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Abstract: Apart from complex numerical models to predict the tribological behavior of
elastohydrodynamically lubricated contacts, non-dimensional similarity groups and analytically
solvable proximity equations can be used to estimate integral fluid film parameters. Based upon the
pioneering work presented by Dowson and Higginson as well as Blok and Moes, these approaches
have been continuously improved over the years by modifications or correction factors to capture
different contact geometries (line-, point- or elliptical contacts) as well as to include fluid compression,
thermal, non-Newtonian, starvation or roughness effects. Consequently, this review article aims at
systematically reviewing these modifications/corrections and discussing their applicability as well as
limitations before presenting some recommendations for future research activities.

Keywords: elastohydrodynamic lubrication; non-dimensional groups; proximity equations;
minimum film thickness; central film thickness; correction factors

1. Introduction

Power transmission in machine elements or engine components such as rolling bearings, gears or
cam/followers is generally achieved by concentrated rolling and rolling-sliding contacts, in which
the rubbing bodies are locally elastically deformed due to the acting contact forces [1]. For dry
contacts, the involved deformations, pressures and stresses can be approximated by the Hertzian
theory [2]. In the presence of sufficient lubricant, a hydrodynamic pressure is built up and the contacting
surfaces are at least partially separated by a thin fluid film [3,4]. If the local elastic deformation and
the lubricant film thickness are on a similar order of magnitude, this condition is usually referred
to as elastohydrodynamic lubrication (EHL) or, thermo-elastohydrodynamic lubrication (TEHL),
when considering thermal effects as well.

For numerical modeling, Computational Fluid Dynamics (CFD)- or Navier-Stokes-based
approaches are generally associated with high computational effort and numerical instabilities [5].
Therefore, the simulation of EHL contacts is usually done by applying the Reynolds equation [6]
for hydrodynamics and solving the system of equations coupled with elastic deformation. For this
purpose, multigrid and multilevel integration methods based upon finite difference approaches and
iterative (weak) coupling with an elastic half-space theory [7,8] or fully (strong) coupled finite element
approaches [9,10] have been utilized. A schematic representation of an infinite EHL line-contact with
common input variables is illustrated in Figure 1.
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Figure 1. Schematic illustration of an infinite EHL line-contact with the relevant variables for 
numerical calculations. 

In addition to these rather complex and time-consuming simulation programs that allow for the 
investigation of local and time-resolved phenomena, there are also some analytically solvable 
proximity equations for the simplified, integral calculation of important EHL film parameters such 
as the minimum film height hmin or central lubricant gap hc. These equations enable a fast and, in 
many cases, sufficiently accurate approximation as well as the incorporation into superordinate 
multi-body or system simulations for friction calculation or the identification of critical operating 
conditions of aggregates, machines or facilities. Most of these approaches, however, were established 
several decades ago and incrementally enhanced through modifications or correction factors by 
numerous authors based upon novel experimental/theoretical insights as well as advances in 
simulation and measurement technology. Therefore, this contribution aims to systematically present 
the evolution and most recent progress in film thickness estimation approaches, thus helping the 
interested reader to select the most suitable approach in terms of applicability and validity. For that 
purpose, this article follows a logical and chronological order. At first, non-dimensional groups are 
introduced in Section 2, which represent similarity indices for EHL contacts. Based upon that, the 
available proximity equations for the calculation of the minimum and central film thickness in infinite 
2D line-, 3D point- or elliptical contacts are summarized in Section 3. Since these approaches may be 
subject to deviations under certain circumstances, correction factors for fluid compressibility (Section 
4.1), thermal effects (4.2), non-Newtonian fluid behavior (4.3), starvation (4.4) as well as rough 
surfaces and asperity contact (4.5) are subsequently introduced. Finally, the applicability and 
limitations of the film thickness equations are discussed before presenting some recommendations 
for future research activities. 

2. Non-Dimensional Groups 

Based upon early numerical solutions [11], certain similarities were recognized and 
dimensionless groups were introduced to generalize calculations and results [12]. For an infinite 2D 
line-contact as well as a 3D point-contact, using the reduced Young’s modulus E’, the pressure-
viscosity coefficient αp, the base viscosity η0, the effective velocity um, the effective radius R, the 
contact length l and the normal load F, Dowson and Higginson [13,14] defined the material parameter 

G = αp·Eʹ, (1)

the velocity parameter 

U =  
η0 · um

Eʹ·Rx
, (2)

Figure 1. Schematic illustration of an infinite EHL line-contact with the relevant variables for
numerical calculations.

