Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae) Communities in German Forests

Sandra Weithmann^{1*}, Jonas Kuppler¹, Gregor Degasperi², Sandra Steiger³, Manfred Ayasse¹, Christian von Hoermann⁴

- ¹ Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany; jonas.kuppler@uni-ulm.de (J.K.), manfred.ayasse@uni-ulm.de (M.A.)
- ² Richard-Wagnerstraße 9, 6020 Innsbruck, Austria; gregor.degasperi@gmail.com (G.D.)
- ³ Department of Evolutionary Animal Ecology, University of Bayreuth, 95447 Bayreuth, Germany; Sandra.Steiger@uni-bayreuth.de (S.S.)
- ⁴ Department of Conservation and Research, Bavarian Forest National Park, 94481 Grafenau, Germany; Christian.vonHoerman@npv-bw.bayern.de (C.v.H.)
- * Correspondence: sandra.weithmann@uni-ulm.de (S.W.)

The supplementary material is structured in sections Materials and methods and Results.

Materials and methods

Table S1: Environmental variables included in the analyses undertaken on the BExIS platform (Biodiversity Exploratories Information System, https://www.bexis.uni-jena.de).

Variable	Variable type	Categories or description of variable	unit	Data source information
region	categorial	Schwäbische Alb (ALB), Hainich- Dün (HAI), Schorfheide-Chorin (SCH)	-	ID: 20826, version: 1.14.10, owner: Nieschulze, Schulze, Fischer, Ayasse, Weisser, Ostrowski, König-Ries
SMI index	continuous	silvicultural management intensity (SMI) index (from 0 to 1) 0 = undisturbed 1 = disturbed	-	ID: 17746, version: 1.2.2; owner: Schall & Ammer
mineral soil pH	continuous	pH-measurement in the mineral forest soil (0 - 10 cm)	-	ID: 19067, version: 4.1.2; owner: Schöning, Klötzing, Schäfer, Gan, Schrumpf, Trumbore
soil temperature	continuous	forest soil temperature at 10 centimeters below surface	°C	ID: 19007, version: 1.0.5; owner: Wöllauer, Hänsel, Nauss, Forteva
silt content	continuous	amount of medium silt (particle size 0.0063 - 0.02 mm) in forest soil samples	g/kg soil	ID: 14686, version: 1.9.6; owner: Schöning, Solly, Klötzing, Trumbore, Schrumpf
understory proportion	continuous	forest understory proportion up to 2 m above the ground	-	ID: 17066, version: 1.1.3; owner: Schall & Ammer
Shannon plants	continuous	Shannon diversity index for all vascular plants in forests (based on vegetation relevés on all 400 m ² forest sites by visual estimation)	-	ID: 16806, version: 1.2.2; owner: Grassein & Fischer
litter cover	continuous	forest litter cover in summer	%	ID: 6240, version: 1.6.16; owner: Boch, Socher, Mueller, Prati, Fischer
deadwood cover	continuous	forest deadwood cover	%	ID: 6240, version: 1.6.16; owner: Boch, Socher, Mueller, Prati, Fischer

Results

Table S2: List of species of all collected rove beetles on decomposing piglet cadavers at 65 forest study sites in three distinct study regions in descending order by total abundance. Additional information for each species is given for subfamily, size class, ecological niche, and food preference [1–9].

Species name (author, year)	Subfamily	Size class	Ecological niche	Food	Total abundance	Abundance in region 'ALB'	Abundance in region 'HAI'	Abundance in region 'SCH'	Abbreviation for analyzes
<i>Tachinus pallipes</i> (Gravenhorst, 1806)	Tachyporinae	III	de, sap	Z	404	182	160	62	T_pal
<i>Bisnius fimetarius</i> (Gravenhorst, 1802)	Staphylininae	III	de, cp, fu	Z	338	132	161	45	B_fim
Philonthus addendus (Sharp, 1867)	Staphylininae	IV	de	Z	310	12	16	282	P_add
Anotylus mutator (Lohse, 1963)	Oxytelinae	II	de, cp	sa (?)	206	79	127	0	A_mut
Philonthus succicola (Thomson, 1860)	Staphylininae	V	de, cp	Z	185	7	4	174	P_suc
<i>Tachinus laticollis</i> (Gravenhorst, 1802)	Tachyporinae	II	de, sap	Z	166	133	26	7	T_lat
Philonthus tenuicornis (Mulsant & Rey, 1853)	Staphylininae	IV	de, cp	Z	124	6	5	113	P_ten
Ontholestes tessellatus (Geoffroy, 1785)	Staphylininae	V	de, cp, ca	Z	123	73	21	29	O_tes
Philonthus splendens (Fabricius, 1793)	Staphylininae	V	de, cp, sap	Z	109	2	0	107	P_spl
Philonthus decorus (Gravenhorst, 1802)	Staphylininae	V	de, hyg, mu	Z	91	25	25	41	P_dec
Philonthus marginatus (Müller, 1764)	Staphylininae	IV	de, cp	Z	88	13	0	75	P_mar
Megarthrus depressus (Paykull, 1789)	Proteininae	Ι	de, cp, hu, fu	sa, m (?)	64	60	2	2	M_dep

