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Abstract: In this paper, the procedure to achieve an accurate deformation model of a total hip
replacement (THR) was proposed with the aim to obtain a numerical tool to be simply merged into
THR elasto-hydrodynamic computational synovial lubrication algorithms. The approach was based
on the Finite Element Method (FEM) and was developed in a Matlab code, allowing the definition
of the influence matrix and of a boundary conditions vector. It works with linear tetrahedra and
performs the displacement calculation for both the acetabular cup and the femoral head, taking into
account the anatomical hip relative motion, by coupling them with a cubic interpolation matrix.
Two simulations were conducted in order to validate the algorithm and the results were compared
with the ones obtained by the commercial software Ansys. The comparison provides a satisfactory
agreement in terms of surface deformation, Von Mises stress and strain energy, proving the reliability
of the model and the possibility to use the model in the in silico prostheses tribological simulations,
avoiding the complexity and the high computational resource requirement coming from the coupling
between complex lubrication algorithms and FEM commercial software, and with the possibility to
directly act on many key parameter characteristics of the investigated problem.

Keywords: total hip replacement; bio-tribology; elasto-hydrodynamic lubrication; finite element
method

1. Introduction

In biomechanics, the human joints can be physically modelled as coupled surfaces
separated by the lubricant synovial fluid, so the lubrication theory is fundamental to
develop numerical algorithms able to predict interesting tribological phenomena, like the
joint eccentricity, synovial pressure and thickness, surface wear, etc [1–4].

The operating conditions in which the lubricated joints operate are represented by
the load acting on the joint (dynamics) and the relative motion between the linked bodies
(kinematics). Based on the operating conditions, three lubrication modes can be distin-
guished [5–7]:

• When the joint is subjected to intense relative motion and light loading, the hydro-
dynamic lubrication occurs, so the coupled surfaces are totally separated by the
lubricating fluid along the whole contact area;

• The boundary lubrication is established when the high load and the slow relative
motion do not allow to obtain the surfaces’ separation, so the lubrication effect is
governed by chemical reactions at the contact interface; and the slow relative motion
don’t allow to obtain the surfaces’ separation, so the lubrication effect is governed by
chemical reactions at the contact interface;

• In the intermediate condition, the load is supported both by asperities in contact and
by the lubricating fluid pressure, so it is defined as mixed lubrication.

A particular case of the hydrodynamic mode, the Elasto-Hydrodynamic Lubrication
(EHL), occurs when the lubricating fluid pressure is so high that it causes the coupled
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surfaces’ elastic deformation, guaranteeing the survival of a small gap between the surfaces
filled by the synovial fluid even in hard loading conditions. In this case, the calculations of
the lubricant’s gap within a numerical lubrication algorithm needs a deformation model
able to evaluate the surfaces’ deflection due to fluid pressure [5].

In the framework of human joint replacements, the mechanical behaviour of the
implant’s surfaces is determined by the coupled biomaterials and the geometry, so several
solutions are available in terms of hard materials (ceramics or metal alloys) and soft
materials (polymers). In the particular case of the hip arthroplasty, the implant can be
geometrically modelled as a spherical cup for the acetabular component and a sphere for
the femoral one.

Nowadays, an accurate description of the global tribological behaviour of the pros-
thesis surfaces’ interactions is an important research topic, in order to predict with an in
silico approach the implant wear due to particular kinematics [8,9]: the loss of material
within the prosthesis is strictly related to its duration and, as a consequence, its estimation
is necessary to minimize the revision surgical procedures after the first installation.

