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Simple Summary: The Chinese cordyceps is a valuable parasitic Ophiocordyceps sinensis fungus–
Thitarodes/Hepialus larva complex. In view of culturing this complex, a method for the artificial
rearing of the Thitarodes/Hepialus ghost moth hosts was established. Deterioration of the host
insect population and low mummification rates in infected larvae constrain effective cultivation.
Hybridization of Thitarodes/Hepialus populations may overcome this problem. Thitarodes shambalaensis
and Thitarodes sp. were inbred or hybridized, and the biological parameters, larval sensitivity to
the fungal infection and mitochondrial genomes of the resulting populations were investigated.
Hybridization of T. shambalaensis and Thitarodes sp. allowed producing a new generation. One hybrid
population (T. shambalaensis females mated with Thitarodes sp. males) showed increased population
growth as compared with the parental Thitarodes sp. population. The sensitivity of the inbred larval
populations to four fungal isolates of O. sinensis differed. The complete mitochondrial genomes of T.
shambalaensis, Thitarodes sp. and the hybrid population were 15,612 bp, 15,389 bp and 15,496 bp in
length, respectively. A + T-rich regions were variable in sizes and repetitive sequences. The hybrid
population was located in the same clade with T. shambalaensis, implying the maternal inheritance of
mitochondrial DNA.

Abstract: The Chinese cordyceps, a parasitic Ophiocordyceps sinensis fungus–Thitarodes/Hepialus
larva complex, is a valuable biological resource endemic to the Tibetan Plateau. Protection of the
Plateau environment and huge market demand make it necessary to culture this complex in an
artificial system. A method for the large-scale artificial rearing of the Thitarodes/Hepialus insect
host has been established. However, the deterioration of the insect rearing population and low
mummification of the infected larvae by the fungus constrain effective commercial cultivation.
Hybridization of Thitarodes/Hepialus populations may be needed to overcome this problem. The
species T. shambalaensis (GG♂×GG♀) and an undescribed Thitarodes species (SD♂× SD♀) were inbred
or hybridized to evaluate the biological parameters, larval sensitivity to the fungal infection and
mitochondrial genomes of the resulting populations. The two parental Thitarodes species exhibited
significant differences in adult fresh weights and body lengths but not in pupal emergence rates.
Hybridization of T. shambalaensis and Thitarodes sp. allowed producing a new generation. The
SD♂× GG♀ population showed a higher population trend index than the SD♂× SD♀ population,
implying increased population growth compared with the male parent. The sensitivity of the inbred
larval populations to four fungal isolates of O. sinensis also differed. This provides possibilities to
create Thitarodes/Hepialus populations with increased growth potential for the improved artificial
production of the insect hosts. The mitochondrial genomes of GG♂× GG♀, SD♂× SD♀ and SD♂×
GG♀ were 15,612 bp, 15,389 bp and 15,496 bp in length, with an A + T content of 80.92%, 82.35% and
80.87%, respectively. The A + T-rich region contains 787 bp with two 114 bp repetitive sequences,
554 bp without repetitive sequences and 673 bp without repetitive sequences in GG♂× GG♀, SD♂×
SD♀ and SD♂×GG♀, respectively. The hybrid population (SD♂×GG♀) was located in the same clade
with GG♂× GG♀, based on the phylogenetic tree constructed by 13 PCGs, implying the maternal
inheritance of mitochondrial DNA.
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1. Introduction

The Chinese cordyceps (Ophiocordyceps sinensis fungus–Thitarodes larva complex) is a
valued biological resource endemic to the Tibetan Plateau and widely used in medicinal
treatments including fatigue, asthma, respiratory and kidney diseases and as health foods,
especially in many Asian countries [1–4]. The annual yield of the natural Chinese cordyceps
has decreased sharply in recent years due to over-exploitation and habitat degradation [5,6].
Due to the extremely limited wild resource and huge market demand, this wild fungus–
insect complex costs USD 60,000–75,000 per kilogram [7–11]. Artificial cultivation of
the Chinese cordyceps is necessary to protect this valuable bio-resource and to supply
commercial trade [4,11].

The insect host species of O. sinensis belong to the family Hepialidae (Lepidoptera).
Thitarodes armoricanus Oberthür was the first host insect of O. sinensis in China to be reported
and biologically characterized [12]. Research on the diversity and taxonomy of Hepialidae
expanded rapidly during the 1980s. Abundant diversity and phylogeographical structures
for the host insects of O. sinensis have been reported [13,14]. Comparative phylogenetic
analyses have suggested coevolutionary relationships between O. sinensis and its host
insects [14,15]. It appears that most host insect species of the O. sinensis fungus have
a very narrow distribution on the Tibetan Plateau, and host insect species might vary
among different mountain ranges and even from different sides and habitats of the same
mountain [16]. Different insect host species or strains show significant differences in
morphology, biology and ecology [16–20]. Long-distance dispersal of host insects seems
very limited due to the short lifespan of the adult and the heavy abdomens of females
that carry eggs; thus most shared genotypes are between strains from adjacent geographic
regions [14]. Given the complex and harsh ecological environment in the Tibetan Plateau,
most Hepialidae species have a narrow-area distribution type [21]. Of ninety-one named
Hepialidae insects spanning thirteen genera reported to be related to host insects of the
O. sinensis fungus, fifty-seven are considered potential host species of the fungus and are
distributed throughout the Tibetan Plateau [17]. However, the described insect host species
or strains of O. sinensis have never been confirmed by a hybridization technique.

Artificial cultivation of the Chinese cordyceps in low-altitude areas is successful and
contains three important milestones: mass production of the host insects, cultivation of
effective O. sinensis fungus and formation of a fruiting body from the infected insect
cadaver. The method for the large-scale artificial rearing of the Thitarodes/Hepialus insect
hosts is established [11,19,20]. Culture parameters such as food, temperature, humidity
and culturing time influence the efficiency of artificial cultivation of different insect species
and stages [19,20]. The natural foods of Thitarodes/Hepialus larvae are tender roots and
buds of plants of the Polygonaceae family such as Polygonum viviparum, P. sphaerostachyum
and P. capitatum, as well as other plants in nine different families (e.g., Ranunculaceae,
Juncaceae and Cyperaceae) [22]. The roots of Potentilla anserina and carrots (Daucus carota)
are favorite larval foods for indoor cultivation [4,23]. Thitarodes species have long and
unusual life cycles; it takes 263 to 494 days for Thitarodes jianchuanensis and 443 to 780 days
for T. armoricanus to complete the life cycle, including egg, larval instars L1-L9, pupa and
adult; the larvae can develop into pupae from the L7, L8 or L9 instar [20]. During the long
life cycle and several successive generations in the culture rooms, the insects are usually
prone to deterioration [19,24]. How to overcome this common phenomenon during insect
host rearing is a key issue for the commercial production of the Chinese cordyceps.

