regime, while in the boundary
lubrication and the hydrodynamic lubrication regimes, the friction reduction effect of smooth surface
was marginal [12]. Lou et al. [13] investigated the friction behavior of a rough-honed (Sa = 965 nm)
TS coating, and their results showed that the transition from the boundary lubrication to the mixed
lubrication regime occurred at a lower sliding speed when the roughness of TS coated surfaces was
reduced due to extensive oxidational wear. Johansson et al. [14] studied the lubricated friction behavior
of smooth-honed (Sa = 250 nm) TS coated liner and rough-honed (Sa = 650 nm) CI liner, and their
results also revealed that compared with the rough CI liner surface, the smooth surface of TS coated
liner achieved lower COF values under the boundary lubrication regime. Recently a mirror-like bore
surface finish was applied to the TS coated cylinder bores that contributed to low sliding friction and
reduced exhaust emission [15,16]. It was suggested that the use of TS coated cylinder bores with
mirror-like surface finish could reduce fuel consumption by 2–4% [17]. The pores formed during
production became more apparent after fine surface finish of the cylinder bore surfaces and were
suggested to act as oil reservoirs during lubricated sliding [8,16].

The roles of artificially generated oil reservoirs such as the micro-dimples formed on the steel
surfaces on the lubricated sliding friction behavior have been studied [18–20]. Rosenkranz et al. [18,19]
studied the effect of micro-dimples on the lubricated friction behavior of journal bearings. It was
found that the friction reduction effect due to the presence of micro-dimples was more prominent
under the mixed lubrication regime, and the authors suggested that the generation of additional oil
reservoirs that feed lubricant into the contact area could be beneficial in reducing friction especially at
low sliding speeds. Kovalchenko et al. [20] studied the friction behavior of polished steel samples and
micro-dimpled steel samples prepared by laser surface texturing. The results showed that compared
with the polished steel surfaces, the dimpled steel samples with a similar level of surface roughness
(Sa = 30 nm) exhibited lower COF values under the boundary and mixed lubrication conditions.

As the above review shows the importance of smooth surface finish on reducing friction is well
established. As the TS coatings represent a new generation of cylinder bore coatings for lightweight
Al-Si engine blocks, their frictional properties should be characterized by considering the effects of the
honing process applied to their surfaces. This work aims at studying the variation of COF values of the
smooth-honed TS coatings in comparison to CI liners subjected to the same smooth honing process as
well as those subjected to the rough honing. The Cameron–Plint type of reciprocating lubricated sliding
tests was conducted to measure the COF values at various test speeds, and the results were presented
in the form of Stribeck diagrams in order to delineate the differences in COF values of TS coating and
CI samples in the boundary and mixed lubrication regimes. The friction reduction mechanisms were
studied by examining the evolution of surface roughness of the samples using surface profilometry
and scanning electron microscopy, and the role of the surface pores formed during the manufacturing
process of the low carbon steel TS coatings was considered in interpreting the low COF values of the
smooth-honed TS coatings.
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2. Experimental