In a total hip replacement (THR), elasto-hydrodynamic lubrication modelling several
deformation models is usually adopted in the solution algorithms. When the hip implant
is a type of hard-on-soft prosthesis, the constrained column model can be used in order to
neglect the deformation of the harder part (generally the metallic or ceramic femoral head)
and to evaluate the dominant deformation of the softer one (the acetabular cup made of
polyethylene). This approach consists of the modelling of the local cup deformation as
proportional to the local fluid pressure, through constants which depend on the mechanical
and geometrical properties of the acetabular cup (Young modulus, Poisson ratio, inner
radius and thickness) [10–13]. An approach similar to the constrained column model is to
consider the analysed surface as an Elastic Foundation, in order to keep the independence
of the local deformation on the surrounding pressures and obtaining a relationship useful
for the contact modelling [14–19]. The deformation of other types of implants, composed
of materials with comparable Young modulus, cannot be approximated by a spring model
(like the constrained column one) because there is not a dominant deflection between
the two surfaces and generally the local deformation could not depend only on the local
pressure but also on the surroundings of the analysed points. In order to overcome these
issues and to model the deformation of linear elastic materials with comparable stiffness,
some authors use an equivalent spherical discrete convolution method based on the Fast
Fourier Transform of the influence coefficients coming from the theory of the semi-infinite
bodies in point contact, while others take advantage of several finite element simulations
to build the entire matrix of influence coefficients entry by entry [20–23].

The aim of this paper is to propose, in the framework of the tribological modelling
of a THR, a deformation model based on the finite element approach, able to provide the
influence coefficient matrix, which evaluates the surfaces’ deformation, due to a particular
pressure field acting on them and which, above all, can be written and run in the same
computational environment of more complex lubrication algorithms for the accurate in
silico wear assessment of the prostheses. The developed finite element model considers
the two whole parts of the hip joint (acetabular cup and femoral head) and the relative
motion between them, through a cubic interpolation matrix. In order to validate the model,
the results are compared with the ones calculated by the software Ansys, of course for
the same problem inputs. The proposal represents a succeeding improvement of previous
authors’ works [2–4].

2. Materials and Methods
2.1. Finite Element Model

According to the classical finite elements approach, the model is based on the dis-
cretization of the analysed volumes in several linear tetrahedra with a regular mesh
algorithm. In order to obtain the influence matrix, nodal forces due to the pressure are
taken into account through nodal pressures acting on a face of the tetrahedron. With
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reference to Figure 1, the generic linear tetrahedron, composed of the nodes I, J, K and H,
is subjected to the pressure action represented by the nodal pressures pI , pJ and pK on the
respective face with outward-pointing normal n̂ located on the face’s centre C.
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Figure 1. Linear tetrahedron with I, J, K, and H nodes subjected to nodal pressures acting on the
face IJK.

Starting from the nodal pressures, the relative nodal force vector Φp was calculated
with the virtual work principle—the virtual work δWp done by the pressure p acting on the
tetrahedron’s face which produces a virtual displacement ∂u is given in (1), considering
the analysed face area A and the nodal displacement vector q.

δWp = −
∫

p n̂T∂u dA = ΦT
p ∂q (1)

The pressure acting on the face is considered to be equal to the arithmetic average of
the nodal pressures pm in (2).

pm =
pI+pJ+pK

3 (2)

By knowing the coordinates x of the tetrahedron’s nodes, the calculation of a vector
n normal to the I JK face, together with the coordinates of the face centre xC, allows us to
evaluate the outward-pointing normal n̂ and the area of the face A in the Equation (3).{

n =
(
xJ − xI

)
× (xK − xI)

xC =
xI+xJ+xK

3
→
{

n̂ = −sign
(
nT(xH − xC)

) n
|n|

A = 1
2 |n|

(3)

Replacing the (3) in (1) and considering that the displacement field u is related to
the nodal displacement vector q through the shape function matrix N, the virtual work is
written in (4).