In addition to these rather complex and time-consuming simulation programs that allow for
the investigation of local and time-resolved phenomena, there are also some analytically solvable
proximity equations for the simplified, integral calculation of important EHL film parameters such as
the minimum film height hmin or central lubricant gap hc. These equations enable a fast and, in many
cases, sufficiently accurate approximation as well as the incorporation into superordinate multi-body
or system simulations for friction calculation or the identification of critical operating conditions
of aggregates, machines or facilities. Most of these approaches, however, were established several
decades ago and incrementally enhanced through modifications or correction factors by numerous
authors based upon novel experimental/theoretical insights as well as advances in simulation and
measurement technology. Therefore, this contribution aims to systematically present the evolution and
most recent progress in film thickness estimation approaches, thus helping the interested reader to
select the most suitable approach in terms of applicability and validity. For that purpose, this article
follows a logical and chronological order. At first, non-dimensional groups are introduced in Section 2,
which represent similarity indices for EHL contacts. Based upon that, the available proximity equations
for the calculation of the minimum and central film thickness in infinite 2D line-, 3D point- or elliptical
contacts are summarized in Section 3. Since these approaches may be subject to deviations under
certain circumstances, correction factors for fluid compressibility (Section 4.1), thermal effects (4.2),
non-Newtonian fluid behavior (4.3), starvation (4.4) as well as rough surfaces and asperity contact (4.5)
are subsequently introduced. Finally, the applicability and limitations of the film thickness equations
are discussed before presenting some recommendations for future research activities.

2. Non-Dimensional Groups

Based upon early numerical solutions [11], certain similarities were recognized and dimensionless
groups were introduced to generalize calculations and results [12]. For an infinite 2D line-contact as
well as a 3D point-contact, using the reduced Young’s modulus E’, the pressure-viscosity coefficient
αp, the base viscosity η0, the effective velocity um, the effective radius R, the contact length l and the
normal load F, Dowson and Higginson [13,14] defined the material parameter

G = αp·E′, (1)

the velocity parameter

U =
η0·um

E′·Rx
, (2)
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the load parameter

W2D =
F

l·E′·Rx
, W3D =

F
E′·R2

x
, (3)

as well as the fluid film parameters

Hc =
hc

Rx
, Hmin =

hmin

Rx
(4)

and developed correlations between them (see Section 3). Typical ranges of these EHL parameters are
summarized in Table 1.

Table 1. Typical ranges for the dimensionless parameters in extension to [4,15].

Parameter Typical Range

G 1500–6000
U 10−13–10−8

W 10−6–10−3

Hc 1.5 × 10−5–25 × 10−5

Hmin 10−5–2 × 10−4

Blok and Moes [16,17] showed that the four parameters of Dowson and Higginson can be
unidirectionally transformed (i.e., re-transformation is not possible [1]) into three parameters thus
introducing the modified load parameter

M2D= W2D·(2·U)−
1
2 , M2D= W3D·(2·U)−

3
4 (5)

and the viscosity parameter

L = G·(2·U)
1
4 (6)

in addition to the lubricant film parameter

Hmin = hmin·U−
1
2 . (7)

Another set of dimensionless groups were used by Greenwood [18], which can also be shortened
and expressed in the Dowson & Higginson notation:

g1 =
αp·F

2
3

(η0·um)
1
2 ·Rx

= G·W
3
2 ·U−1, (8)

g2 = αp·

(
F·E′

π·Rx

) 1
2

= 0.4·G·W−1, (9)

H∗ =
h·F

η0·um·Rx
= H·W·U−1. (10)

Later, Johnson [19] proposed parameters for the elasticity

PE =

(
F2

η0·um·l2·Rx

) 1
2

, (11)

the pressure-viscosity-relationship

Pα =

(
α2
·F3

η0·um·l3·R2
x

) 1
2

, (12)
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and the film thickness
H∗ =

hmin·F
η0·um·l·Rx

, (13)

which can be transformed to the Blok/Moes notation. For completeness, it should also be noted that
Habchi et al. [20] suggested the use of the Weissenberg number Γ [21], which characterizes the shear
stress of inlet flow in relation to the Newtonian limit by means of the relaxation time λΓ, the shear rate
.
γ, the shear stress τ and the shear modulus G [22]:

Γ = λΓ·
.
γ =

τ
G
≈
η0·um

hn·G
. (14)

the Nahme-Griffith number [23], which describes the ratio of viscous heating to temperature-dependent
viscosity changes using the temperature T and the thermal conductivity λ:

Na =
−
∂ ln(η0)
∂T ·τ2

·h2

λ·η0
=
−
∂ ln(η0)
∂T ·η0·(u1−u2)

2

λ
, (15)

the limiting-shear-stress number with the limiting τl and unbound shear stress τu as well as the limiting
stress-pressure coefficient λτ:

Li =
τu

τl
=

τu

λτ·p
(16)

and the thermoviscous regime indicator

Ti =
Na·Wi

Li
(17)

to distinguish between different friction regimes. These regimes were the linear (Wi < 1),
non-linear viscous (Wi > 1, Li < 1, Ti < 100), plateau (Li > 2, Ti < 100) and thermoviscous (Ti > 100)
traction regime. It is important to mention that the dimensionless parameters from Dowson/Higginson
and Blok/Moes are the most frequently used in literature [15,24].