Various O. sinensis strains from different locations in the Tibetan Plateau have been
isolated [2,14,25] and cultured in solid media and liquid media to obtain conidia and
blastospores [26]. Stable fruiting body production of O. sinensis with mature ascospores
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by artificial media without living insects has also been successfully realized [25]. Two
efficient methods are used to infect the host larvae with the O. sinensis fungus: the larvae
are routinely infected by the mature ascospores collected from the wild Chinese cordyceps
or from the artificial fruiting bodies, and the larvae are injected into the hemocoel with
the blastospores from the liquid culture containing maltose as a carbon source [26]. In the
hemolymph of the larvae, the spindle blastospores exhibit a dimorphic developmental
process [26] and may produce exponentially by budding growth and/or grow into elon-
gate hyphal bodies (pseudohyphae) and hyphae by apical growth under the induction of
unknown factors [26,27], as reported in the dimorphic fungi Candida albicans and Ustilago
maydis [28] and the entomopathogenic fungus Metarhizium rileyi [29]. The living infected
host larvae might harbor the spindle blastospores in the hemolymph for several months,
contrary to other entomopathogenic fungi such as M. anisopliae and Beauveria bassiana
which cause the death of their host larvae within a few days [30,31]. The slow mummifi-
cation of the larvae post infection is an obstacle for cost-efficient production of Chinese
cordyceps [4,8,11]. Selection of an O. sinensis fungus isolate with high mummifying po-
tential and a Thitarodes insect host species or strain with high sensitivity to the fungal
infection should contribute to overcoming this obstacle in the artificial production of the
Chinese cordyceps.

Mitochondrial genome sequences have been widely used as molecular markers for
diverse evolutionary analyses because of their unique features, including coding con-
tent conservation, maternal inheritance and rapid evolution [32]. Insect mitochondrial
genomes are usually small closed-circular molecules (15–20 kb) containing 13 protein-
coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes,
and a large non-coding element termed the A + T-rich or control region [21,33,34]. The
mitochondrial gene order also provides important evidence for establishing genome evo-
lutionary relationships [34,35]. Due to the improved sequencing technology, insect mito-
chondrial genomes have been heavily sequenced in recent years. Eight Thitarodes/Hepialus
mitochondrial genomes are reported, including Thitarodes renzhiensis (accession number
HM744694; size 16,173 bp), Thitarodes yunnanensis (former Ahamus yunnanensis) (accession
number HM744695; size 15,816 bp) [21,36], Thitarodes pui (accession numbers KF908880 and
MK599283; sizes 15,064 bp and 15,928 bp) [21,37], Hepialus xiaojinensis (accession number
KT834973; size 15,397 bp) [38], Hepialus gonggaensis (accession number KP718817; size
15,940 bp) [39], Thitarodes sejilaensis (accession number KU053201; size 15,290 bp;) [40],
Thitarodes sp. (accession number KX527574; size 16,280 bp) [41] and Thitarodes damxungensis
(accession number MK648145; size 15,362 bp) [21]. With respect to a total of 57 recognizable
potential host species of the fungus, the information of the mitochondrial genomes of
existing ghost moths is still very limited, and no reports are available on the mitochondrial
genomes from the hybrids.

Insight into the biological and molecular characters of the inbred and hybrid pop-
ulations is elementary for the effective artificial cultivation and evolutionary analysis of
these Thitarodes insects. In this study, the hybridization between T. shambalaensis and
an undescribed Thitarodes species from two different locations in the Tibetan Plateau
was demonstrated. The fitness parameters (such as the number of eggs per female, egg
hatching rates, larval fresh weights, larval survival rates, female and male pupal ratios,
population trend indexes), larval sensitivity to the fungal infection and mitochondrial
genomes of the resulting inbred and hybrid populations were determined to evaluate
the hybridization effects.

2. Materials and Methods
2.1. Morphological and Molecular Characteristics of Thitarodes Insect Populations

The pupae of two Thitarodes insect populations were, respectively, from the mountains
in Gongga (referred to as GG♂× GG♀) (2476 m, 29◦70′ N, 102◦03′ E) and Shade (referred
to as SD♂× SD♀) (4560 m, 29◦65′ N, 101◦31′ E), Kangding in Sichuan Province, China.
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The valve pattern of the male genitalia is an important characteristic for the morpho-
logical identification of Hepialidae insects [42,43]. The female and male Thitarodes pupae
were differentiated by their genitalia. Briefly, in the last abdominal segment, females exhibit a
long longitudinal suture linked to the previous abdominal segment without papillary struc-
tures, whereas males exhibit a short longitudinal suture between two papillary structures
that is not linked to the previous abdominal segment [44]. The males of GG♂× GG♀ and
SD♂× SD♀ populations were dissected to show the valve patterns in the laboratory. For the
molecular identification of these Thitarodes populations, Cytochrome b and cox1 sequences
were amplified with the primers CB1 (TATGTACTACCATGAGGACAAATATC) and CB2
(ATTACACCTCCTAATTTATTAGGAAT) [42,45] and LCO1490 (GGTCAACAAATCATAAA-
GATATTGG) and HCO2198 (TAAACTTCAGGGTGACCAAAAAATCA) [46], respectively.

2.2. Inbred and Hybrid Thitarodes Populations

Four inbred and hybrid combinations (GG♂× GG♀, SD♂× SD♀, SD♂× GG♀, GG♂× SD♀)
were created with 50 female and 75 male adults for each combination, but the population
GG♂× SD♀ could not be established due to technical issues related to climatization of the culture
room. Three replicates were set up for each combination. The male and female pupae were
housed in cartons (L = 104 cm; W = 50 cm; H = 50 cm) with moist moss at 9–17 ◦C and 50–80%
relative humidity. When the adults emerged, they were housed in small cylindric nets (D = 28 cm;
H = 32 cm) to allow mating for 3–5 days. The collected eggs from the mated females were trans-
ferred to a culture room and maintained at 9–13 ◦C to establish the experimental populations in
the Institute of Zoology, Dongguan (43 m above sea level), Guangdong Province, China.