Ontholestes murinus (Linné, 1758)	Staphylininae	V	de, ca	Z	61	1	0	60	O_mur
Omalium septentrionis (Thomson, 1857)	Omaliinae	II	de, hu, fu	z (?)	41	34	7	0	O_sep
Ocypus olens (Müller, 1764)	Staphylininae	V	hyg, hu	Z	30	0	0	30	O_ole
Atheta monticola (Thomson, 1852)	Aleocharinae	Ι	de, sap	z (?)	27	14	12	1	A_mon
Philonthus nitidus (Fabricius, 1787)	Staphylininae	V	de, cp	Z	20	0	0	20	P_nit
Quedius cinctus (Paykull, 1790)	Staphylininae	IV	de, cp	Z	15	13	2	0	Q_cin
Atheta dadopora (Thomson, 1867)	Aleocharinae	Ι	myc, st, de	z (?)	15	11	1	3	A_dad
Aleochara curtula (Goeze, 1777)	Aleocharinae	II-IV	de, cp	pa, z	14	4	1	9	A_cur
Atheta crassicornis (Fabricius, 1793)	Aleocharinae	II	de, sap	z (?)	14	6	7	1	A_cra
Lordithon lunulatus (Linné, 1760)	Tachyporinae	III	myc, fu	Z	14	0	13	1	L_lun
Staphylinus erythropterus (Linné, 1758)	Staphylininae	V	hyg, hu	Z	14	0	0	14	S_ery
Atheta castanoptera (Mannerheim, 1830)	Aleocharinae	II	de, myc, fu	z (?)	13	9	4	0	A_cas
Megarthrus stercorarius (Mulsant & Rey, 1878)	Proteininae	Ι	de, cp, fu	sa, m (?)	11	11	0	0	M_ste
Philonthus varians (Paykull, 1789)	Staphylininae	III	de, cp	Z	11	1	1	9	P_var
Atheta fungi (Gravenhorst, 1806)	Aleocharinae	Ι	de, hu	Z	10	10	0	0	A_fun.1

<i>Ocypus tenebricosus</i> (Gravenhorst, 1846)	Staphylininae	V	hyg, hu	Z	10	10	0	0	O_ten
Atheta hansseni (Strand, 1943)	Aleocharinae	Ι	de, fu	z (?)	10	7	3	0	A_han
Atheta britanniae (Bernhauer & Scheerpeltz, 1926)	Aleocharinae	Ι	de, myc	z (?)	9	9	0	0	A_bri
Proteinus brachypterus (Fabricius, 1792)	Proteininae	Ι	de, myc, hu	sa, m (?)	9	9	0	0	P_bra
<i>Atheta sodalis</i> (Erichson, 1837)	Aleocharinae	Ι	de, myc, fu	z (?)	8	7	1	0	A_sod
Megarthrus nitidulus (Kraatz, 1857)	Proteininae	Ι	de, cp, fu	sa, m (?)	8	8	0	0	M_nit
Omalium rivulare (Paykull, 1789)	Omaliinae	II	de, sap, fu	sa	8	0	8	0	O_riv
<i>Quedius lateralis</i> (Gravenhorst, 1806)	Staphylininae	V	de, sap, su, fu	Z	8	6	1	1	Q_lat
Atheta cinnamoptera (Thomson, 1856)	Aleocharinae	Ι	de, cp	z (?)	7	4	3	0	A_cin
<i>Quedius lucidulus</i> (Erichson, 1839)	Staphylininae	III	de, hu	Z	7	7	0	0	Q_luc
Tachinus proximus (Kraatz, 1855)	Tachyporinae	III/IV	de, cp	Z	7	7	0	0	T_pro
Atheta laevana (Mulsant & Rey, 1852)	Aleocharinae	Ι	de, cp, si	z (?)	6	4	2	0	A_lae
Anotylus sculpturatus (Gravenhorst, 1806)	Oxytelinae	II	de, cp	sa	5	3	2	0	A_scu
<i>Atheta picipes</i> (Thomson, 1856)	Aleocharinae	Ι	de, fu, co	z (?)	5	4	0	1	A_pic
<i>Pella cognata</i> (Märkel, 1842)	Aleocharinae	III	myr, hu	sa (?)	5	5	0	0	P_cog