δWp = −pmn̂T(
∫

N dA)∂q = ΦT
p ∂q (4)

Defining the vector of nodal pressure pn and considering the surface integral of the
shape function matrix as the product of a matrix H with the face’s area A, Equation (5)
provides the pressure nodal force vector Φp, which is related to the nodal pressure vector
pn through the matrix Jp.

pm =

[
1 1 1

]
3

 pI
pJ
pK

 = mTpn∫
N dA = HA

→ −mTpnn̂THA ∂q = ΦT
p ∂q → Φp =

(
−HTn̂ mT A

)
pn = Jppn (5)

Using Equation (5) for each element j belonging to the analysed structure composed
by ne elements, the total nodal force vector Φp due to the nodal pressure vector pn acting
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on each node is calculated and included in the force equilibrium in Equation (6), in which
the structure’s stiffness matrix K and the other nodal force vector Φ are introduced.

Φp j = Jp jpn j → Φp = Jppn → Kq = Φ + Φp (6)

When the displacement vector q is available, the normal displacement δn,i of a node i
is evaluated projecting its displacement qi along the mean normal direction n̂i, which is
obtained with the resultant of the outward-pointing normal vectors n̂ki belonging to the
ns pressure-loaded faces surrounding the node i. Then, the matrix Jq which connects the
nodal normal displacement vector δn to the nodal displacement vector q is written in (7).

n̂i =
∑ns

k=1 n̂ki

|∑ns
k=1 n̂ki| → δn,i = n̂T

i qi → δn = Jqq (7)

Partitioning the equation system in (6) by dividing the contributions of the free
displacements (l) and the constrained ones (v) as follows in (8),[

Kll Klv
Kvl Kvv

][
ql
qv

]
=

[
Φl
Φv

]
+

[
Φp,l
Φp,v

]
(8)

the aim is to put in evidence the surface pressure and surface deformation fields vectors p
and δ. In order to reach the goal, several matrices are introduced:

• The matrix Jn which relates the nodal pressure vector pn to the surface pressure field
vector p in (9);

pn = Jnp (9)

• The matrix Jδ which relates the surface deformation field vector δ to the nodal normal
displacement vector δn in (10); and

δ = Jδδn (10)

• The matrices Jl and Jv which collect the free part (l) or the constrained one (v) of a
vector quantity x, useful also to rewrite it in its ordered form xo through the matrix Jo
in (11). {

xl = Jlx
xv = Jvx

→ xo =

[
xl
xv

]
=

[
Jl
Jv

]
x = Jox (11)

Starting from the Equation (10), the surface deformation field vector δ is written as a
function of the free displacement vector ql and the constrained one qv in (12).

δ = JδJqJT
o

[
ql
qv

]
=
[

Jδl Jδv
][ ql

qv

]
= Jδlql + Jδvqv (12)

Then, the pressure nodal force vector related to the free displacements Φp,l in the
Equation (8) is written as a function of the pressure field vector p in (13).

Φp,l = JlJpJnp (13)

Solving the Equation (8) with respect to ql and replacing the latter in (12), the final
Equation (14) is obtained.

δ =
(

JδlK
−1
ll JlJpJn

)
p +

[
JδlK

−1
ll (Φl −Klvqv) + Jδvqv

]
(14)
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In Equation (15), the influence matrix C and a vector n are highlighted; the vector
n depends on the structure’s boundary conditions—the known forces acting on the free
displacements Φl and the known constrained displacements qv.{

C = JδlK
−1
ll JlJpJn

n = JδlK
−1
ll (Φl −Klvqv) + Jδvqv

→ δ = Cp + n (15)

Finally, Equation (15) can be used to evaluate the surface deformation δ due to the
surface pressure p by assembling the influence matrix C and the boundary conditions
vector n coming from the finite element discretization of the structure.