2.1. Thermal Spray Steel Coating and Cast Iron Samples: Microstructures and Honing Patterns

The thermal spray (TS) steel coatings were produced using a plasma transferred wire arc (PTWA)
process. Rotating low carbon steel (AISI 1010) wire was used as the feedstock. Coatings with a
thickness of 260 ± 5 µm were deposited on the inner walls of cylinder bores of engine blocks that
were cast from A380 Al alloy (Al-9.0% Si). Prior to coating deposition, the cylinder bore surfaces were
machined in a dovetail pattern to provide mechanical interlocking between the TS coating and the bore
surface, as shown in the backscattered electron (BSE) image of Figure 1a. The cross-sectional BSE image
of the near top surface of the coating is shown in Figure 1b. The α-Fe splats were surrounded by FeO
layers. The oxide volume fraction was 0.16 ± 0.02. A detailed description of the microstructure of TS
coatings is given in Ref [21]. The porosity measured on the polished cross-sections, as the one shown
in Figure 1b, was determined as 2.2 area % using image analyses (Image-Pro Plus) and quantitative
metallography. A cross-sectional secondary electron (SE) image of ASM type D grey cast iron (CI) liner
sample that was studied for comparison is shown in Figure 1c. Graphite flakes and MnS dispersoids,
used as inoculants to enhance the nucleation of graphite [22], are observed in a pearlitic matrix showing
a typical lamellar structure. The hardness values of TS coating and CI were measured on the polished
cross-sections (Sa = 45 ± 5 nm) using a Vickers hardness tester (Buehler Micromet II) under an applied
load of 0.49 N. TS coating had a hardness value of 370 ± 50 HV averaged from nine measurements
compared with that of 235 ± 60 HV for the CI. A detailed study of mechanical properties and fracture
mechanics of this type of TS steel coatings carried out using nano- and micro-indentation methods is
presented in Ref [23].
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Figure 1. (a) Backscattered electron (BSE) image of the cross-section of thermal spray (TS) steel coated
bore sample showing the dovetail shape interlocks between the TS coating and the A380 bore along the
longitudinal direction of engine cylinders. (b) Cross-sectional BSE image of TS coating sample, and
(c) cross-sectional secondary electron (SE) image of grey cast iron (CI) sample.

Honing patterns were generated on both TS coating and CI liner surfaces using cubic boron
nitride (CBN) honing tools. Two types of honing processes, each resulting in a different roughness level
were employed namely, the standard (rough) honing, and the smooth honing. Test samples subjected
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to the smooth honing are designated as smooth TS coating and smooth CI, while the CI liner that
was subjected to the standard honing is designated as rough CI. Representative SE images of surface
morphologies of smooth TS coating, smooth CI, and rough CI samples are shown in Figure 2a–c. All
honed surfaces had crosshatched patterns that exhibited grooves extending in two directions with an
angle of ~60◦ between them. The depth of grooves on the smooth TS coating and smooth CI surfaces
varied in a range of 0.3–0.9 µm compared with 0.8–2.3 µm for the rough CI surfaces. The pores within
the TS coating’s microstructure and on its surface are indicated in Figures 1b and 2a.
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Figure 2. Representative SE images showing the honed surface morphologies of (a) smooth TS coating
sample, (b) smooth CI sample and (c) rough CI sample. (d) Bearing ratio curves based on initial surface
roughness parameters for the samples tested.

The surface roughness parameters of the samples were measured from the 3D surface profiles
taken using an optical profilometer (Wyko NT-1100) operated under the white light vertical-scanning
interferometry (VSI) mode. The bearing ratio curves, known as the cumulative height distribution
of sample surfaces, are shown in Figure 2d. The Sa values that were obtained by averaging nine
measurements from areas similar to those shown in Figure 2a–c are listed in Table 1. The core-roughness
depth (Sk), the reduced peak height (Spk), the reduced valley depth (Svk), and the material ratios (Smr1

and Smr2) as defined by ISO 25178 [24] are also listed in Table 1. It is worth noting that compared with
the smooth CI (Svk = 283.7 ± 46.6 nm), the TS coating exhibited a higher Svk value (Svk = 613.9 ± 122.3
nm), although the same honing process was used on both samples. The higher value of Svk on TS
coating surfaces was attributed to the presence of pores generated during the deposition process. To
determine whether the pore size changed during sliding, the mean diameter of surface open pores was
measured using surface profilometry and image analyses before and after the lubricated sliding tests.
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Table 1. Surface roughness parameters of smooth thermal spray (TS) coating, smooth CI, and rough
CI samples measured from 3D surface profiles. The average surface roughness (Sa) is the arithmetic
mean of the absolute of the ordinate (height) values within a defined surface area; the core-roughness
depth (Sk) is the distance between the highest and the lowest level of the core surface; the reduced peak
height (Spk) is the average height of the protruding peaks above the core surface; the reduced valley
depth (Svk) is the average depth of the protruding valleys below the core surface; the material ratios
(Smr1 and Smr2) are the ratios of the areas of the material at the intersection line which separates the
protruding peaks/valleys from the core surface to the evaluation area as defined in [24].