Atheta intermedia (Thomson, 1852)	Aleocharinae	II	de, cp	z (?)	4	0	4	0	A_int
<i>Rugilus rufipes</i> (Germar, 1836)	Paederinae	III	de, hyg	Z	4	1	1	2	R_ruf
Atheta boreella (Brundin, 1948)	Aleocharinae	Ι	de, hyg	z (?)	4	2	0	2	A_bor
<i>Omalium rugatum</i> (Mulsant & Rey, 1880)	Omaliinae	II	de	z (?)	3	3	0	0	O_rug
Philonthus politus (Linné, 1758)	Staphylininae	IV/V	de, ca	sa (?)	3	0	0	3	P_pol
Platystethus arenarius (Geoffroy, 1785)	Oxytelinae	II/III	de, cp	Z	3	3	0	0	P_are
Quedius mesomelinus skoraszewskyi (Korge, 1960)	Staphylininae	IV	de, ni	Z	3	0	3	0	Q_mes
Aleochara stichai (Likovsky, 1965)	Aleocharinae	II	de	pa, z	2	2	0	0	A_sti
Atheta ravilla (Erichson, 1839)	Aleocharinae	Ι	de, fu, ni	z (?)	2	2	0	0	A_rav
<i>Ocalea picata</i> (Stephens, 1832)	Aleocharinae	II/III	de, hyg, mu	z (?)	2	2	0	0	O_pic
Othius subuliformis (Stephens, 1833)	Staphylininae	III	de, hu	sa, z (?)	2	2	0	0	O_sub
Placusa tachyporoides (Waltl, 1838)	Aleocharinae	Ι	со	m	2	2	0	0	P_tac
Xantholinus laevigatus (Jacobsen, 1849)	Staphylininae	IV	de, hyg	Z	2	2	0	0	X_lae
Bisnius pseudoparcus (Brunne, 1976)	Staphylininae	Ι	de	Z	2	0	0	2	B_pse

Acrotona parvula (Mannerheim, 1830)	Aleocharinae	Ι	de, cp	z (?)	1	0	0	1	A_par
Aleochara funebris (Wollaston, 1864)	Aleocharinae	II	de	pa, z	1	1	0	0	A_fun
Aleochara intricata (Mannerheim, 1830)	Aleocharinae	II/III	de, sap	pa, z	1	0	0	1	A_intr
Anotylus inustus (Gravenhorst, 1806)	Oxytelinae	II	de, cp, xer	sa, z (?)	1	1	0	0	A_inu
Anthobium atrocephalum (Gyllenhal, 1827)	Omaliinae	II	de, hu, fu	sa, z (?)	1	1	0	0	A_atr
<i>Atheta gagatina</i> (Baudi di Selve, 1848)	Aleocharinae	Ι	de, myc, fu	z (?)	1	0	0	1	A_gag
Atheta paracrassicornis (Brundin, 1954)	Aleocharinae	Ι	de, myc	z (?)	1	1	0	0	A_par.1
<i>Autalia longicornis</i> (Scheerpeltz, 1947)	Aleocharinae	Ι	de, myc	z (?)	1	1	0	0	A_lon
Geostiba circellaris (Gravenhorst, 1806)	Aleocharinae	Ι	hyg, hu	z (?)	1	1	0	0	G_cir
Lathrobium brunnipes (Fabricius, 1793)	Paederinae	IV	de, hyg	Z	1	0	0	1	L_bru
<i>Megarthrus denticollis</i> (Beck, 1817)	Proteininae	Ι	de, cp, hu	sa, m (?)	1	1	0	0	M_den
Megarthrus prosseni (Schatzmayr, 1904)	Proteininae	Ι	de, cp, fu	sa, m (?)	1	0	0	1	M_pro
<i>Ocypus brunnipes</i> (Fabricius, 1781)	Staphylininae	V	de, hu, hyg	Z	1	0	0	1	O_bru
Oxypoda brevicornis (Stephens, 1832)	Aleocharinae	I/II	z (?)	Z	1	1	0	0	O_bre
Oxytelus laqueatus (Marsham, 1802)	Oxytelinae	II/III	de, cp	sa	1	0	1	0	O_laq