2.2. Acetabular Cup and Femoral Head Meshes

The regular mesh algorithm allows us to create a triangulation starting from the
coordinates x of the nodes. Both for the acetabular cup and for the femoral head, the nodes
coordinates, respectively xc and xh, are written in spherical coordinates in (16), considering
the cup inner radius R, the cup thickness H and the head radius r. The meshes are shown
in the Figure 2.

xc =

 ρc sin θc cos ϕc
ρc sin θc sin ϕc

ρc cos θc

 0 ≤ θc ≤ π
0 ≤ ϕc ≤ π

R ≤ ρc ≤ R + H
xh =

 ρh sin θh cos ϕh
ρh sin θh sin ϕh

ρh cos θh

 0 ≤ θh ≤ π
0 ≤ ϕh ≤ 2π
0 ≤ ρh ≤ r

(16)
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The partitioning of the displacements in terms of free or constrained ones, is the following:

• Regarding the acetabular cup, the nodes on the outer surface are fixed because of
the cup fixation with respect to the pelvic bone, namely when ρc = R + H, while the
nodes subjected to the surface pressure are located on the inner surface, namely when
ρc = R; and

• Regarding the femoral head, the nodes with the y-coordinate lower than a constant
value depending on a chosen angle φ0 are fixed because of the head fixation with
respect to the femoral stem, namely when yh < −r cos φ0, while the nodes subjected
to the surface pressure are located on the outer surface, namely when ρh = r.
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This information allows us to calculate the influence matrix C and the boundary
conditions vector n for both the structures, in order to write the Equation (15) for the two
cases in the related reference frames in (17). With the chosen boundary conditions, the
boundary conditions vector n is null for both cases.

δc = Ccpc + nc δh = Chph + nh (17)

With the aim of implementing the deformation model in an elasto-hydrodynamic
lubrication algorithm, it is worth noting that the influence matrices Cc and Ch are calculated
once (before the lubrication algorithm solving), so the related computational expense is not
involved in the lubrication algorithm iterative cycles.

2.3. Acetabular Cup and Femoral Head Coupling through Cubic Interpolation

The acetabular cup and femoral head surfaces are subjected to the same pressure, so
the total deformation is given by the sum of the single contributions which refer to different
grids {θ, ϕ}; moreover, the two grids slide with respect to each other because of the hip
relative motion between the femoral head and acetabular cup. The way to couple the grids
proposed in this work consists of transforming the analysed surfaces’ quantities with a
cubic interpolation.

In order to move a surface quantity f from a grid {x0, y0} to a second grid {x1, y1},
the f value on the generic point (x, y) of the second grid is given in (18).

f (x, y) = aTϕ
a =

[
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

]T

ϕ =
[

1 x x2 x3 y y2 y3 xy x2y xy2 x3y xy3 ]T (18)

With reference to the Figure 3, the coefficient vector a is evaluated solving the linear
system (19) by imposing that the function f must be equal to its value on the surround-
ing points (i− 1, j− 1), (i− 1, j), (i, j− 1) and (i, j) and the same is done for its partial
derivatives along the x direction, fx, and the y one, fy.
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aTϕ
(

xi−1, yj−1
)
= fi−1,j−1

aTϕ
(

xi−1, yj
)
= fi−1,j

aTϕ
(

xi, yj−1
)
= fi,j−1

aTϕ
(

xi, yj
)
= fij

aTϕx
(

xi−1, yj−1
)
= fxi−1,j−1

aTϕx
(

xi−1, yj
)
= fxi−1,j

aTϕx
(

xi, yj−1
)
= fxi,j−1

aTϕx
(

xi, yj
)
= fxij

aTϕy
(
xi−1, yj−1

)
= fyi−1,j−1

aTϕy
(
xi−1, yj

)
= fyi−1,j

aTϕy
(
xi, yj−1

)
= fyi,j−1

aTϕy
(
xi, yj

)
= fyij

→ Aa = b (19)

The vector b is composed of the value of f and its partial derivative along the two
directions on the surroundings points—writing the partial derivatives with the central
finite difference, the vector b can be expressed as a function of the vector fs through a
matrix M defined in (20).