3. Film Thickness Equations

3.1. Line-Contacts (2D)

Dowson and Higginson [13,14] proposed an analytically solvable regression equation for the
approximation of the minimum lubricant gap in an infinite 2D line-contact as a function of the
dimensionless material, velocity and load parameters:

Hmin= f (G, U, W) ≈ 1.6·G0.6
·U0.7

·W−0.13
2D . (18)

It can be seen that the load has only a rather small influence, while the material and velocity
parameters, especially the product of velocity and viscosity, strongly affect the film thickness.
This equation has been modified by Moes [16]:

Hmin ≈ 2.53·G0.55
·U0.7

·W−0.125
2D , (19)

whereas the parameters M and L can be utilized due to the transformability:

Hmin= f (M, L) ≈ 1.56·M−0.125
2D ·L0.55. (20)

Consequently, the relation between film height, load and viscosity is illustrated in Figure 2.
The equations for the minimum lubricant gap Hmin were further modified and extended based upon
new insights and/or novel data from EHL simulations. For the 2D line-contact, the approaches
from Dowson [25]:

Hmin ≈ 2.65·G0.54
·U0.7

·W−0.13
2D (21)



Lubricants 2020, 8, 95 5 of 20

as well as Jacobson and Hamrock [26]:

Hmin ≈ 3.07·G0.57
·U0.71

·W−0.11
2D (22)

are prominent examples. An approximation for the central film thickness was introduced by Dowson
and Toyoda [27]:

Hc ≈ 3.06·G0.56
·U0.69

·W−0.1
2D . (23)
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L using Equation (25) as well as the region of Dowson-Higginson [14] and validity limitations in
extension to [1].

It is important to emphasize that the aforementioned approaches represent only approximations
with a limited validity (see blue-shaded area in Figure 2, which shows the domain of the
Dowson-Higginson [14] equation). If the respective validity range does not hold true, e.g., below the
Martin-Gümbel asymptote in Figure 2, lubricant film heights tend to be underestimated. Thus,
Johnson [19] distinguished four regimes depending on the fluid (iso-/piezoviscous) and material
(rigid/elastic) properties [1,15] (Figure 3). Therefore, proximity equations for the isoviscous/rigid (IR)
or Martin-Gümbel regime with hydrodynamic lubrication (small M, L = 0):

H∗IR ≈ 4.09→ Hmin ≈ 2.45·M−1
2D, (24)

the isoviscous/elastic (IE) or Herrebrugh regime with easily deformable contacting bodies (soft EHL;
large M and L = 0):

H∗IE ≈ 3.1·P0.8
E → Hmin ≈ 2.05·M−1

2D, (25)

the piezoviscous/rigid (VR) or Blok regime (small M, large L):

H∗VR ≈ 1.66·P0.667
α → Hmin ≈ 1.05·L

2
3 , (26)

and the piezoviscous/elastic (VE) or Dowson and Higginson regime with hard EHL contacts (large M,
large L):

H∗VE ≈ 2.53·P0.55
E ·P0.55

α → Hmin ≈ 1.56·M−0.125
2D ·L0.55 (27)

were defined [1].



Lubricants 2020, 8, 95 6 of 20Lubricants 2020, 8, x FOR PEER REVIEW 6 of 20 

 

 

Figure 3. Lubrication regimes in an infinite line-contact. Redrawn from [19,28]. 

Furthermore, Myers et al. [28] introduced a transition regime (TR in Figure 3), for which the 
following film thickness equations were proposed: 

Hmin ≈ ቊ 0.383 · PE
 -0.370 · Pα+ 4.465 · PE

0.667 for 1 < PE ≤15
0.853 · PE

 -0.664 · Pα+ 3.410 · PE
0.770 for 15 < PE ≤100

 . (28)

Based upon updated EHL simulations performed by Lubrecht [29] and Venner [30], Moes [31] 
presented a new approximation formula for the entire range of concentrated, lubricated 2D line-
contacts (Figure 2), which utilizes asymptotic values for the lubricant film height: 

Hmin ≈ ቊቂ൫0.99 · M2D
 -0.125 · L0.75 · t൯r

+ ൫2.05 ·M2D
 -0.2൯rቃs

r +൫2.45 ·M2D
 -1 ൯sቋs -1

 , (29)

with 

s = 3 - e-2 · M2D
 -1

 , (30)

r = e1 - 4
L + 5 , (31)

t = 1 - e-3.5 · M2D
 -0.125 · L -0.25

 . (32)