Pella lugens (Gravenhorst, 1802)	Aleocharinae	II	myr	sa	1	1	0	0	P_lug
Philonthus laminatus (Creutzer, 1799)	Staphylininae	IV	de, sap	Z	1	0	0	1	P_lam
Quedius fuliginosus (Gravenhorst, 1802)	Staphylininae	V	de, hu, hyg	Z	1	0	0	1	Q_ful
<i>Rugilus mixtus</i> (Lohse, 1956)	Paederinae	III	de	Z	1	1	0	0	R_mix
<i>Tachinus rufipes</i> (Linné, 1758)	Tachyporinae	III	de, sap	Z	1	1	0	0	T_ruf
Bolitochara tecta (Assing, 2014)	Aleocharinae	III	myc, si, pp, bo, xde	Z	1	0	1	0	B_tec
Gyrohypnus punctulatus (Paykull, 1789)	Staphylininae	III/IV	de	Z	1	0	1	0	G_pun
Pella humeralis (Gravenhorst, 1806)	Aleocharinae	III	myr, hu	sa, z (?)	1	1	0	0	P_hum
Plataraea brunnea (Fabricius, 1798)	Aleocharinae	II	de, hu, xer	Z	1	0	1	0	P_bru

ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin

Key for 'size class': I= 1 - 3 mm, II= 3 - 4.5 mm, III= 4.5 - 7 mm, IV= 7 - 11 mm, V= > 11 mm

Key for 'ecological niche' (and explanation [lives on or in]): bo= boleticolous (pored fungi), ca= cadavericolous (carrion), cp= coprophilic (feces), co= corticolous (bark), de= detriticolous (detritus), fu= fungicolous (fungi), hu= humicolous (humus), hyg= hygrophilic (humidity), mu= muscicolous (moss), myc= mycetophilic (mushrooms), myr= myrmecophilic (ants), ni= nidicolous (bird-nest), pp=polyporicolous (sponges), sap= saprophilic (decomposing material), si= silvicolous (forests), st= stercolicolous (dung), su= succicolous (plant sap), xer= xerophilic (drought), xde= xylodetriticolous (woody detritus)

Key for 'food' (and explanation [feeds on]): z= zoophagous (animal material), s= saprophagous (decomposing material), p= parasitoid (lives as parasitoid), (?)= unpublished information (G.D.) based on literature [1-9] of near-related species.

Figure S1 A – D: Marginal effects of multiple regression between total abundance of rove beetles on piglet cadavers at 65 forest sites and A) forest management intensity, B) mineral soil pH, C) forest understory proportion, and D) region. For A - C) regression lines and 95% confidence intervals for negative binomial GLMs are shown. For D) box plots show the median and interquartile range for negative binomial GLMs. Different letters indicate significant differences among groups with estimated marginal means post-hoc tests (p < 0.05). ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin.

Figure S2 A – C: Marginal effects of multiple regression between species richness of rove beetles on piglet cadavers at 65 forest sites and A) mineral soil pH, B) forest litter cover, and C) region. For A - B) regression lines and 95% confidence intervals for negative binomial GLMs are shown. For C) box plots show the median and interquartile range for negative binomial GLMs. Different letters indicate significant differences among groups with estimated marginal means post-hoc tests (p < 0.05). ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin.