To evaluate the development, survival, fertility and sensitivity to the fungal infection
in the resulting Thitarodes populations, 600 eggs from each inbred or hybrid combination
were surface-sterilized for 3 min with a solution containing 2.5 mL of 4 M NaOH, 0.5 mL of
12% NaOCl and 21.5 mL of distilled water [47], rinsed 3 times with sterile distilled water
and placed in a sterile plastic container (L = 48 cm; W = 35 cm; H = 17 cm) containing 2 kg
coconut peat (65% of water content) and 1 kg Potentilla anserina roots as food at 9–13 ◦C. For
each hybridization combination, 30 containers were established. When the larvae reached
the third instar, they were individualized into a plastic cup (D = 3.5 cm; H = 6.5 cm) with
the same peat and food as above (15 g coconut peat and 15 g food for each cup) to avoid
larval cannibalism [20]. Fresh food was added to each cup every 2 months to obtain 6th
instar larvae (average fresh weight = 0.52 ± 0.03 g) for fungal infection by the injection
method. The larval number in each container was recorded, and the average hatch rate was
calculated. At the sample date (every 30 days), the survival rates, longevity, fresh weight,
body length and sex proportion of pupae and adults and fecundity were recorded.

2.3. O. sinensis Fungal Isolates

KD, YN, XZ and QH fungal isolates of O. sinensis isolated from the fruiting bodies of
wild Chinese cordyceps, respectively, from Sichuan, Yunnan, Tibet and Qinghai, China,
were cultured on PPDA medium (liquid PPDA medium: 200 g potato extract, 20 g glucose,
10 g peptone, 1.5 g KH2PO4, 0.5 g MgSO4, 20 mg vitamin B1 and 1000 mL distilled water;
solid PPDA medium: 15% agar in liquid PPDA medium) at 13 ◦C. The fungal isolates were
identified by using the amplified sequence from the internal transcribed spacer (ITS; ITS1-
5.8S-ITS2) of the nuclear ribosomal DNA as described by [48]. The identified O. sinensis
isolates were preserved at −80 ◦C in the Institute of Zoology, Guangdong Academy of
Science, Guangzhou, China.

The fungal colonies cultured on the PPDA plates at 13 ◦C for 60 days were transferred
to 250 mL flasks containing 150 mL liquid PM medium (200 g potato extract, 20 g maltose,
10 g peptone, 1.5 g KH2PO4, 0.5 g MgSO4, 20 mg vitamin B1 and 1000 mL distilled
water) [26]. The flasks were incubated on a 120 rpm shaker at 13 ◦C, the blastospores from
the flasks were harvested after 50 days by using three layers of sterile lens papers to remove
hyphae and large particles, and the filtered solution was centrifuged at 8000 rpm for 15 min
at 10 ◦C. The harvested blastospores were re-suspended in sterile phosphate-buffered
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saline (PBS; pH 7.0) at a concentration of 3.0 × 106 blastospores per mL and kept at 4 ◦C
for less than 3 days before use for larval infection.

2.4. Larval Infection of Inbred Populations by O. sinensis Isolates

The larvae from 2 inbred populations (GG♂× GG♀, SD♂× SD♀) were injected with
KD, YN, XZ or QH fungal isolates of O. sinensis. An aliquot of 4 µL blastospore suspension
containing 1.2 × 104 blastospores was injected into each 6th instar larva by a microinjection
system (IM-31; Narishige, Tokyo, Japan). One hundred and eighty larvae were used for
each replicate, and three replicates were set for each injection. Larvae injected with PBS
buffer or without any injection were set as controls. The injected larvae were reared at 4 ◦C
for one week and then transferred to a culture room at 13 ◦C. After 90 days, about 10 µL of
hemolymph of each injected larva (6th instar) was sampled to confirm the presence of the
growing blastospores stained by Calcofluor White (Sigma, Kanagawa, Japan) and observed
by a fluorescence microscope (IX73; Olympus, Tokyo, Japan). The injected larvae were
reared at 13 ◦C until the larvae became stiff and were coated with growing mycelia. The
mummified larvae with head upward were then planted into soil of 55–60% humidity to
induce the formation of stroma at 4 ◦C. The survival and mummification of the injected
larvae were monthly checked. Data on larval infection of the hybrid populations could not
be gathered due to an insufficient number of larvae available for fungal injection.

2.5. Analysis of the Mitochondrial Genomes

Three male adults from GG♂and SD♂and three larvae from SD♂× GG♀ in dry ice
were used for mitochondrial genome sequencing by Shanghai BIOZERON Co., Ltd., with
the routine method [41]. The nucleotide sequences of protein-coding genes (PCGs) from
the annotated mitochondrial genomes were translated to protein sequences using the
invertebrate mitochondrial code. For the base composition of the nucleotide sequences,
the composition skewness was calculated as follows: AT skew = [A − T]/[A + T], GC
skew = [G − C]/[G + C] [49]. Thirteen PCGs and two rRNA genes were inferred based on
comparison with mitochondrial genomes of 10 previously sequenced Hepialidae species
(T. damxungensis, T. gonggaensis, T. pui, T. renzhiensis, T. sejilaensis, Thitarodes sp., H. xiaoji-
nensis, T. yunnanensis, Napialus hunanensis, Endoclita signifer). The location and secondary
structures of the 22 tRNA were predicted by tRNAscan-SE (http://lowelab.ucsc.edu/
tRNAscan-SE/) (accessed on 13 November 2020). After the removal of the termination
codon, the codon usage frequency and the first, second and third base use frequency of the
codon were calculated using MEGA 7.0. The overlapping regions and intergenic spacers
between genes were manually counted. The entire A + T-rich region was subjected to a
search for the tandem repeats using the Tandem Repeats Finder program [50].

To construct the phylogenetic relationships within Hepialidae in Lepidoptera, 10
complete mitochondrial genomes of the above hepialid species were downloaded from
GenBank. Drosophila melanogaster was used as an outgroup. A maximum likelihood (ML)
tree was built in MEGA 7.0 using the nucleotide sequence of 13 PCGs, based on the “find
best DNA/protein models (ML)”. The “GTR + G” model was chosen for phylogenetic
analysis because it produced the lowest values for both the BIC (Bayesian information
criterion) and the AICc (corrected Akaike information criterion). The confidence values of
the ML tree were evaluated via a bootstrap test with 1000 iterations.