Similar to this concept, Moes [32] suggested the following function fit for the central film height: 

Hc ≈ ቆHc,IR

7
3  + Hc,IE

 - 7
3 ቇ3

7∙s
+ ቆHc,VR

-72  + Hc,VE
 - 7

2 ቇ- 27∙ss-1

, (33)

with  s = 
1
5  · ቆ7 + 8 · e

-2 · 
Hc,IE
Hc,IRቇ (34)

and the asymptotic approximations for the IR, IE, VR and VE regimes: 

Hc,IR ≈ 3 · M -1 , (35)

Hc,IE ≈ 2.62105 · M - 1
5 , (36)

Hc,VR ≈ 1.28666 · L2
3 , (37)
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Furthermore, Myers et al. [28] introduced a transition regime (TR in Figure 3), for which the
following film thickness equations were proposed:

Hmin ≈

{
0383·P−0.370

E ·Pα+4.465·P0.667
E for 1 <PE ≤ 15

0.853·P−0.664
E ·Pα+3.410·P0.770

E for 15 <PE ≤ 100
. (28)

Based upon updated EHL simulations performed by Lubrecht [29] and Venner [30], Moes [31]
presented a new approximation formula for the entire range of concentrated, lubricated 2D line-contacts
(Figure 2), which utilizes asymptotic values for the lubricant film height:

Hmin ≈

{[(
0.99·M−0.125

2D ·L0.75
·t
)r
+

(
2.05·M−0.2

2D

)r] s
r
+

(
2.45·M−1

2D

)s
}s−1

, (29)

with
s = 3− e−2·M−1

2D , (30)

r = e1− 4
L+5 , (31)

t = 1− e−3.5·M−0.125
2D ·L−0.25

. (32)

Similar to this concept, Moes [32] suggested the following function fit for the central film height:

Hc ≈

(H 7
3
c,IR+H

−
7
3

c,IE

) 3
7 ·s

+
(
H
−

7
2

c,VR+H
−

7
2

c,VE

)− 2
7 ·s

s−1

, (33)

with

s =
1
5
·

(
7 + 8·e

−2·
Hc,IE
Hc,IR

)
(34)

and the asymptotic approximations for the IR, IE, VR and VE regimes:

Hc,IR ≈ 3·M−1, (35)

Hc,IE ≈ 2.62105·M−
1
5 , (36)

Hc,VR ≈ 1.28666·L
2
3 , (37)

Hc,VE ≈ 1.31106·M
−

1
8

2D ·L
3
4 . (38)
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3.2. Point- and Elliptical Contacts (3D)

Furthermore, a relation between the non-dimensional groups and the minimum film thickness for
3D point-contacts was suggested by Evans and Snidle [33]:

Hmin ≈ 1.9·M−0.17
3D ·L0.34 (39)

as well as by Hamrock and Dowson [34] for elliptical contacts:

Hmin ≈ 3.63·G0.49
·U0.67

·W−0.073
3D

(
1− e−0.68·k

)
(40)

with the ellipticity parameter

k = 1.03·
(

Ry

Rx

)0.64

. (41)

and a flow velocity along the smaller half-axis. Chittenden et al. [35] extended this approach by varying
flow direction and introduced a term considering the dependence on the ratio of the radii transversal
to and in flow direction of the lubricant:

Hmin ≈ 3.68·G0.49
·U0.68

·W−0.073
3D

1− e−0.67·( Rs
Re )

2
3
, (42)

with:
Rs

Re
=

Ry
Rx
· cos2 ξ+ sin2ξ

cos2 ξ+
Ry
Rx
· sin2 ξ

. (43)

Similar to the concept for 2D line-contacts from Moes [32], respective function fits for a 3D
point-contact are given as:

Hmin ≈

{[(
1.7·M−

1
9 ·L

3
4 ·t

)r
+

(
1.96·M−

1
9

)r] s
r
+

(
47.3·M−2

)s
} t

s

, (44)

with
s = 12− 10·e−M−2

, (45)

r = e1− 6
L+8 , (46)

t = 1− e−0.9·M
1
6 ·L−

1
6 . (47)

For the central film thickness, respective formulas were suggested by Hamrock and Dowson [34]:

Hc ≈ 2.69·G0.53
·U0.67

·W−0.067
3D

(
1− 0.61·e−0.73·k

)
, (48)

Chittenden et al. [35]:

Hc ≈ 4.31·G0.49
·U0.68

·W−0.073
3D

1− e−1.23·( Rs
Re )

2
3
 (49)

as well as Evans and Snidle [33]:
Hc ≈ 1.7·M−0.026

3D ·L0.4. (50)
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Furthermore, Nijenbanning et al. [36] suggested relations (Figure 4) for the central film thickness
of 3D elliptical contacts:

Hc ≈


[
H

3
2
c,IR +

(
H−4

c,IE + H−4
00

)− 3
8

] 2
3 s

+
(
H−8

c,VR + H−8
c,VE

)− s
8


s−1

, (51)

with

s = 1.5·
(
1 + e−1.2·

HIE
HIR

)
, (52)

H00= 1.8·
(

Rx

Ry

)−1

, (53)

Hc,IR ≈ 145·

1 + 0.796·
(

Rx

Ry

) 14
15

−

15
7

·

(
Rx

Ry

)−1

·M−2
3D (54)

Hc,IE ≈ 3.18·

1 + 0.006· ln
(

Rx

Ry

)
+0.63·

(
Rx

Ry

) 4
7

−

14
25

·

(
Rx

Ry

)− 1
15

·M
−

2
15

3D , (55)

Hc,VR ≈ 1.29·
[
1 + 0.691·

(
Rx

Ry

)]− 2
3

·L
2
3 , (56)

Hc,VE ≈ 1.48·

1 + 0.006· ln
(

Rx

Ry

)
+0.63·

(
Rx

Ry

) 4
7

−

7
20

·

(
Rx

Ry

)− 1
24

·M
−

1
12

3D ·L
3
4 . (57)
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Most of these approaches were developed based upon numerical data and give an almost constant
ratio of central and minimum film thickness. However, this ratio may vary between 1 and 3 depending
on M and L. Therefore, Sperka et al. [38] derived from experimental data an equation to predict this
relation dependent on the pressure-viscosity coefficient αp:

Hc

Hmin
= 1 + 0.1·α0.128

p ·M0.38
3D −M

1
2
3D·

α0.2
p · ln(L)−3

22.7


2

. (58)



Lubricants 2020, 8, 95 9 of 20

4. Correction Factors

The described non-dimensional groups and film thickness equations deliver reasonable agreement
with many lubricants as experimentally verified via interferometric film thickness measurements [37,39].
However, deviations can be observed under certain conditions due to fluid compressibility,
thermal effects, shear-thinning, insufficient lubricant supply or surface roughness. All these aspects are
not fully considered in the original numerical solutions, based upon which the equations in Section 3
were derived. These effects can be taken into account using corrections factors φx, which are multiplied
with the film height parameter to obtain the corrected gap height:

Hmin,cor = φx·Hmin, (59)

Hc,cor = φx·Hc, (60)

Since the different correction factors feature specific applicability and limitations, they will be
addressed in more detail hereinafter.

4.1. Fluid Compressibility

In the original numerical solutions [14], the density-pressure-relationship according to Dowson
and Higginson [40] was applied. Yet, the density was not considered as an input variable in the
non-dimensional groups and film thickness equations. Although lubricant compressibility plays no
major role in the minimum film formation, the central film thickness particularly can be influenced
under certain conditions [41]. According to Venner and Bos [42] and later verified by Habchi and
Bair [43], predictions for compressible fluids can be adjusted from the incompressible approximations
with the base density ρ0 using the following correction factor

φcomp =
ρ0

ρ(pH)
, (61)

whereby any model could be utilized for calculating the density for the respective Hertzian
pressure ρ(pH) [44].

4.2. Thermal Effects

The deduction of non-dimensional parameters and film thickness equations was based upon the
isothermal solution of the EHL problem. However, for high speeds and velocity differences of the
rubbing surfaces (slip), local temperatures in the fluid can significantly exceed the mass temperatures
of the contacting bodies due to lubricant compression at the contact inlet and shearing in the contact
center, thus reducing viscosity and, hence, film thickness [45]. To approximate these thermal aspects,
a first theoretical approach to capture the effects coming from inlet compression and shearing was
suggested by Greenwood and Kauzlarich [46]. The proposed correction factor was given as:

φth ≈

[
1− 0.24·

n·η0·u2
m

λ·(T0+Ts)

] 3
4

, (62)

using the constant Ts and exponent n from the Slotte equation [47] to describe the viscosity-temperature
behavior as well as thermal conductivity λ of the given lubricant. However, this correlation tends
to overestimate the influence of temperature at high speeds due to the application of the Crook
approximation [48,49] of the film shape, which only holds true for a rolling speed of a few m/s [46].
Further, Murch and Wilson [50] introduced a thermal stress parameter, which was subsequently
simplified by Jackson [51]:

Q =
η0·u2

m·β

λ
, (63)
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with the viscosity-temperature coefficient β to determine the thermal film thickness reduction:

φth ≈
3.94

3.74 + Q0.66 . (64)