Figure S3 A – C: Marginal effects of multiple regression between Shannon diversity of rove beetles on piglet cadavers at 65 forest sites and A) mineral soil pH, B) forest litter cover, and C) region. For A - B) regression lines and 95% confidence intervals for Gaussian GLMs are shown. For C) box plots show the median and interquartile range for Gaussian GLMs. Different letters indicate significant differences among groups with estimated marginal means post-hoc tests (p < 0.05). ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin.

Partitioning of variance			
	Total varia	ince	Proportion
Total	0.645		1.000
Constrained	0.245		0.38
Unconstrained	0.4		0.621
		Canonical av	kes
	Axis 1	Axis 2	Axis 3
Eigenvalue	0.161	0.06	0.017
Percentage explained	25.01	9.33	2.66
Cumulative percentage variance			
for species	25.01	34.33	36.99
for species-environment relation	65.9	90.5	97.5
ANOVA (forward tests for axes)			
Variance	0.161	0.06	0.017
<i>F</i> value	24.178	9.017	2.571
<i>p</i> value	0.001	0.001	0.006
Correlations			
region HAI	0.536	0.571	-0.613
region SCH	-0.984	0.16	0.061
SMI	0.003	-0.74	-0.584
Coefficients			
region HAI	0.011	0.174	-0.248
region SCH	-0.291	0.027	-0.184
SMI	-0.019	-0.083	-0.097

Table S3: Summary of statistical results of the redundancy analysis (RDA). Significant (p < 0.05) values are given in bold.

p = significance level, SMI = silvicultural management intensity index,

ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin.

Table S4: Results of pairwise ANOSIM analyses showing the effects of region and SMI on the community composition of rove beetles on piglet cadavers at 65 forest study sites. Significant (p < 0.05) p-values are given in bold.

Test	R statistic	р	Test	R statistic	р
Global for 'region'	0.529	0.001	Global for 'SMI'	0.177	0.001
ALB vs. HAI	0.176	0.002	MEDIUM vs. HIGH	0.164	0.04
ALB vs. SCH	0.687	0.001	MEDIUM vs. LOW	0.142	0.001
HAI vs. SCH	0.752	0.001	HIGH vs. LOW	0.3	0.003

ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin, SMI = silvicultural management intensity index.

Table S5: Results of SIMPER analysis showing those species that contributed most to the similarity of the rove beetle community composition within regions: average abundance (%) of characteristic species in each region (ALB, HAI, SCH), their contribution to the within-group similarity (%), and the cumulative total (%) of contributions (90% cut-off).

Region ALB Average similarity: 28.59 %								
Species	Abundance	Contribution	Cumulative					
T. pallipes	7.91	22.8	22.8					
B. fimetarius	5.74	18.02	40.82					
T. laticollis	5.78	16.47	57.29					
O. tessellatus	3.17	10.66	67.96					
A. mutator	3.43	9.43	77.38					
O. septentrionis	1.48	6.81	84.19					
M. depressus	2.61	4.22	88.41					
P. decorus	1.09	2.89	91.31					

Region	HAI	ſ
Region	11/11	r

Average simil	larity: 29.72 %
---------------	-----------------

Species	Abundance	Contribution	Cumulative
B. fimetarius	7.32	39.39	39.39
A. mutator	5.77	36.6	75.98
T. pallipes	7.27	7.91	83.89
P. decorus	1.14	6.47	90.37

Region SCH

•	,		22	01	0/
Average	simi	larity:	33.	.06	%

Species	Abundance	Contribution	Cumulative
P. addendus	14.1	33.53	33.53
P. succicola	8.7	26.62	60.16
P. splendens	5.35	11.08	71.24
P. tenuicornis	5.65	7.94	79.18
O. olens	1.5	3.65	82.83
O. tessellatus	1.45	3.39	86.22
P. marginatus	3.75	2.73	88.95
O. murinus	3	2.69	91.63

ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin.