Sa (nm) Sk (nm) Spk (nm) Svk (nm) Smr1 (%) Smr2 (%)

Smooth TS coating 210.4 ± 6.5 572.3 ± 22.1 498.0 ± 51.4 613.9 ± 122.3 17.6 ± 1.2 93.2 ± 0.3
Smooth CI 199.0 ± 8.6 567.5 ± 34.5 396.7 ± 7.5 283.7 ± 46.6 14.1 ± 1.0 90.7 ± 1.0
Rough CI 536.2 ± 21.0 1640.2 ± 48.5 846.3 ± 65.7 782.6 ± 129.5 11.6 ± 1.2 90.1 ± 0.4

2.2. Tribological Tests

Sliding friction tests were conducted on smooth TS coating, smooth CI, and rough CI samples
using a Cameron–Plint (TE 77) reciprocating tribometer at a constant load of 100 N corresponding to a
contact pressure of 8.3 MPa. In selecting the applied load, the peak pressure experienced by the top
compression ring (TCR) of a gasoline engine, which is typically around 10 MPa [25] was considered. A
stroke length of 20 mm was used in the sliding tests conducted at 25 ◦C using a commercial engine oil
SAE 5W30. The reciprocating frequency was reduced from 20 Hz to 0.5 Hz and produced mid-stroke
sliding speeds varying from 1.20 m/s to 0.06 m/s. The method used for conducting sliding friction
tests is described in Figure 3. A total of nine speed steps constituted a complete set of friction test
where each speed step had a duration of 1200 s. 200 µL oil was applied to the surfaces of the samples
prior to each test, and the same quantity of oil was added to the surfaces at the beginning of each
constant speed step of the friction test. The oil temperature was continuously recorded using a K
type thermocouple during the sliding friction tests, and the increase in oil temperature was found
to be less than 2 ◦C. The purpose of stepwise decreasing the test speed was to gradually reduce the
oil film thickness and accordingly the surface roughness of the bore/liner samples at the mid-stroke
position as will be described in Section 3.2. The results were presented by plotting the mid-stroke
COF as a function of the sliding speed. The lubrication regimes were demarcated by calculating the
ratio (λ) of the minimum film thickness to the composite surface roughness of contact surfaces as
indicated in Ref [13], and by plotting the COF variations for TS coating and CI samples against λ.
The mid-stroke sliding speed was used for the estimation of oil film thickness, while the test samples’
surface roughness measured at the mid-stroke position after each test step was used for the calculation
of composite surface roughness.

The counterfaces used were segments cut from an industry-standard CrN coated top compression
ring, TCR, with an outer diameter of 74.0 mm and a thickness of 1.2 mm. The TCR segment with a
cord length of about 10 mm and was put in contact with the test sample, as shown in the inset of
Figure 3. Prior to the sliding tests, the counterface was clamped to the ring holder, while the test
sample was fixed in the sample holder placed inside the lubricant reservoir using the two pin-holes
shown in Figure 3. The ring holder was electrically isolated from the drive shaft and the sample holder
on the Cameron-Plint tribometer and allowed a potential of about 50 mV to be applied across the
contact using the Lunn–Furey electrical contact resistance circuit [26]. The instantaneous variation of
the electrical contact potential between the sample and the counterface was recorded. The increase of
contact potential was as an indicator of the formation of a sliding-induced non-conductive film (oil
and oxide) on the contact surfaces [27]. The COF data was concurrently recorded at a frequency of
2000 Hz during the tests.
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Figure 3. Sliding friction test method used for smooth TS coating sample, smooth CI sample, and
rough CI sample sliding against counterfaces made of CrN-coated top compression ring (TCR) segment
with the reciprocating frequency decreasing stepwise from 20 Hz to 0.5 Hz. The tests were conducted
at 100 N using SAE 5W30. The inset shows the typical morphology of the wear track that was formed
on the test samples placed to the Cameron–Plint tribometer during the friction tests where A is the test
sample (smooth TS coating, smooth CI, rough CI), and B is the counterface. The wear track dimensions
were approximately 20 mm in length and 10 mm in width.