2.6. Data Analysis

The data are expressed as means ± SE. The average survival rates, fresh weight, body
length and sex proportions of pupae and adults at the sample time points were determined.
In addition, a population trend index (I) was calculated with I = PII/PI, where PI = numbers
of pupae in the parental generation, and PII = numbers of pupae in the next generation [20].
The data were analyzed with SPSS 21.0 (SPSS Inc., Chicago, IL, USA) to compare the
differences among the treatments. Differences among means by Tukey’s multiple-range
test were considered significant at p < 0.05.

http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
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3. Results
3.1. Morphological and Molecular Identification of Two Thitarodes Species

The SD♂× SD♀ population from Sichuan Province, China, was considered to be an
undescribed Thitarodes species, by the phylogenetic analysis, although the valve pattern
of the male genitalia of SD♂× SD♀ resembled that of Thitarodes kangdingensis (Figure 1)
(Prof. Zhiwen Zou, personal communication). The GG♂× GG♀ population also from
Sichuan Province, China, was confirmed to be Thitarodes shambalaensis [43], based on the
valve pattern of the male genitalia (Figure 1) and the sequences of the cox1 fragment. The
complete cox1 sequences of the two species were 1531 bp and were submitted to GenBank
(accession numbers OK104111 and OK047724, respectively).
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3.2. Development from the Pupae to Next-Generation Pupae in Inbred and Hybrid Populations

The data on the fresh weight and body length of the pupae from the parental species
were collected. The fresh weights were 0.88 ± 0.04 g and 0.67 ± 0.03 g for SD♂× SD♀ and
GG♂× GG♀ female pupae and 0.59 ± 0.05 g and 0.45 ± 0.03 g for SD♂× SD♀ and GG♂×
GG♀ male pupae, respectively. The body lengths were 2.73 ± 0.21 cm and 2.50 ± 0.05 cm
for SD♂× SD♀ and GG♂× GG♀ female pupae and 2.46 ± 0.08 cm and 2.25 ± 0.04 cm for
SD♂× SD♀ and GG♂× GG♀ male pupae, respectively (Table 1). The pupae developed into
adults in 30–45 days at 9–17 ◦C. No significant differences were found for the fresh weights
and body lengths of the pupae between the two populations, except for the fresh weight of
female pupae, which differed significantly between the populations (Table 1). The ratios
of females and males in the pupae (SD♂× SD♀: 1.27 ± 0.16; GG♂× GG♀: 1.04 ± 0.06)
and adults (SD♂× SD♀: 0.89 ± 0.06; GG♂× GG♀: 0.87 ± 0.03) were also not significant.
The emergence rates were 38.38% and 48.96% for SD♂× SD♀ and GG♂× GG♀ females
and 43.57% and 57.58% for SD♂× SD♀ and GG♂× GG♀ males, respectively, showing no
significant differences between the two parental insect populations (Table 1).

The females and males of the GG♂× GG♀ population were mating all day and night,
like those of SD♂× GG♀. However, those of SD♂× SD♀ usually mated in the evening and
at night. The adults did not feed, and their life span usually lasted 5–7 days at 9–17 ◦C.
Contrary to the clean eggs from GG♂× GG♀, the eggs from SD♂× SD♀ were coated with
a sticky secretion. The average number of eggs per female for SD♂× SD♀ (512 ± 3) was
significantly higher than that for the other populations, whereas the number of eggs in one
milliliter (3976 ± 109) was higher and the weight of one thousand eggs (0.18 ± 0.01 g) was
lower for SD♂× SD♀ compared with other populations, indicating the smaller egg size of
SD♂× SD♀ (Table S1). The hatching rate for SD♂× GG♀ (12.62 ± 2.80%) was significantly
lower than that for the other populations (Table S1). Thus, these two insect populations
exhibited characteristic differences in mating behavior, egg size and the presence of a sticky
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secretion coating the eggs but showed no significant differences in the ratio of female and
male pupae or in the pupal emergence rates.

Table 1. Morphological and biological characters of Thitarodes sp. and T. shambalaensis.

Strains Thitarodes sp. T.shambalaensis p-Values

Pupae

Female fresh weight (g) 0.88 ± 0.04 a 0.67 ± 0.03 b p = 0.014

Male fresh weight (g) 0.59 ± 0.05 a 0.45 ± 0.03 a p = 0.271

Female body length (cm) 2.73 ± 0.21 a 2.50 ± 0.05 a p = 0.335

Male body length (cm) 2.46 ± 0.08 a 2.25 ± 0.04 a p = 0.404

Ratio of females and males 1.27 ± 0.16 a 1.04 ± 0.06 a p = 0.254

Female emergence rate (%) 38.38 ± 5.44 a 48.96 ± 2.75 a p = 0.231

Male emergence rate (%) 43.57 ± 6.79 a 57.58 ± 2.19 a p = 0.188

Color Light to black yellow Light to dark yellow

Adults

Female fresh weight (g) 0.48 ± 0.02 a 0.42 ± 0.04 a p = 0.223

Male fresh weight (g) 0.20 ± 0.01 b 0.22 ± 0.01 a p = 0.013

Female body length (cm) 2.77 ± 0.03 a 2.77 ± 0.07 a p = 1.000

Male body length (cm) 2.13 ± 0.03 b 2.43 ± 0.03 a p = 0.003

Ratio of females and males 0.89 ± 0.06 a 0.87 ± 0.03 a p = 0.800

Female longevity (day) 6.0 ± 0.6 a 5.3 ± 0.3 a p = 0.374

Male longevity (day) 6.0 ± 0.6 a 5.3 ± 0.3 a p = 0.374

Oviposition period (day) 5.3 ± 1.2 a 4.3 ± 0.3 a p = 0.621

Mating time Evening and night All day and night

Females
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The GG♂× GG♀ and SD♂× SD♀ populations were hybridized in the culture room,
and the larvae successfully became pupae in the resulting hybrid populations. The fresh
weights of the larvae from the inbred and hybrid populations did not vary significantly
with culture times in 12 months (Figure S1). The survival rates of the larvae were stable
at 80–100% in the first 10 months but decreased sharply after 11 months, especially in the
SD♂× SD♀ and SD♂× GG♀ populations (Figure S2), due to the increasing larval mortality
before pupation. The larvae became pupae after 22 months. The ratios of the resulting
female and male pupae were 0.28 ± 0.15 for SD♂× SD♀, 0.61 ± 0.05 for SD♂× GG♀ and
0.78 ± 0.03 for GG♂× GG♀, which were significantly different. Population trend index
values were quite variable, with I = 0.01 for SD♂× SD♀, 0.32 for SD♂× GG♀ and 2.25 for
GG♂× GG♀, indicating different proportions of pupal numbers in the previous generation
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over the next generation in the inbred and hybrid populations. The adults emerged from
the pupae after 23 months. Unfortunately, the experiments were discontinued due to the
emergence of too few adults caused by the high mortality (>70%) of the pupae. Nonetheless,
the above results indicate that hybridization of Thitarodes sp. and T. shambalaensis allowed
harvesting a next generation of adults at least from the SD♂× GG♀ population.