Groups ALB & HAI Average dissimilarity = 76.39 %					
	Group ALB	Group HAI			
Species	Abundance	Abundance	Contribution	Cumulative	
T. pallipes	7.91	7.27	17.78	17.78	
A. mutator	3.43	5.77	14.33	32.11	
B. fimetarius	5.74	7.32	14.29	46.4	
T. laticollis	5.78	1.18	8.87	55.28	
O. tessellatus	3.17	0.95	6.03	61.31	
M. depressus	2.61	0.09	4.31	65.61	
P. decorus	1.09	1.14	4.15	69.76	
O. septentrionis	1.48	0.32	3.52	73.29	
P. addendus	0.52	0.73	2.28	75.57	
A. monticola	0.61	0.55	1.9	77.47	
A. crassicornis	0.26	0.32	1.17	78.64	
A. castanoptera	0.39	0.18	1.04	79.67	
O. tenebricosus	0.43	0	1.01	80.69	
P. tenuicornis	0.26	0.23	1	81.68	
O. rivulare	0	0.36	0.93	82.62	
A. dadopora	0.48	0.05	0.91	83.53	
A. fungi	0.43	0	0.9	84.42	
P. succicola	0.3	0.18	0.85	85.27	
Q. cinctus	0.57	0.09	0.84	86.11	
L. lunulatus	0	0.59	0.81	86.92	
P. marginatus	0.57	0	0.81	87.73	
A. sodalis	0.3	0.05	0.74	88.46	
A. britanniae	0.39	0	0.7	89.16	
A. hansseni	0.3	0.14	0.67	89.83	
P. brachypterus	0.39	0	0.66	90.49	

Table S6: Results of SIMPER analysis showing those species that contributed most to the dissimilarity of the rove beetle community composition between regions: average abundance (%) of characteristic species for each region (ALB, HAI, SCH), their contribution to the between-group dissimilarity (%), and the cumulative total (%) of contributions (90% cut-off).

Groups ALB & SCH

Average dissimilarity = 90.42 %						
	Group ALB	Group ALB Group SCH				
Species	Abundance	Abundance	Contribution	Cumulative		
P. addendus	0.52	14.1	15.61	15.61		
P. succicola	0.3	8.7	10.67	26.28		
T. pallipes	7.91	3.1	9.2	35.49		
B. fimetarius	5.74	2.25	6.85	42.33		
T. laticollis	5.78	0.35	6.16	48.49		
P. splendens	0.09	5.35	6.12	54.61		

P. tenuicornis	0.26	5.65	5.58	60.19
A. mutator	3.43	0	4.21	64.4
O. tessellatus	3.17	1.45	3.46	67.86
P. marginatus	0.57	3.75	3.41	71.27
P. decorus	1.09	2.05	3.23	74.5
M. depressus	2.61	0.1	2.92	77.42
O. murinus	0.04	3	2.83	80.25
O. olens	0	1.5	2.39	82.63
O. septentrionis	1.48	0	2.34	84.98
P. nitidus	0	1	1.23	86.21
S. erythropterus	0	0.7	1.15	87.36
A. monticola	0.61	0.05	0.91	88.27
A. dadopora	0.48	0.15	0.69	88.96
O. tenebricosus	0.43	0	0.66	89.63
A. fungi	0.43	0	0.6	90.23

Groups HAI & SCH

Average dissimilarity = 92.11 %

	Group HAI	Group SCH		
Species	Abundance	Abundance	Contribution	Cumulative
P. addendus	0.73	14.1	16.8	16.8
P. succicola	0.18	8.7	11.59	28.39
A. mutator	5.77	0	10.67	39.06
B. fimetarius	7.32	2.25	10.66	49.72
T. pallipes	7.27	3.1	9.02	58.74
P. splendens	0	5.35	6.65	65.39
P. tenuicornis	0.23	5.65	5.93	71.32
P. decorus	1.14	2.05	3.98	75.3
P. marginatus	0	3.75	3.39	78.7
O. murinus	0	3	3.03	81.73
O. tessellatus	0.95	1.45	2.78	84.51
O. olens	0	1.5	2.62	87.13
T. laticollis	1.18	0.35	1.7	88.83
P. nitidus	0	1	1.34	90.17

ALB = Schwäbische Alb, HAI = Hainich-Dün, SCH = Schorfheide-Chorin.

Table S7: Results of SIMPER analysis showing those species that contributed most to the similarity of the rove beetle community composition within silvicultural management intensity (SMI) levels: average abundance (%) of characteristic species at each SMI level (LOW, MEDIUM, HIGH), their contribution to the within-group similarity (%), and the cumulative total (%) of contributions (90% cut-off).