To characterize the wear behavior of TS coating and CI samples at different sliding speeds, sliding
wear tests were conducted at three (mid-stroke) sliding speeds, namely at 1.20 m/s, 0.45 m/s and 0.06
m/s. The reciprocating frequencies were maintained at 20 Hz, 7.5 Hz and 0.5 Hz respectively to realize
the designated speeds. The total test duration at each sliding speed was 3600 s, and the tests were
briefly interrupted after every 1200 s to conduct wear measurements using the profilometry technique
as described in Ref [28]. The volumetric wear loss at each sliding time was determined from the
average of nine measurements taken at the mid-stroke region (10.0 mm × 1.2 mm) of the wear track.
The wear coefficients (K) of TS coating and CI samples at different sliding speeds were calculated
according to the Archard’s wear law [29]:

K = HW/L (1)

where W is the volume worn per unit sliding distance, L is the normal load, and H is the hardness.
The worn surface morphologies and the tribolayers that were formed on the contact surface

during sliding were studied using a FEI Quanta 200 FEG SEM (Thermo Fisher Scientific, Hillsboro, OR,
USA) equipped with an energy-dispersive X-ray EDAX (SiLi Detector) spectrometer operated at an
acceleration voltage of 15 kV.

3. Results and Discussion

3.1. Friction Behavior of Thermal Spray Steel Coatings in Comparison with Cast Iron Liners

Typical variations of friction force as well as contact potential obtained at the reciprocating
frequencies of 20 Hz, 7.5 Hz, and 0.5 Hz are shown in Figure 4a–f for two consecutive reciprocating
cycles. The curves showing the ring displacement with the sliding time are included in each figure. One
useful aspect of plotting the position of the counterface in these figures is to indicate the friction force
and contact potential that corresponded to the mid-stroke position and the reversal positions at each
cycle. By calculating the first derivatives of the displacement curves, the instantaneous sliding velocities
were obtained. Accordingly, a mid-stroke speed of 1.20 m/s in Figure 4a,b (20 Hz), a mid-stroke speed
of 0.45 m/s in Figure 4c,d (7.5 Hz), and a mid-stroke speed of 0.06 m/s in Figure 4e,f (0.5 Hz) were
determined. The mid-stroke friction forces recorded during the sliding of the smooth TS coating
sample were 2.3 N at 20 Hz (Figure 4a) and 4.4 N at 7.5 Hz (Figure 4c), which were lower than those
of the smooth CI sample. In addition, the friction forces of rough CI sample were 4.7 N at 20 Hz
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(Figure 4a) and 7.9 N at 7.5 Hz (Figure 4c), which were higher compared with the smooth CI sample
(and the smooth TS coating sample) tested at the same loading conditions. However, at a frequency of
0.5 Hz (Figure 4e), the mid-stroke friction force of rough CI sample was 10.8 N, similar to the values
observed for the smooth CI (9.9 N) and the smooth TS coating (10.0 N) samples.
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reciprocating frequencies of (a,b) 20 Hz, (c,d) 7.5 Hz and (e,f) 0.5 Hz for smooth TS coating sample,
smooth CI sample and rough CI sample against CrN-coated TCR at 100 N using SAE 5W30.

As the maximum sliding speed was reached at the mid-stroke position, a high contact potential of
~50 mV was observed, implying the possibility of formation of a thicker oil film at this position. Lower
contact potentials of ~10 mV were observed at the reversal positions suggesting a breakdown of the oil
film (Figure 4b,d). At the test step of 0.5 Hz, low contact potentials around 10 mV were observed at a
constant level (Figure 4f), which would suggest formation of a thinner oil film compared to the tests at
7.5 Hz and 20 Hz (Figure 4b,d).
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The variation of COF values calculated at the mid-stroke from the friction force data such as the
ones shown in Figure 4a,c,e are shown in Figure 5 as a function of the instantaneous sliding speed at
this location. The diagram indicates that the smooth-honed surfaces provided lower COF values in the
entire range of sliding speed investigated. For the smooth TS coating sample, a COF value of 0.100 was
obtained at a sliding speed of 0.06 m/s and a COF value of 0.023 at 1.20 m/s; whereas for the rough CI
sample, a COF value of 0.108 at 0.06 m/s and a COF value of 0.047 at 1.20 m/s were obtained. More
importantly, compared with the smooth CI sample, TS coating samples exhibited lower COF values at
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TS coating sample, smooth CI sample, and rough CI sample sliding against CrN-coated TCR at 100 N
using SAE 5W30.