3.3. Larval Infection of Inbred Populations by O. sinensis Isolates

As shown in Table S2, the percentages of the larvae carrying the blastospores varied
at 120 days post infection, from 20.37 ± 5.38% for the larvae of GG♂× GG♀ injected with
fungal isolate XZ to 62.96 ± 1.96% for the larvae of GG♂× GG♀ injected with fungal isolate
QH; for SD♂× SD♀, the mummification rate of the larvae containing fungal isolate XZ was
significantly lower than that of those containing fungal isolates KD, QH and YN; for GG♂×
GG♀, the mummification rate of the larvae containing fungal isolate XZ was significantly
lower than that of those containing fungal isolates KD, QH and YN. For fungal isolates KD,
XZ and YN, no significant differences in mummification rate were observed among the
two infected larval populations (Table S2). Sixty and 90 days after infection, no significant
differences in the percentages of the larvae carrying blastospores were found among both
larval populations. Although the larval hemocoel was filled with growing blastospores
after 90 days, the fresh weights of the larvae in both populations did not differ markedly
(Table S3).

3.4. Mitochondrial Genome Analysis

Organization and base composition. The complete mitochondrial genomes of two
inbred and one hybrid Thitarodes populations (SD♂× SD♀, GG♂× GG♀ and SD♂× GG♀)
were a circular DNA molecule of 15,389 bp, 15,612 bp and 15,496 bp in length, respectively
(accession number: MZ675586, MZ675587 and MZ675588) (Figure 2). Like most other
metazoan mitochondrial genomes, each of three Thitarodes mitochondrial genomes con-
tained 13 PCGs, 22 tRNAs, 2 rRNAs and a large non-coding control region. Among the 37
genes in each mitogenome, there were 9 PCGs and 14 tRNAs encoded in the heavy strand,
while 4 PCGs, 8 tRNAs and 2 rRNAs were encoded in the light strand. The mitochondrial
genome structure was compact. The gene order of the Thitarodes mitochondrial genomes
was uniform (Figure 2).

The mitochondrial genome content of these three Thitarodes populations was A + T-biased,
ranging from 80.87% (SD♂× GG♀) to 82.35% (SD♂× SD♀) (Table 2). The A + T content of the
SD♂× SD♀ mitochondrial genome was 82.35%, which was larger than that of the other two
mitochondrial genomes. The AT skew in the forward strand of the SD♂× SD♀ mitochondrial
genome was slightly positive (0.008), which was different from the other two mitochondrial
genomes (0.020) (Table 2). Likewise, The GC skew of the SD♂× SD♀ mitogenome (−0.182)
was also obviously different from those of the other two (−0.231 to −0.234).

Protein-coding genes. The 13 PCGs in these mitochondrial genomes included 7 NADH
dehydrogenase subunits (nad1-6, nad4L), 3 cytochrome c oxidase subunits (cox1-3), 2 ATPase
subunits (atp6, atp8) and one cytochrome b gene (cytb). The lengths of the 13 PCGs in
the mitochondrial genomes of SD♂× SD♀, GG♂× GG♀ and SD♂× GG♀ were 11,073,
11,067 and 11,067, respectively (Table 2). When the termination codons were excluded, the
13 PCGs in SD♂× SD♀, GG♂× GG♀ and SD♂× GG♀ were composed of 3680, 3678 and
3678 codons, respectively. These findings indicate a high degree of similarity in the PCG
code number among the three mitochondrial genomes (Figure 3).
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Table 2. Comparison of the complete mitochondrial genomes of three Thitarodes populations.

Mitochondrial
Genome SD♂ GG♂ SD♂× GG♀

Overall length (bp) 15,389 15,612 15,496
A% 41.51 41.26 41.22
T% 40.84 39.66 39.64
C% 10.43 11.75 11.78
G% 7.22 7.33 7.36

A + T% 82.35 80.92 80.87
AT skew = (A −

T)/(A + T) 0.008 0.020 0.020

GC skew = (G −
C)/(G + C) −0.182 −0.232 −0.231

PCGs: length (bp) 11,073 11,067 11,067
PCGs: A + T% 80.78 79.00 78.97

tRNA: length (bp) 1474 1478 1477
tRNA: A + T% 84.46 83.42 83.41

rRNA: length (bp) 2132 2114 2114
rRNA: A + T% 85.60 85.10 85.10

A + T-rich length
(bp) 554 787 673

A + T-rich A + T% 91.70 89.83 90.64

A + T-rich base
constitution

No repeat sequence.
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trnC R 
1307–

1373 
−8 67   

1297–

1367 
−8 71   

1294–

1364 
−8 71   

trnY R 
1379–

1444 
5 66   

1374–

1440 
6 67   

1371–

1437 
6 67   

cox1 F 
1447–

2977 
2 1531 CGA T 

1443–

2973 
2 1531 CGA T 

1440–

2970 
2 1531 CGA T 

trnL2 F 
2978–

3046 
0 69   

2974–

3042 
0 69   

2971–

3039 
0 69   

cox2 F 
3049–

3730 
2 682 ATG T 

3045–

3726 
2 682 ATG T 

3042–

3723 
2 682 ATG T 

trnK F 
3731–

3801 
0 71   

3727–

3797 
0 71   

3724–

3794 
0 71   

Base sequences.
A = 113 bp, B = 114 bp

Insects 2021, 12, x FOR PEER REVIEW 10 of 19 
 

 

AT skew = (A 

− T)/(A + T) 
0.008 0.020 0.020 

GC skew = (G 

− C)/(G + C) 
−0.182 −0.232 −0.231 

PCGs: length 

(bp) 
11,073 11,067 11,067 

PCGs: A + T% 80.78 79.00 78.97 

tRNA: length 

(bp) 
1474 1478 1477 

tRNA: A + T% 84.46 83.42 83.41 

rRNA: length 

(bp) 
2132 2114 2114 

rRNA: A + 

T% 
85.60 85.10 85.10 

A + T-rich 

length (bp) 
554 787 673 

A + T-rich A + 

T% 
91.70 89.83 90.64 

A + T-rich 

base constitu-

tion 

No repeat sequence. 

 

Two repeat base sequences.  

A = 113 bp, B = 114 bp, C = 114 bp 

 

Base sequences.  

A = 113 bp, B = 114 bp 

 

Composition 13PCGs +22tRNAs + 2rRNAs + non-coding region 

intergenic ar-

rangement 

9 PCGs and 14 tRNAs were in the F chain, and 4 PCGs, 8 tRNAs and 2rRNAs were in the R chain. The 

arrangement of each gene in the three self-measured mitochondrial genomes was consistent. 