fs =
[

fi−1,j−2 fi,j−2 fi−2,j−1 fi−2,j fi−1,j−1 fi−1,j fi,j−1 fij fi−1,j+1 fi,j+1 fi+1,j−1 fi+1,j
]T

b = Mfs
(20)

Since every point on the second grid can be calculated by the knowledge of the vector
fs, through the definition of a matrix J01,s, then all the f values on the second grid, included
in the vector f1, can be calculated through the assembled cubic interpolation matrix J01
multiplied by the f vector values on the starting grid, f0, in (21).

f (x, y) =
(
ϕTA−1M

)
fs = J01,sfs → f1 = J01f0 (21)

In order to apply the Equation (21) to the grids belonging, respectively, to the inner
surface of the acetabular cup, {θc, ϕc}, and to the outer surface of the femoral head, {θh, ϕh},
the position of the points defined in the grid of arrival has to be rotated in the reference
frame of the starting grid because of the hip relative motion. With reference to the Figure 4
and denoting with Rx, Ry and Rz the rotation matrices around the cartesian axes, the global
rotation between the two grids is composed of three transformations:

• Both for the acetabular cup and for the femoral head, the reference frame used in
the finite element discretization was rotated by the inclination angle αin and the
anteversion angle βav with respect to the anatomical reference frame (Antero/Posterior
AP, Proximo/Distal PD and Medio/Lateral ML) through a rotation matrix Rg defined
in (22) [3]; and

Rg = Rz
(

π
2 − βav

)
Rx(−αin) (22)

• The head anatomical reference frame is rotated with respect to the cup one by the
Flexion/Extension angle θFE, the Adduction/Abduction angle θAA and the Inter-
nal/External Rotation angle θIER through the rotation matrix Rhip defined in (23) [3].

Rhip = Rz(θFE)Rx(θAA)Ry(θIER) (23)
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Then, the cup radial unit vector defined in the xcyczc reference frame, r̂c, can be written
in the xhyhzh reference frame as r̂(h)c in (24), together with the head radial unit vector r̂h

rotated in the cup reference frame as r̂(c)h .

r̂ =
[

sin θ cos ϕ sin θ sin ϕ cos θ
]T

r̂(h)c = RT
g RT

hipRg r̂c r̂(c)h = RT
g RhipRg r̂h

(24)

Since the radial unit vector r̂ depends only on the spherical angles θ and ϕ, the points
of the cup grid {θc, ϕc} can be rotated in the head grid obtaining the points

{
θ
(h)
c , ϕ

(h)
c

}
and the points of the head grid {θh, ϕh} can be rotated in the cup grid obtaining the points{

θ
(c)
h , ϕ

(c)
h

}
by inverting r̂ in (24) as follows in (25).

θ = arctan
(√

r̂2
1+r̂2

2
r̂3

)
ϕ = arctan

(
r̂2
r̂1

)
(25)

Once the rotated grids are obtained, the cubic interpolation matrix that leads from the
cup to the head Jch and the one that leads from the head to the cup Jhc can be assembled.
Generally, a lubrication model algorithm is referred to the cup grid, so the calculated cubic
interpolation matrices can be used together with Equation (17) in order to evaluate in (26)
the total deformation of both the surfaces δ due to the pressure p acting on them in the cup
grid reference frame.

δc = Ccpc + nc
δh = Chph + nh
δ = δc + Jhcδh
pc = p
ph = Jchpc

→ δ = (Cc + JhcChJch)p + (nc + Jhcnh) (26)

In Equation (27), the final form of the influence matrix C and of the boundary condi-
tions vector n constituting the definitive deformation model is highlighted.{

C = Cc + JhcChJch
n = nc + Jhcnh

→ δ = Cp + n (27)
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Finally, the whole deformation model logic is shown in the Figure 5 through block vi-
sualizations, in which the calculation of the boundary conditions vector n is not considered
because of the reasons explained in the Section 2.2.
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3. Results and Discussion
3.1. Validation