Another pertinent way of discussing the friction behavior of tested samples can be achieved
by constructing Stribeck-type friction curves (Figure 6). The λ ratio would increase as a result of
the increase of sliding speed and sometimes due to the sliding wear induced reduction of surface
roughness. The Stribeck curves were constructed using the mid-stroke COF values plotted against
the λ ratio calculated at the end of each test step again from the data obtained at the mid-stroke
position. The different lubrication regimes can be demarcated with λ < 1 representing a boundary
lubrication condition, 1 < λ < 3 indicating a mixed lubrication condition, and λ > 3 corresponding to
an elastohydrodynamic lubrication (EHL) condition as shown in Figure 6. Examination of the Stribeck
curves established for smooth TS coating, smooth CI and rough CI samples sliding against CrN-coated
counterfaces shows that compared with rough CI sample, the smooth CI surfaces reduced the COF by
20–40% in the mixed lubrication regime and by 5–10% in the boundary lubrication regime. The smooth
TS coatings, on the other hand, exhibited a reduction in COF by 10–20% in the mixed lubrication
regime compared to the smooth CI sample. It is also noted that higher λ ratios were attained on
the smooth-honed samples compared with the rough-honed samples at the same sliding speed. For
example, a λ ratio of 3.2 for a smooth TS coating sample and a λ ratio of 3.3 for a smooth CI sample
were obtained at a sliding speed of 1.20 m/s compared to a λ ratio of 2.7 for the rough CI sample.
Thus, a transition from the mixed lubrication regime to the EHL regime occurred at a lower sliding
speed on the smooth-honed surfaces. The friction reduction mechanisms will be further discussed by
considering the surface properties of TS coating samples in Section 3.2.
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3.2. Surface Roughness Evolution on Thermal Spray Steel Coatings and Cast Iron Liners

The 3D profilometry images showing the surface morphologies of samples prior to and after the
completion of friction tests (at the reciprocating frequency of 0.5 Hz) are shown in Figure 7a–f. The
TS coating sample, which initially had an average roughness (Sa) value of 210.4 ± 6.5 nm (Figure 7a),
exhibited a decreased Sa value of 114.0 ± 18.8 nm (Figure 7d) after the friction test. The average depth
of pores on the TS coating surface was measured as 3.2 ± 1.6 µm prior to the sliding test, and 3.5 ±
2.0 µm after the sliding test. Also, the mean diameter of these pores was measured as 7.4 ± 4.7 µm
before the test, and 8.4 ± 6.0 µm after the test. The Sa of the smooth CI sample decreased from 199.0
± 8.6 nm (Figure 7b) to 102.8 ± 5.9 nm (Figure 7e), and no surface pores were observed as expected.
Sliding wear that occurred on the sample surfaces reduced the peak height of honing patterns, and
accordingly, the surface roughness was reduced. The rough CI sample experienced a higher degree of
wear compared with the smooth CI sample and the smooth TS coating sample, but the wear was still
limited to the peaks of honing patterns. The Sa of the rough CI sample decreased from 536.2 ± 21.0 nm
(Figure 7c) to 181.0 ± 31.1 nm (Figure 7f).
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The wear coefficients of samples were determined at three specific sliding speeds as described in
Section 2.2, and are listed in Table 2. Compared with a smooth CI sample, a smooth TS coating sample
exhibited lower wear coefficients and accordingly higher wear resistance, especially at 0.06 m/s. Thus,
a more gradual reduction in Sa could be expected for the smooth TS coating sample during the test steps
corresponding to the boundary lubrication regime. Rough surfaces revealed higher wear coefficients
at 1.20 m/s and 0.45 m/s, which would suggest a greater extent of asperity contact under the mixed
lubrication regime. Consequently, a sharper decline in surface roughness could be experienced on the
rough CI surfaces as the height difference between peaks and valleys was reduced as a result of sliding
wear. The wear debris generated could affect the friction and wear behavior. However, the loading
conditions applied to cylinder liner/bore material tribo-couples (including the rough CI sample) were
selected such that sliding wear was operated under the ultra-mild wear conditions [28,30,31], which
can be evident from the low wear coefficients listed in Table 2. As such, the effect of wear debris on
lubricated sliding friction was negligible.