Since the fluid film height is mostly influenced by the viscosity at the contact inlet, thermal effects
due to shearing in the center are less relevant. Therefore, these approaches were designed for pure
rolling conditions. To extend their applicability, Wilson and Sheu [52] introduced a dependence on the
slide-to-roll ratio (see Figure 5):

φth ≈

{
1 + 0.241·

[
1 + 14.8·

(SRR
2

)0.83]
·Q0.64

}−1

, (65)

which corresponds to the Murch and Wilson formulation for pure rolling conditions. These approaches
were further modified by e.g., Pandey and Gosh [53]:

φth ≈

{
1 + 0.133·

[
1 + 5.65·

(SRR
2

)0.96]
·Q0.71

}−1

, (66)

adapted for specific lubricants [54] or modified for a combination with non-Newtonian
fluid behavior [55].
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4.3. Non-Newtonian Fluid Behavior

Similar to thermal effects, shear thinning of the lubricant at high speeds and velocity differences
can also affect the minimum film height and change the film profile in the contact center [56]. Therefore,
Bair [22] suggested a correction factor

φnn ≈

{
1 + 0.79·[(1 + SRR)·Γ]

1
1+0.2·SRR

}3.6·(1−n)1.7

(67)

for a lubricant with Carreau viscosity behavior [57] depending on the Carreau exponent n and the
Weissenberg number. This approach was extended and distinguished for minimum and central
lubrication film height by Khonsari et al. for line-contacts [58]

φnn,min ≈

{
1 + 0.83·[(1 + SRR)·Γ]

1
1+0.24·SRR

}3.4·(1−n)1.6

, (68)
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φnn,c ≈

{
1 + 0.75·[(1 + SRR)·Γ]

1
1+0.22·SRR

}3.1·(1−n)1.6

, (69)

and for point-contacts [59]

φnn,min ≈ (1 + Γ)1.07·(1−n)1.36
, (70)

φnn,c ≈ (1 + Γ)1.16·(1−n)1.23
(71)

respectively, or by Habchi et al. [60]:

φnn,min ≈


(
η∞
η0

)0.893

+

1−(η∞η0

)0.893·(1 + 1.543·Γ)n−1


−1

, (72)

φnn,c ≈


(
η∞
η0

)0.7469

+

1−(η∞η0

)0.7469·(1 + 1.678·Γ)n−1


−1

. (73)

The latter were derived for fluids with Carreau viscosity and two Newtonian plateaus.

4.4. Starvation

Assuming an unlimited oil supply, the EHL pressure build-up can start at any distance from
the contact center. However, a lubricant contact may suffer from starvation due to high speeds,
highly viscous lubricants, or insufficient lubricant supply. The lubricant supply is such that the starting
point of the pressure generation is closer to the contact and the generated film thickness is significantly
smaller compared to the fully flooded case [61]. The latter is reached when the distance between contact
and inlet, the so-called inlet meniscus, ceases to affect the minimum film thickness to any significant
extent. Therefore, Hamrock and Dowson [62] suggested taking the fully flooded-starved boundary:

m∗min ≈ 1 + 3.34·

(Rx

bH

)2

·Hmin

0.56

, (74)

m∗c ≈ 1 + 3.06·

(Rx

bH

)2

·Hc

0.58

(75)

and the inlet location m into account to calculate correction factors for the minimum lubricant gap

φs,min ≈

(m− 1
m∗−1

)0.25
(76)

and the central film thickness:

φs,c ≈

(m− 1
m∗−1

)0.29
. (77)

Instead, Wedeven et al. [63] proposed:

m∗ ≈ 1 + 3.52·

(Rx

bH

)2

·Hc


2
3

(78)

for the fully flooded-starved boundary and Wisniewski [64]

φs,min ≈ 0.6· log(θm)+0.535 (79)
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as a function of the ratio of the fractional film content at the contact inlet

θm =
hliq(m∗)

h(m∗)
(80)

for the correction factor [15].

4.5. Surface Roughness and Asperity Contact

It is well accepted that the surface topography in terms of stochastic, manufacturing-related
deviations from the smooth, ideal flat surface or intentionally produced surface features such as surface
textures has a decisive impact on the film formation in EHL contacts [65–69]. While waviness or
roughness oriented transversely to the direction of motion can have a positive effect on the global
lubricant film height under certain circumstances [70,71], structures oriented in the direction of motion
typically induce negative effects [72,73]. In addition, the consideration of rough surfaces is often
accompanied by locally strongly increased pressures [74–76]. With decreasing lubricant film heights,
simultaneous solid asperity contact and hydrodynamic pressure build-up can occur, thus sharing the
normal load, which is referred to as mixed lubrication [77]. A first approach to considering the influence
of surface topography was introduced by Zhu and Cheng [78] based upon the statistical consideration
of surface asperities in terms micro-hydrodynamics [79] and load sharing [80,81]. Similar to the flow
factor method from Patir and Cheng [82], they derived corresponding correction factors to adjust the
minimum and central film height depending on the orientation of the surface topography and the ratio
of the smooth lubricant gap to the quadratic mean surface roughness (Figure 6). To quantify the spatial
orientation, the so-called Peklenik factor γ can be used as a quotient of the characteristic correlation
lengths of two mutually orthogonal measurement directions [83]. Using deterministic calculations
assuming full film lubrication, Kumar et al. [84] derived a correction factor for 2D line-contacts
depending on the normalized amplitude A of the surface waviness or roughness:

φr ≈ 1− 0.7823·A0.8213= 1− 1.04·

σ·Rx

b2
H

0.8213

. (81)
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in dependence of the Peklenik factor γ and the lubricant film parameter Λ. Redrawn with
permission from [78].

However, it is important to mention that the wavelength was assumed to be constant for the
analysis and only pure rolling conditions were considered, thus neglecting the impact of velocities
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and slip. Using an stochastic approach similar to Zhu and Cheng, Masjedi and Khonsari [85]
developed correction factors for adjusting the minimum film thickness:

φr,min ≈ 1 + 0.141·
(
σ

Rx

)1.073
·V0.149

·W−0.044
·U−0.828

·G−0.954
·κ−0.395 (82)

and central film thickness

φr,c ≈ 1 + 0.025·
(
σ

Rx

)1.248
·V0.119

·W−0.133
·U−0.884

·G−0.977
·κ−0.081. (83)

5. Applicability, Limitations and Future Directions

An overview of the applicability for different contact forms and conditions of the presented film
thickness approximations is displayed in Table 2 and Figure 7.

Table 2. Overview of film thickness equations and correction factors.

Line-Contact Point-Contact Elliptical Contact

minimum
film thickness

Dowson and Higginson [14],
Moes [16], Dowson [25],

Jacobson and Hamrock [26],
Johnson [19],

Myers et al. [28], Moes [31]

Evans and Snidle [33],
Hamrock and Dowson [34],

Chittenden et al. [35],
Hamrock and Dowson [34],

Chittenden et al. [35]

central film
thickness

Dowson and Toyoda [27],
Moes [32]

Evans and Snidle [33],
Hamrock and Dowson [34],

Chittenden et al. [35],
Moes [32],

Nijenbanning et al. [36]

Hamrock and Dowson [34],
Chittenden et al. [35],

Nijenbanning et al. [36]

correction factor for

fluid compressibility Canzi et al. [44] Canzi et al. [44] Canzi et al. [44]

thermal effects

Greenwood and Kauzlarich [46],
Murch and Wilson [50],

Jackson [51],
Wilson and Sheu [52],
Pandey and Gosh [53]

non-Newtonian
fluid behavior

Bair [22],
Jang et al. [58]

Kumar et al. [59],
Habchi et al. [60]

starvation Hamrock and Dowson [62]
Wisniewski [64]

surface roughness
and asperity contact Kumar et al. [84] Zhu and Cheng [78],

Masjedi and Khonsari [85] Masjedi and Khonsari [85]
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While comparisons of the approaches for 2D line-contacts are practically not possible, this possibility 
exists for point contacts. The experimental studies from Chaomleffel et al. [37] using interferometric 
film thickness measurements demonstrated reasonable agreement for the central film thickness even 
when using lubricants with shear thinning characteristics and applying the equations outside their 
stated ranges. However, the minimum film thickness outside the proposed domain of the equations 
was greatly influenced and could not be predicted for all conditions. In this context, the usage of 
other rheological models, e.g., from Eyring [87] or Lee-Hamrock [88], seems reasonable (see Section 

Figure 7. Qualitative comparison of the load and viscosity parameter range on which various
elastohydrodynamic lubrication (EHL) film thickness equations were established for 3D point- and
elliptical contacts redrawn from [86] and extended by 2D line-contacts.

As can be seen in Table 2 and Figure 7, there are many approaches for film thickness equations,
ranging from the infinite line-contact to point- or elliptical contacts. Yet, these equations were
originally derived from different numerical data and, therefore, have individual ranges of validity.
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While comparisons of the approaches for 2D line-contacts are practically not possible, this possibility
exists for point contacts. The experimental studies from Chaomleffel et al. [37] using interferometric
film thickness measurements demonstrated reasonable agreement for the central film thickness even
when using lubricants with shear thinning characteristics and applying the equations outside their
stated ranges. However, the minimum film thickness outside the proposed domain of the equations
was greatly influenced and could not be predicted for all conditions. In this context, the usage of other
rheological models, e.g., from Eyring [87] or Lee-Hamrock [88], seems reasonable (see Section 4.5).
Wheeler et al. [86] came to similar conclusions regarding the accuracy of the equations when predicting
the central film height and comparing these values with numerical predictions. They also reported on
some shortcomings for heavily loaded contacts with slow entrainment and recommended the use of
the Chittenden formulation [35] for the central film height and the Nijenbanning model [36] for the
minimum lubricant gap.