SMI level 'LOW' Average similarity: 24.59 %							
Species Abundance Contribution Cumulative							
A. mutator	6.08	40.69	40.69				
B. fimetarius	3.92	23.7	64.39				
P. decorus	1.5	8.39	72.78				
T. pallipes	1.73	4.47	77.25				
P. addendus	2.15	4.46	81.71				
A. monticola	0.46	3.11	84.82				
O. tessellatus	0.92	2.55	87.37				
P. succicola	2	2.52	89.89				
O. septentrionis	0.69	2.5	92.39				

SMI level 'MEDIUM'

Average similarity: 20.90 %					
Species	Abundance	Contribution	Cumulative		
T. pallipes	6.9	17.93	17.93		
B. fimetarius	5.72	16.62	34.55		
P. addendus	8.48	15.81	50.36		
P. succicola	4.48	10.49	60.85		
T. laticollis	2.72	7.51	68.36		
O. tessellatus	2.66	5.52	73.88		
A. mutator	1.48	4.28	78.16		
P. tenuicornis	2.76	3.85	82.01		
P. decorus	1.66	3.83	85.84		
P. marginatus	2.69	2.23	88.07		
M. depressus	1.45	2.13	90.2		

SMI level 'HIGH'

Average similarity: 25.20 %						
Species	Abundance Contribution Cumulative					
T. pallipes	15.9	37.81	37.81			
B. fimetarius	7	23.34	61.15			
O. tessellatus	2.2	19.7	80.85			
T. laticollis	6.2	11.75	92.6			

Table S8: Results of SIMPER analysis showing those species that contributed most to the dissimilarity of the rove beetle community composition between silvicultural management intensity (SMI) levels: average abundance (%) of characteristic species for each SMI level (LOW, MEDIUM, HIGH), their contribution to the between-group dissimilarity (%), and the cumulative total (%) of contributions (90% cut-off).

Groups MEDIUM & HIGH Average dissimilarity = 81.82 %					
	Group MEDIUM	Group HIGH			
Species	Abundance	Abundance	Contribution	Cumulative	
T. pallipes	6.9	15.9	19.72	19.72	
B. fimetarius	5.72	7	11.62	31.34	
P. addendus	8.48	0.8	11.08	42.42	
T. laticollis	2.72	6.2	8.07	50.5	
P. succicola	4.48	0.3	6.55	57.05	
O. tessellatus	2.66	2.2	4.85	61.89	
P. tenuicornis	2.76	0.1	2.98	64.87	
P. decorus	1.66	0.4	2.82	67.69	
M. depressus	1.45	0.7	2.81	70.5	
A. mutator	1.48	0.5	2.8	73.29	
P. marginatus	2.69	0	2.68	75.98	
P. splendens	1.86	0	1.95	77.92	
O. murinus	1.79	0	1.86	79.78	
O. septentrionis	0.72	0.2	1.59	81.38	
O. olens	0.76	0	1.39	82.77	
A. monticola	0.31	0.6	1.31	84.08	
S. erythropterus	0.48	0	1.02	85.1	
A. crassicornis	0.28	0.2	0.99	86.08	
O. tenebricosus	0.14	0.5	0.98	87.06	
L. lunulatus	0.07	0.9	0.91	87.97	
Q. cinctus	0.28	0.6	0.84	88.81	
A. intermedia	0.07	0.2	0.78	89.59	
A. dadopora	0.38	0.2	0.75	90.34	

Groups MEDIUM & LOW Average dissimilarity = 81.71 %

0	5			
	Group MEDIUM	Group LOW		
Species	Abundance	Abundance	Contribution	Cumulative
P. addendus	8.48	2.15	12.24	12.24
A. mutator	1.48	6.08	10.79	23.03
B. fimetarius	5.72	3.92	10.31	33.34
T. pallipes	6.9	1.73	9.76	43.09
P. succicola	4.48	2	7.75	50.85
T. laticollis	2.72	0.96	4.48	55.33
P. tenuicornis	2.76	1.65	4.48	59.81