Table 2. Wear coefficients of smooth TS coating sample, smooth CI sample and rough CI sample sliding
against CrN-coated TCR at the specific mid-stroke speeds of 1.20 m/s, 0.45 m/s and 0.06 m/s at 100 N
and for a total test duration of 3600 s using SAE 5W30.

1.20 m/s 0.45 m/s 0.06 m/s

Smooth TS coating 9.04 × 10−9 2.42 × 10−8 2.98 × 10−7

Smooth CI 1.04 × 10−8 3.10 × 10−8 5.29 × 10−7

Rough CI 2.21 × 10−8 5.65 × 10−8 5.69 × 10−7

The change in the surface roughness on the test samples during stepwise friction tests is shown
in Figure 8 by plotting Sa values against the mid-stroke sliding speed at each step of the test. For
all the samples tested a sharp reduction in Sa was observed during the initial step (at a mid-stroke
speed of 1.20 m/s) of the friction tests, then a plateau was reached at the intermediate test steps. The
constant Sa region corresponded to a speed range between 0.90 m/s and 0.32 m/s. Another drop in
Sa was noted after the mid-stroke speed decreased to 0.17 m/s, and this was due to the transition
from the mixed lubrication to the boundary lubrication regime (Figure 6). It should be mentioned
that the rough CI sample maintained the high Sa values throughout the entire friction tests, while the
Sa levels of smooth CI and smooth TS coating samples were similar. Compared with the smooth CI
sample, a higher degree of asperity contact, which was indicated by the higher surface roughness, was
experienced on the rough CI sample surface during lubricated sliding under the mixed lubrication
regime and contributed to those high COF values observed under this regime. Under the boundary
lubrication regime, however, the breakdown of lubricating oil film, as suggested by the low levels of
contact potential, led to extensive asperity contact on both the smooth and the rough CI samples; thus,
the differences in COF values between these two samples shrunk.

The secondary electron, SE, SEM image showing the morphology of the mid-stroke region of the
wear track generated on the smooth TS coating sample as well as the corresponding energy-dispersive
X-ray spectroscopy (EDS) analyses obtained from two specific locations after the sliding friction tests
are shown in Figure 9a,b. The peaks of honing patterns on the TS coating sample were plastically
deformed and flattened during the sliding contact with the counterface piston ring. It is also observed
that tribolayers were formed, but these were not continuous, and they were in the form of isolated
pockets dispersed within the contact areas. These tribolayers can also be referred to as oil residue
layers (ORL) since they were generated as a result of sliding-induced decomposition of oil molecules
(and zinc dialkyldithiophosphate, ZDDP) [32]. The elemental composition of ORL was revealed by the
identification of the peaks that belonged to Zn, P, S and Ca in the EDS spectrum (Site A in Figure 9b),
compared with the chemical compositions of the area where tribolayer was not formed that exhibited
only Fe and O peaks (Site B in Figure 9b). The presence of P and S might suggest the incorporation of
sulfide and phosphate particles in the ORL [13]. The SE images of the worn surfaces of smooth CI
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and rough CI samples after friction tests are shown in Figure 9c,d. Discontinuous tribolayers were
also generated on both CI samples and had compositions similar to the ones formed on the TS coating
sample. In summary, examination of the worn surfaces of all the test samples revealed tribolayers
with similar morphology and composition. The low friction behavior of the TS coating sample will be
further discussed by considering the effect of surface pores.
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Figure 9. (a) SE image taken at the mid-stroke position of the wear track formed on smooth TS coating
sample after stepwise friction test with (b) corresponding energy-dispersive X-ray spectroscopy (EDS)
analyses conducted at Sites A and B in (a). SE images were taken at the mid-stroke position of the wear
tracks formed on (c) smooth CI sample, and (d) rough CI sample after stepwise friction tests. SD is
short for sliding direction, and ORL is short for oil residue layer.