In order to validate Equation (17), two simulations (one for the acetabular cup and
one for the femoral head) were performed in the Matlab environment (Matlab R2020b,
Mathworks, Natick, Massachusetts, USA). Their results were compared with the ones
computed by the software Ansys Mechanical (Ansys 2020 R2, Canonsburg, PA, USA) for the
same inputs (pressure field, mechanical and geometrical properties) but for discretization
performed with quadratic tetrahedral elements instead of the linear ones used in the
proposed model. The second order quadratic tetrahedral finite elements used in Ansys
allows us to work with coarser mesh with respect to the one used in Matlab; moreover,
the Matlab mesh is strictly connected to the interface grid on the acetabular cup surface
because it will be used successively in an elasto-hydrodynamic lubrication algorithm.

The input pressure fields, characteristics of elasto-hydrodynamic lubrication shapes [3],
were used in the simulations with zero pressure on the domain boundaries, both for the
cup simulation and for the head one, as follows in (28).

pc(θc, ϕc) =

p0e
− (θc−θ0)

2+(ϕc−ϕ0)
2

(α0π)2

 sin θc sin ϕc

ph(θh, ϕh) =


p0e

− (θh−θ0)
2+(ϕh−ϕ0)

2

(α0π)2

 sin θh sin ϕh if 0 ≤ ϕh ≤ π

0 if π < ϕh ≤ 2π

(28)

The input parameters used in the calculations are listed in the Table 1. Regarding the
mechanical properties, they are referred to a plastic acetabular cup (Polyethylene) and a
ceramic femoral head (Alumina 88%).
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Table 1. Input parameters related to the comparative simulations.

Parameter Value

Femoral head radius r 14 mm
Acetabular cup inner radius R 14.03 mm

Acetabular cup thickness H 9 mm
Femoral head fixed nodes angle φ0 30◦

Acetabular cup Young modulus Ec 1.1 GPa
Acetabular cup Poisson ratio νc 0.42

Femoral head Young modulus Eh 245.9 GPa
Femoral head Poisson ratio νh 0.24

Pressure gaussian peak p0 107 Pa
Pressure gaussian θ-translation θ0 2π/3 rad
Pressure gaussian ϕ-translation ϕ0 π/3 rad

Pressure gaussian dimensionless width α0 0.2

The pressure fields of Equation (28) were described in Matlab code—in order to apply
them within the Ansys simulations, the mesh generated by Ansys was imported in the
Matlab algorithm, and the pressure field was interpolated through a cubic interpolation
matrix on the Ansys mesh nodes and, after, it was imported back in the Ansys model as
External Data. In Figure 6, the Ansys meshes related to the acetabular cup and the femoral
head together with the surface pressure fields are shown.
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The same information shown in Figure 6 is reported in Figure 7 but related to the
Matlab model.

In order to compare the surfaces’ deformation, the Ansys solution results are evaluated
in terms of directional deformations along the cartesian axes; then, they are projected along
the radial direction so that the normal surface deformation is obtained. In Figure 8, the
input surface pressure and the output surface deformation of the acetabular cup are shown
over the cup grid, both for the Matlab simulation and for the Ansys one. The results show
a general satisfactory agreement between the two software in terms of deformation shapes,
peak coordinates and magnitude even if a slight underestimation is detected close to
deformation peak—this is probably due to different finite element used in Ansys (quadratic
tetrahedra) and the adopted choice to distribute uniformly the nodal pressures over the
loaded face of a tetrahedron though their arithmetic average. However, also the choice of
using of the linear tetrahedra allows us to perform the influence matrix assembly easily
and this results in unappreciable underestimation.
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In order to validate the model, the Root Mean Square Error (RMSE) and the squared
correlation coefficient R2 between the deformation results are calculated and the related
data are plotted against each other in the Figure 9—the plot confirms the underestimation
close to the highest values of the deformation but provides good values of the RMSE and
the R2, respectively, 8.47 × 10−7 m and 0.99714.
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Figure 9. Matlab deformation results data against Ansys ones regarding the acetabular cup simulation.