P. splendens	1.86	2.12	4.22	64.03
P. decorus	1.66	1.5	4.11	68.14
O. tessellatus	2.66	0.92	3.86	72
P. marginatus	2.69	0.38	2.99	74.99
M. depressus	1.45	0.58	2.83	77.82
O. murinus	1.79	0.35	2.22	80.04
O. septentrionis	0.72	0.69	2.19	82.23
O. olens	0.76	0.31	1.76	83.99
A. monticola	0.31	0.46	1.32	85.32
S. erythropterus	0.48	0	0.97	86.29
P. nitidus	0.41	0.31	0.88	87.17
A. dadopora	0.38	0.08	0.7	87.87
A. castanoptera	0.28	0.12	0.65	88.52
A. fungi	0.28	0.08	0.64	89.16
A. crassicornis	0.28	0.15	0.61	89.77
O. rivulare	0.03	0.27	0.59	90.35

Groups HIGH & LOW Average dissimilarity = 86.41 %

	Group HIGH	Group LOW		
Species	Abundance	Abundance	Contribution	Cumulative
T. pallipes	15.9	1.73	20.77	20.77
A. mutator	0.5	6.08	14.91	35.68
B. fimetarius	7	3.92	12.23	47.91
T. laticollis	6.2	0.96	8.39	56.3
O. tessellatus	2.2	0.92	4.82	61.12
P. addendus	0.8	2.15	4.45	65.57
P. decorus	0.4	1.5	4.03	69.61
P. succicola	0.3	2	3.5	73.1
P. splendens	0	2.12	3.42	76.52
P. tenuicornis	0.1	1.65	2.53	79.04
O. septentrionis	0.2	0.69	1.86	80.91
A. monticola	0.6	0.46	1.58	82.49
M. depressus	0.7	0.58	1.38	83.87
A. crassicornis	0.2	0.15	1.13	85
O. tenebricosus	0.5	0.04	1.12	86.12
L. lunulatus	0.9	0.12	1.05	87.17
A. intermedia	0.2	0	0.93	88.1
O. rivulare	0	0.27	0.76	88.86
Q. cinctus	0.6	0.04	0.75	89.61
O. olens	0	0.31	0.65	90.26

References in supplementary file:

- 1. Weide, D.; Thayer, M.K.; Newton, A.F.; Betz, O. Comparative morphology of the head of selected sporophagous and non-sporophagous aleocharinae (Coleoptera: Staphylinidae): musculature and hypopharynx-prementum complex. *J. Morphol* **2010**, *271*, 910–931, doi:10.1002/jmor.10841.
- 2. Topp, W. Imaginal aestivation in the rove beede species *Omalium rivulare* (Coleoptera: Staphylinidae). *Entomol Gen* **1986**, *12*, 51–55.
- Thayer, M. Staphylinidae. In *Handbook of Zoology, Vol IV Part 38 Coleoptera, Vol. 1: Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Staphyliniformia, Scarabaeiformia, Elateriformia);* Beutel, R.G., Leschen, R.A.B., Eds.; Walter de Gruyter: Berlin, Germany & New York, USA, 2005; pp 296–344.
- 4. Steel, W.O. The larvae of the genera of the Omaliinae (Coleoptera: Staphylinidae) with particular reference to the British fauna. *Trans. R. Entomol. Soc. Lond.* **1970**, *122*, 1–47.
- 5. Lipkow, E.; Betz, O. Staphylinidae and fungi. Faun.-Ökol.Mitt. 2005, 8, 383–411.
- 6. Horion, A. Faunistik der Mitteleuropäischen Käfer. Band XI: Staphylinidae. 3. Teil Habrocerinae -Aleocharinae (ohne Subtribus Athetae); Verlagsdruckerei PH. C. W. Schmidt: Neustadt a.d. Aisch, **1967**.
- 7. Horion, A. Faunistik der Mitteleuropäischen Käfer. Band X: Staphylinidae. 2. Teil Paederinae -Staphylininae; Verlagsdruckerei PH. C. W. Schmidt: Neustadt a.d. Aisch, **1965**.
- 8. Horion, A. Faunistik der Mitteleuropäischen Käfer. Band IX: Staphylinidae. 1. Teil Micropeplinae -Euaesthetinae; Kommissionsverlag Buchdruckerei Aug. Feyel: Überlingen, Bodensee, **1963**.
- 9. Good, J.A.; Giller, P.S. The diet of predatory staphylinid beetles a review of records. *Entomol.'s Mon. Mag.* **1991**, 77–89.