An important factor that should be taken into account in interpreting the variations in friction
properties would be the oil retention capability of bore/liner surfaces. For the lubricated surfaces
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consisting of peaks and valleys with different depths, the volume of oil (Voil) retained in the valleys
could be estimated using the following equation [33]:

Voil = [(100 − Smr2) × Svk]/200 (2)

where Smr2 is the material ratio, and Svk is the reduced valley depth, which indicates the depth
of the area in which fluid applied to the surface accumulates. Voil has the same units as Svk and
designates the retained oil volume per unit surface area. Based on this relationship between Svk and
Voil, a dimensionless parameter, Svk/Sk, could be developed to indicate the oil retention capability of a
surface [34]. This parameter is referred to as the oil retention depth ratio. The oil retention depth ratios
(Svk/Sk) of different contact surfaces were measured at the mid-stroke position at each sliding speed
step of the friction tests. The relationship between Svk/Sk and sliding speed is shown in Figure 10. It
can be observed that for all the samples tested, an increase in Svk/Sk was recorded during the initial
sliding, followed by the stabilization of Svk/Sk as the tests progressed. The high value of Svk/Sk on
the rough CI sample was expected as deeper honing grooves on this sample could retain a larger
volume of oil [35]. However, the friction reduction effect induced by the high oil retention capability
of rough CI surfaces was concealed by the high degree of asperity contact. It is also interesting to
note that the TS coating sample exhibited higher oil retention capability compared to the smooth
CI sample (with comparable Sa level) after the sliding tests. One possible interpretation is that the
surface pores observed on TS coatings would increase the Svk. Consequently, it could be suggested
that the pores, which are essentially considered as manufacturing defects, would act as additional oil
reservoirs during lubricated sliding. This enhanced oil retention capability could potentially be an
important factor for achieving a reduced COF of TS coated surfaces operating especially under the
mixed lubrication regime [18–20].
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depth) measured at mid-stroke position plotted against the mid-stroke sliding speed for smooth TS
coating sample, smooth CI sample and rough CI sample sliding against CrN-coated TCR at 100 N using
SAE 5W30. The measurements were conducted at the end of each speed step.

4. Summary and Conclusions

The friction properties of TS coating samples were studied in comparison with CI liner samples
honed to the same level of surface roughness by plotting Stribeck curves that depicted the COF
variations with the λ ratio of lubricant film thickness to composite surface roughness at the mid-stroke
position of the samples where sliding speeds and surface roughnesses were measured.

Examination of Stribeck curves has shown that the smooth CI surface (Sa = 199.0± 8.6 nm) reduced
the COF by 20–40% in the mixed lubrication regime and by 5–10% in the boundary lubrication regime
compared with the CI sample subjected to conventional honing resulting in a rougher surface (Sa =

536.2 ± 21.0 nm). The use of smooth TS coatings (Sa = 210.4 ± 6.5 nm) brought about a further friction
reduction of 10–20% in the mixed lubrication regime compared with the smooth CI sample.
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The oil retention depth ratio (Svk/Sk) of the TS coating surface was about 65% higher than that
measured for the smooth CI surface. The open pores on the TS coating surface would enhance its oil
retention capability during lubricated sliding, and the improved oil retention capability of smooth TS
coating would be responsible for the friction reduction particularly under the mixed lubrication regime.

Thus from the tribological point of view, the pores generated during the thermal spray process,
which are regarded as metallurgical defects as they may negatively influence the mechanical properties
of coatings, can play a beneficial role in improving oil retention capability and reducing lubricated
sliding coefficient of friction.
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