Gene Chain 
Loca-

tion 
Spacer 

Lengt

h 

Initia-

tion 

code 

Ter-

mina-

tion 

code 

Loca-

tion 
Spacer 

Lengt

h 

Initia-

tion 

code 

Ter-

mina-

tion 

code 

Loca-

tion 
Spacer 

Leng

th 

Initi-

ation 

code 

Ter-

mina-

tion 

code 

trnI F 1–67 - 67   1–65 - 65   1–64 - 64   

trnQ R 78–146 10 69   63–131 −3 69   62–130 −3 69   

trnM F 158–227 11 70   
151–

220 
19 70   

148–

217 
17 70   

nad2 F 
264–

1247 
36 984 ATA TAA 

257–

1240 
36 984 ATA TAA 

254–

1237 
36 984 ATA TAA 

trnW F 
1249–

1314 
1 66   

1239–

1304 
−2 66   

1236–

1301 
−2 66   

trnC R 
1307–

1373 
−8 67   

1297–

1367 
−8 71   

1294–

1364 
−8 71   

trnY R 
1379–

1444 
5 66   

1374–

1440 
6 67   

1371–

1437 
6 67   

cox1 F 
1447–

2977 
2 1531 CGA T 

1443–

2973 
2 1531 CGA T 

1440–

2970 
2 1531 CGA T 

trnL2 F 
2978–

3046 
0 69   

2974–

3042 
0 69   

2971–

3039 
0 69   

cox2 F 
3049–

3730 
2 682 ATG T 

3045–

3726 
2 682 ATG T 

3042–

3723 
2 682 ATG T 

trnK F 
3731–

3801 
0 71   

3727–

3797 
0 71   

3724–

3794 
0 71   

Composition 13PCGs +22tRNAs + 2rRNAs + non-coding region
intergenic

arrangement
9 PCGs and 14 tRNAs were in the F chain, and 4 PCGs, 8 tRNAs and 2rRNAs were in the R chain. The arrangement of each gene in the three self-measured mitochondrial

genomes was consistent.
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Table 2. Cont.

Gene Chain Location Spacer Length Initiation
code

Termination
code Location Spacer Length Initiation

code
Termination

code Location Spacer Length Initiation
code

Termination
code

trnI F 1–67 - 67 1–65 - 65 1–64 - 64
trnQ R 78–146 10 69 63–131 −3 69 62–130 −3 69
trnM F 158–227 11 70 151–220 19 70 148–217 17 70
nad2 F 264–1247 36 984 ATA TAA 257–1240 36 984 ATA TAA 254–1237 36 984 ATA TAA
trnW F 1249–1314 1 66 1239–1304 −2 66 1236–1301 −2 66
trnC R 1307–1373 −8 67 1297–1367 −8 71 1294–1364 −8 71
trnY R 1379–1444 5 66 1374–1440 6 67 1371–1437 6 67
cox1 F 1447–2977 2 1531 CGA T 1443–2973 2 1531 CGA T 1440–2970 2 1531 CGA T
trnL2 F 2978–3046 0 69 2974–3042 0 69 2971–3039 0 69
cox2 F 3049–3730 2 682 ATG T 3045–3726 2 682 ATG T 3042–3723 2 682 ATG T
trnK F 3731–3801 0 71 3727–3797 0 71 3724–3794 0 71
trnD F 3801–3866 −1 66 3797–3861 −1 65 3794–3858 −1 65
atp8 F 3867–4031 0 165 ATA TAA 3862–4023 0 162 ATA TAA 3859–4020 0 162 ATA TAA
atp6 F 4028–4702 −4 675 ATA TAA 4020–4694 −4 675 ATA TAA 4017–4691 −4 675 ATA TAA
cox3 F 4705–5490 2 786 ATA TAA 4697–5482 2 786 ATA TAA 4694–5479 2 786 ATA TAA
trnG F 5493–5558 2 66 5485–5550 2 66 5482–5547 2 66
nad3 F 5559–5912 0 354 ATT TAG 5551–5904 0 354 ATT TAG 5548–5901 0 354 ATT TAG
trnA F 5911–5978 −2 68 5903–5971 −2 69 5900–5968 −2 69
trnR F 5982–6047 3 66 5975–6040 3 66 5972–6037 3 66
trnN F 6055–6120 7 66 6045–6110 4 66 6042–6107 4 66
trnS1 F 6121–6181 0 61 6111–6170 0 60 6108–6167 0 60
trnE F 6182–6247 0 66 6171–6235 0 65 6168–6232 0 65
trnF R 6258–6324 10 67 6238–6304 2 67 6235–6301 2 67
nad5 R 6325–8020 0 1696 ATA T 6305–7997 0 1693 ATA T 6302–7994 0 1693 ATA T
trnH R 8063–8129 42 67 8043–8109 45 67 8040–8106 45 67
nad4 R 8131–9471 1 1341 ATG TAA 8111–9451 1 1341 ATG TAA 8108–9448 1 1341 ATG TAA

nad4L R 9471–9746 −1 276 ATA TAA 9451–9726 −1 276 ATA TAA 9448–9723 −1 276 ATA TAA
trnT F 9767–9832 20 66 9747–9812 20 66 9744–9809 20 66
trnP R 9833–9897 0 65 9813–9876 0 64 9810–9873 0 64
nad6 F 9900–10,424 2 525 ATA TAA 9879–10,403 2 525 ATA TAA 9876–10,400 2 525 ATA TAA
cytb F 10,424–11,569 −1 1146 ATG TAA 10,403–11,548 −1 1146 ATG TAA 10,400–11,545 −1 1146 ATG TAA

trnS2 F 11,575–11,645 5 71 11,557–11,629 8 73 11,554–11,626 8 73
nad1 R 11,661–12,572 15 912 ATA TAA 11,645–12,556 15 912 ATA TAA 11,642–12,553 15 912 ATA TAA
trnL1 R 12,594–12,662 21 69 12,578–12,648 21 71 12,575–12,645 21 71
rrnL R 12,638–13,992 −25 1355 12,649–13,984 0 1336 12,646–13,981 0 1336
trnV R 13,993–14,057 0 65 13,984–14,048 −1 65 13,982–14,046 −1 65
rrnS R 14,059–14,835 1 777 14,048–14,825 −1 778 14,046–14,823 −1 778
A +

T-rich 14,836–15,389 554 14,826–15,612 787 14,824–15,496 673

Note: F and R refer to the majority and minority strands, respectively. Positive values of intergenic regions indicate gap nucleotides; a negative value indicates overlapped nucleotides. Position numbers refer to
positions on the majority strand.
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The codon frequency analysis of the SD♂× SD♀, GG♂× GG♀ and SD♂× GG♀ mitochon-
drial genomes showed that a total of 61 codons were used for transcription, with the absence
of UAG (Figure 3). The GG♂× GG♀ mitochondrial genomes had 10 more codons than SD♂×
SD♀. However, the most frequently used codon in the three mitochondrial genomes was UUA
for Leu, followed by AUU for Ile (Figure 3).