When analyzing the film thickness equations in detail, it becomes evident that they only apply for
stationary load cases. However, real operating conditions of machine elements or engine components
are never completely stationary, and time dependencies are usually present or even dominant. For the
extreme scenario of pure impact EHL, Wang et al. [89]

Hc,min ≈ 2.3·M0.2
2D·L

0.55 (84)

as well as Venner et al. [90]

Hc,min ≈ 0.73·M
1
6
3D·L

0.55 (85)

suggested equations for the minimum central film thickness in a piezoviscous line- and point-contact,
respectively, which show similarities to the classical EHL contact. Nevertheless, there is still more
potential for future enhancement and extension of the film thickness equations towards transient effects.
In this regard, the influence of surface properties and topographies can be also seen, which becomes
even more important in the context of start-stop-operations, low viscosity lubricants, as well as
the trend to operate under mixed lubrication [91]. This applies for manufacturing-related surface
roughnesses and designed surface textures or even thin coatings [10,92]. Even though they can
already be deterministically modelled by advanced numerical approaches across different scales [93],
apart from [78,84,85], surface properties have not yet found their way into analytically solvable film
thickness equations. This could be done based upon the development of further correction factors
and/or by using the existing non-dimensional groups. In addition, modern machine learning (ML)
or artificial intelligence (AI) algorithms, such as artificial neural networks (ANN), could play a decisive
role in an efficient and accurate way, see Table 3. Properly trained models can have an excellent
predictive power with a high level of correlation between calculations and simulation or experimental
data [94]. Thereby, ML algorithms could be interpreted as a kind of black-box, which determines
relevant EHL result variables depending on the input parameters (see Figure 1). In this regard,
the prediction can go far beyond the minimum or central lubricant gap calculated in the analytical
film thickness equations and also include the maximum pressure, shear rate or temperature rise.
Furthermore, locally and time-resolved prediction models are conceivable.

Table 3. Comparison of different methods for film thickness prediction according to [94].

Numerical EHL
Simulation

Analytically Solvable
Proximity Equation

Machine Learning
Algorithm

software resources High very low low

calculation time minutes to hours few minutes few seconds

accuracy very high medium to good good
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To summarize, although the equations describing the film thickness were developed several
decades ago, their use is still widespread and reasonable due to the fact that good predictions of film
thickness are possible with negligible computing time. However, it is highly recommended to consider
the validity range of the equations applied. Furthermore, the available correction factors should be
evaluated to estimate a possible influence of thermal or non-Newtonian effects as well as the surface
topography at least in a first approximation. In summary, there is still potential for extending the fluid
film equations, especially regarding transient effects (time-varying stress collectives as well as surface
properties and topography).
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Nomenclature

aH small Hertzian half-axis
A normalized amplitude
bH large Hertzian half-axis
Ei Young’s modulus
E’ reduced Young’s modulus
F normal load
gi Greenwood parameter
G material parameter
G effective liquid shear modulus
h lubricant gap
hc central lubricant gap
hliq lubricant layer height
hmin minimum lubricant gap
hn film thickness derived from Newtonian calculation
H fluid film parameter
H00 asymptote parameter
Hc central fluid film parameter
Hmin minimum fluid film parameter
k ellipticity parameter
l line-contact length
L viscosity parameter
m inlet meniscus
m* fully flooded-starved boundary
M load parameter
n Slotte exponent
n Carreau exponent
Na Nahme-Griffith number
p pressure
pH Hertzian pressure
PE elasticity parameter
Pα pressure-viscosity parameter
Q thermal stress parameter
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r asymptote exponent
Ri Radius
s asymptote exponent
SRR slide-to-roll ratio
t asymptote exponent
T0 reference temperature
Ts Slotte constant
ui velocity
um hydrodynamic effective velocity
U velocity parameter
V dimensionless hardness number
W load parameter
αp pressure-viscosity coefficient
β viscosity-temperature coefficient
γ Peklenik factor
.
γ shear rate
η viscosity
η0 base viscosity
η∞ second Newtonian viscosity
θm fractional film content
κ ellipticity parameter
λ thermal conductivity
λτ limiting stress-pressure coefficient
λΓ relaxation time
Λ fluid film parameter
νi Poisson’s ratio
ρ density
ρ0 base density
σ quadratic mean surface roughness
τ shear stress
τl limiting shear stress
τu unbound shear stress
φi correction factor
Γ Weissenberg number
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