Then, the same comparison was performed within the femoral head simulation. In
Figure 10, the head surface pressure and deformation over the head grid, both in Matlab
and in Ansys, are shown. With respect to the acetabular cup case, the results were even more
satisfactory—a dominant underestimation or overestimation is not appreciable and the dis-
continuities generated by the imposed boundary conditions, in terms of null displacement
in correspondence of the femoral head fixation, do not result in output instabilities.
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In Figure 11, the Matlab deformation data are plotted against the Ansys one for the
femoral head simulation, showing two slight deviations—an overestimation for the lowest
deformation values and an underestimation for the highest ones. In this case the RMSE
and the R2 obtained are, respectively, 2.67 × 10−8 m and 0.99854.
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It is interesting to notice that, despite the fact that the influence matrix C is referred to
the interface between the acetabular cup and the femoral head (in fact it relates the surface
deformation δ to the surface pressure p), it is built by rearranging the global stiffness matrix
K and the nodal displacement q and force Φ vectors associated with the two analysed
bodies according to the classical Finite Element theory, so other quantities referring instead
to the bodies’ bulk continuum are evaluable, such as for example the Von Mises equivalent
stress and the strain energy.

Then, these quantities can be calculated also with the Matlab code, so they can be
compared. In Figure 12 the above quantities are shown for the cup simulation in Ansys.
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The same quantities obtained by the Matlab code are shown in the Figure 13—the
comparison is satisfactory in terms of magnitude order and shapes matching.
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The same comparison is performed for the femoral head case. In Figure 14, the Von
Mises stress and the strain energy in the Ansys environment are shown.
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Figure 14. Von Mises stress (a) and strain energy (b) within the femoral head simulation in Ansys.

Then, Figure 15 reports the same outputs obtained by Matlab code. In this case, the
comparison provides less satisfactory agreements regarding the strain energy—this could
be due to the particular boundary conditions imposed on the fixed nodes, which lead to
remarkable discontinuities around that zone, as confirmed by Figures 10 and 14.
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3.2. Implementation of the Deformation Model in an EHL Lubrication Algorithm

In the context of an elasto-hydrodynamic lubrication algorithm, the proposed defor-
mation model accomplishes the task of calculating the lubricating fluid gap contribution
due to the surfaces’ deformation considering also the hip relative motion. In particular,
according to Equation (29) the fluid gap field h is composed of the geometrical gap, depen-
dent on the radial clearance c and the dimensionless eccentricity vector n, added to the
surfaces’ deformation δ [3,4].

h(θ, ϕ) = c
(
1− nT r̂(θ, ϕ)

)
+ δ(p(θ, ϕ)) (29)

In order to give an example in which the cubic interpolation matrices are used, the
surfaces’ deformation over the cup grid is calculated for the same prosthesis characterized
by the data listed in the Table 1, but with different parameters related to the gaussian
input surface pressure and with a configuration defined by a relative position between the
acetabular cup and femoral head deriving from a previously algorithm developed in [3,4].

The new data are listed in the Table 2.

Table 2. Input parameters related to the simulation with relative rotations between the acetabular
cup and the femoral head.

Parameter Value

Pressure gaussian peak p0 107 Pa
Pressure gaussian θ-translation θ0 π/4 rad

Pressure Gaussian ϕ-translation ϕ0 π/4 rad
Pressure gaussian dimensionless width α0 0.2

Anteversion angle βav 90◦

Inclination angle αin 45◦

Flexion/Extension angle θFE −40◦

Adduction/Abduction angle θAA 10◦

Internal/External Rotation angle θIER 2◦
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In Figure 16, the prosthesis configuration is shown in the anatomical reference frame
of the cup in terms of surfaces’ grids, together with the fluid pressure acting on the two
surfaces of the joint and the local reference frames with red x-axis, green y-axis and blue
z-axis.
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Once the cubic interpolation matrices are built with Equation (21) while the influence
matrix and the boundary conditions vector are assembled through Equation (27), the
resultant surfaces’ deformation is calculated and shown in Figure 17 together with the
surface pressure.
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4. Conclusions