The fraction of codons encoding the hydrophobic amino acids (Met, Trp, Phe, Val, Leu,
Ile, Pro, Ala) in the mitochondrial genomes of SD♂× SD♀, GG♂× GG♀ and SD♂× GG♀
were 56.91%, 56.60% and 56.62%, respectively (Figure 3), reflecting the biased usage of
A/T nucleotides and the hydrophobic nature of respiratory membrane complexes. The
codon distribution patterns of the three compared mitochondrial genomes (Figure 3) were
consistent with the finding that Ile, Leu, Phe, Ser, Asn and Tyr are the six amino acids most
frequently used, whereas Lys is rare in Hepialidae [51].

All PCGs (except cox1) in the three mitochondrial genomes began with a canonical
start codon (ATN or NTG). More specifically, eight PCGs (cox3, atp6, atp8, nad1, nad2, nad4L,
nad5 and nad6) started with ATA, one PCG (nad3) with ATT, three PCGs (nad4, cytb and
cox2) with ATG and one PCG (cox1) with CGA (Table 2). For the stop codon, nine PCGs
(atp6, atp8, nad1, nad2, nad4, nad4L, nad6, cox3 and cob) were terminated with the typical
stop codon TAA, while three PCGs (nad5, cox1 and cox2) located upstream of tRNAs ended
with T, and one PCG (nad3) ended with TAG (Table 2).

Transfer RNA and ribosomal RNA genes. The predicted cloverleaf structures for 22
tRNA genes are presented in Figure S3. For three mitochondrial genomes of SD♂× SD♀,
GG♂× GG♀ and SD♂× GG♀, the rrnL (16S rRNA) and rrnS (12S rRNA) genes were
identified, being 1355 bp, 1336 bp and 1336 bp and 777 bp, 778 bp and 778 bp in size,
respectively, falling into the reported range for the Hepialidae (1324–1375 bp, 740–781
bp) [41] (Table 2). The rrnL gene was located between trnL1 (TAG) and trnV (TAC), while
rrnS was located between trnV (TAC) and the A + T-rich region (Table 2 and Figure 2).
The A + T percentages of rRNA in three mitochondrial genomes were 85.10% to 85.60%.
These rRNA characteristics are consistent with those observed in other Lepidoptera [41].
Twenty-two tRNAs were encoded in two mitochondrial genomes of the GG♂× GG♀ and
SD♂× GG♀ populations, ranging from 60 bp to 73 bp in size and spread across the entire
genome. SD♂× SD♀ ranged from 61 bp to 71 bp. All tRNAs were shown to be folded
into the expected clover-leaf secondary structure except for trnS1 (UCU), which lacks the
dihydrouridine (DHU) loop (Figure S3). This feature is common to most of the available
lepidopteran mitochondrial genomes [52].

Non-coding and overlapping genes. The complete mitochondrial genomes of
SD♂× SD♀, GG♂× GG♀ and SD♂× GG♀ were very compact with a total of 198, 190
and 188 non-coding bp dispersed among 20, 17 and 17 pairs of neighboring genes ranging
from 1 to 42 bp, 1 to 45 bp and 1 to 45 bp, respectively (Table 2).

The longest spacer sequence was located between nad5 and trnH. A 15 bp intergenic
spacer located between the trnS2 and nad1 contained the “ATACTAA” motif, which is a
common feature across lepidopteran insects [53,54], but in Hepialidae species, the non-
coding region contained an “ATACTA” sequence followed by T or C (Figure 4). The results
are consistent with the report from [40]. In addition, the complete mitochondrial genomes
of SD♂× SD♀, GG♂× GG♀ and SD♂× GG♀ were 42, 24 and 24 bp overlapping nucleotides
located in 7, 10 and 10 pairs of neighboring genes with a length from 1 to 25 bp. The longest
overlapping nucleotides (25 bp) existed between trnL1 and rrnL. The atp8 and atp6 had 4 bp
overlapping nucleotides (Figure S4). Those seven nucleotides “ATGATAA” are a common
feature across the lepidopteran mitochondrial genomes [50].
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A + T-rich region. The length and A + T content of the A + T-rich regions were
554 bp and 91.70% in SD♂× SD♀, 787 bp and 89.83% in GG♂× GG♀ and 673 bp and
90.64% in SD♂× GG♀ (Table 2). The A + T-rich region was located between the rrnS and
trnI genes. These repeat sequences accounted for some of the variations in mt genome
length (Table 2). The A + T-rich region of T. renzhiensis is the longest of all the sequenced
Lepidoptera mitochondrial genomes; the shortest is 319 bp in O. lunifer [55]. This variation
in length could be related to the number and lengths of tandem repeats in the control
region [56]. SD♂× SD♀ had no repeating sequences (Table 2). Two repeated sequences
(114 bp) in GG♂× GG♀ were detected, each with one more base A. Compared with
GG♂× GG♀, SD♂× GG♀ lacked a set of repeated sequences, and two repeated sequences
were 113 bp and 114 bp, respectively, which were only one A base apart (Table 2). This
sequence repetition is not unique. There are four repetitive sequences of 118 bp in length
in T. sejilaensis, four 107 bp repeat sequences in A. yunnanensis, eight 113 bp repeats in T.
renzhiensis [36], six 112 bp repeats in T. gonggaensis [39] and five 119 bp repeats in T. pui [37].

3.5. Phylogenetic Relationships and Taxonomic Relation

To confirm the evolutionary position of the host insects of O. sinensis, a phylogenetic
tree of 11 species using published mitochondrial genomes (10 Hepialidae, 1 outgroup) and
three genomes from the present study was constructed based on the concatenated nucleotides’
alignment of 13 PCGs or each PCG by the ML method. SD♂× SD♀ was classified into a
separate clade and GG♂× GG♀ and SD♂× GG♀ into another separate clade (Figure 5 and
Figure S5). Thus, SD♂× SD♀ and GG♂× GG♀ were confirmed to be different species. SD♂×
SD♀ was considered to be an undescribed Thitarodes species according to the present database,
and GG♂× GG♀ was identified as T. shambalenensis by the cox1 fragment. The genetical
characteristics of SD♂× GG♀ were close to those of GG♀, GG♂.
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4. Discussion

T. shambalaensis (GG♂× GG♀) identified by morphology (male genitalia) and genetic
cox1 phylogeny [43] and an undescribed Thitarodes species (SD♂× SD♀) live in different
locations in the Tibetan Plateau. In the present study, interspecific hybridization between
these two distinct ghost moth species was demonstrated in the laboratory. The developmen-
tal performance of the studied Thitarodes populations was influenced by the hybridization,
whereas the larval sensitivity to the fungal infection of the inbred populations was affected
by the parental populations.

Hybridization between two related insect species is common in the laboratory or in
the field; for instance, interspecific hybridization has been reported between Helicoverpa
armigera and Helicoverpa assulta [57], Nasutitermes corniger and Nasutitermes ephratae [58],
Coptotermes formosanus and Coptotermes gestroi [59] and between Reticulitermes flaviceps and
Reticulitermes chinensis [43]. The red imported fire ant Solenopsis invicta, black imported
fire ant Solenopsis richteri and their hybrid (S. invicta × S. richteri) are present in the field
in Tennessee, USA [60]. The studied T. shambalaensis and Thitarodes sp. do not share a
habitat in the Tibetan Plateau. It is speculated that reproductive individuals of the two
ghost moth species may not have the chance to hybridize in nature because of the limited
flying capacity of the adults. Surprisingly, these two species could mate, and the resulting
hybrids produced a next generation. Whereas the inbred SD♂× SD♀ laboratory population
was very weak (I = 0.01), the SD♂× GG♀ population exhibited a higher population trend
index (I = 0.32), implying growth potential to a certain extent from GG♂× GG♀, whose
inbred population had a higher population trend index (I = 2.25). Hybridization may
thus provide an effective method to create Thitarodes/Hepialus populations with increased
growth potential for the improved artificial production of the insect hosts.

Why these distinct Thitarodes species can be hybridized in the laboratory remains
unknown. Species are defined to be groups of interbreeding natural populations that are
reproductively isolated from other such groups [61]. The mechanism of pre-zygotic or post-
zygotic reproductive isolation is considered to be involved in speciation [62]. Pre-zygotic
reproductive isolation includes ecological and geographical habitat isolation, mating season
or time difference, genitalia structure isolation, gamete isolation and mating or mating
behavior isolation, whereas post-zygotic reproductive isolation includes survival limitation,
infertility and depression of the hybrids [62]. Certainly, in this study, the hybridization
of two Thitarodes species occurred in the laboratory, not in nature. The resulting hybrids
also produced a next generation, indicating that the post-zygotic reproductive isolation
may not prevent hybridization between two Thitarodes species, even in nature. Thus, the
successful hybridization of these two species should depend on overcoming the pre-zygotic
reproductive isolation, especially geographical habitat isolation and mating behavior
isolation. Although reproductive isolation can evolve in a number of different ways, species-
specific mate recognition by sex pheromones is believed to be a key element [63]. Similar
recognition systems are a prerequisite for the interspecific interactions of closely related
species in nature. However, in the laboratory, heterospecific partners can compulsively
interact without the species-specific mate recognition. It appears that these two Thitarodes
species can overcome the different genitalia structure and gamete isolation in the pre-
zygotic phase and reproductive isolation in the post-zygotic phase in the laboratory. These
results demonstrate the complexity of reproductive isolation and provide useful cues for
further study in the speciation mechanism.

The three complete mitochondrial genomes of GG♂× GG♀, SD♂× SD♀ and SD♂× GG♀
differ not only in the size of the genome but also in the A + T-rich region with repeat sequences.
So far, eight Thitarodes/Hepialus mitochondrial genomes are sequenced, including T. renzhiensis, T.
yunnanensis, T. pui, H. xiaojinensis, H. gonggaensis, T. sejilaensis, an undescribed Thitarodes sp. and T.
damxungensis [21]. Based on the phylogenetic tree constructed by 13 PCGs from the previously
described genomes, GG♂× GG♀ was identified as T. shambalenensis, and SD♂× SD♀ was
considered to be an undescribed Thitarodes species (Figure 5), given the reasonable threshold for
inter-species variation (2.5% genetic distance) [43,64]. Interestingly, SD♂× GG♀ was close to
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GG♂× GG♀, according to the genetical similarities, which confirms the maternal inheritance of
mitochondrial DNA. The sizes of eleven Thitarodes/Hepialus mitochondrial genomes, including
the three genomes in the present study, are variable from 15,290 bp in T. sejilaensis [40] to 16,280
bp in Thitarodes sp. [41]. Likewise, reports that the mitochondrial genomes of the hybrids of
bream fishes [65] or Acipenser schrenckii (♀) × Huso dauricus [66] are variable in gene sizes. Why
the Thitarodes hybrid and the populations sharing the same mother have different mtDNAs in
genome length, A + T content and the sizes of the A + T-rich region needs further study.

The sizes of the A + T-rich region are 787 bp with two repetitive sequences of 114
bp, 554 bp without repetitive sequences and 673 bp without repetitive sequences in
GG♂× GG♀, SD♂× SD♀ and SD♂× GG♀, respectively. The A + T region of SD♂×
SD♀ contains non-repetitive sequences only, just like that in T. damxungensis [21]. It seems
that the sizes of the A + T-rich region with repetitive sequences are quite different among
the available Hepialidae mitogenomes, e.g., those in T. damxungensis (545 bp without repeti-
tive sequences), T. pui (1030 bp with five 119 bp repeat units), T. sejilaensis (484 bp with four
118 bp repeat units), T. yunnanensis (1000 bp with four 107 bp repeat units), T. xiaojinensis
(634 bp with four 118 bp repeat units), T. gonggaensis (1133 bp with six 112 bp repeat units),
T. renzhiensis (1358 bp with eight 113 bp repeat units) and an undescribed Thitarodes. sp.
(1472 bp with nine 112 bp repeat units) [21]. The relatively fast evolutionary rate in this A +
T region appears to cause significant size variation [41].

5. Conclusions

In conclusion, the present study demonstrated that interspecific hybridization oc-
curred under laboratory conditions between two allopatric and morphologically distinct
ghost moth species T. shambalaensis and Thitarodes sp. Secondly, we found that the offspring
produced by hybridization may display increased growth potential at least from one of
the parent populations, which would greatly improve the cultivation of Thitarodes insects
for the artificial production of Chinese cordyceps. Finally, our study demonstrated that
the mitochondrial genome from the hybrid is different from those of its parents in sev-
eral features (genome length, A + T content and the sizes of the A + T-rich region) and
maternal inheritance.
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