In this work, an accurate model for the calculation of the total hip replacement surfaces
deformation was proposed with the aim to merge it in EHL lubrication algorithms. The
computer code was based on the finite element theory by discretizing the acetabular cup
and the femoral head bodies in linear tetrahedra; the elements located on the loaded
surfaces are subjected to nodal forces due to the lubricating surface pressure, evaluated by
the virtual work principle. The two discretizations of the prosthesis were coupled through
a cubic interpolation matrix which connects the two surfaces grids and takes into account
the relative motion between the acetabular cup and the femoral head. The model was
developed in order to define a global influence matrix and a boundary conditions vector, so
that it can be run in the same computational context of an elasto-hydrodynamic lubrication
algorithm taking advantage of its accuracy. In order to validate the proposed code, two
simulations were conducted and compared with the results elaborated by the software
Ansys working with quadratic tetrahedra for the same problem—in particular the surfaces’
deformation of a prosthesis made of a polyethylene acetabular cup and Alumina 88%
femoral head was evaluated as a consequence of a surface pressure field modelled with
a modified gaussian shape. The comparison provided a satisfactory agreement in terms
of surfaces deformation, in particular recording a root mean squared error RMSE and a
squared correlation coefficient R2 equal to, respectively, 8.47× 10−7 m and 0.99714 for the
acetabular cup simulation and equal to 2.67× 10−8 m and 0.99854 for the femoral head one.
Then, the outputs regarding the Von Mises stress and the strain energy were compared
resulting in a good matching in terms of magnitude order and shapes.

A third simulation was conducted to evaluate the prosthesis deformation due to
a similar pressure field but with an implant configuration which considers a relative
rotation between the surfaces due to the hip motion, in order to show the simplicity of
implementation of the deformation model in an elasto-hydrodynamic lubrication code.

Finally, the proposed model showed quantitative and qualitative reliability, so that
several insights can be conducted and the related future perspectives could regard:

• The implementation of a routine which elaborates the contact pressure in domain
zones characterized by nodes overlapping, in order to consider the model functionality
within a mixed elasto-hydrodynamic lubrication algorithm;

• The adaptation of the finite element model to consider viscoelastic materials, adding
deformation contributions which depend on the time history of the pressure field
through a viscosity matrix;

• The usage of the model for other types of joint replacements such as knee, ankle,
shoulders, etc.
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Nomenclature

I, J, K, H Linear tetrahedron nodes
n̂ Tetrahedron face outward-pointing normal
A Tetrahedron face area
N Shape function matrix
pI , pJ , pK Nodal pressures
pn Nodal pressure vector
Φ Nodal force vector
q Nodal displacement vector
K Stiffness matrix
δn Nodal normal displacement vector
p Surface pressure field vector
δ Surface deformation field vector
C Influence matrix
n Boundary conditions vector or dimensionless eccentricity vector
x Cartesian coordinates vector
ρ, θ, ϕ Spherical coordinates
R Acetabular cup inner radius
H Acetabular cup thickness
r Femoral head radius
φ0 Femoral head fixed nodes angle
i, j Surface grid point indices
J01 Cubic interpolation matrix from the grid 0 to the grid 1
R Rotation matrix
αin, βav Inclination and anteversion angles

θFE, θAA, θIER
Hip Flexion/Extension, Adduction/Abduction and Internal/External
Rotation angles

r̂ Radial unit vector
E, ν Young modulus and Poisson ratio
RMSE, R2 Root Mean Squared Error and squared correlation coefficient
c Radial clearance
h Lubricating fluid gap
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