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Simple Summary: We sequenced the complete mitochondrial genomes (mitogenomes) of Gryllotalpa
henana Cai & Niu, 1998 and the Chinese G. orientalis Burmeister, 1838 for the first time, and recon-
structed the mitogenomic phylogeny of the infraorder Gryllidea. The results show that the two
new mitogenomes are double-stranded circular molecules with a typical gene complement, gene
arrangement and base composition, the same as those of other gryllotalpids and ancestral insects.
Tandem repeats of the control region were discovered in Gryllotalpidae for the first time. Considering
both the high nucleotide divergence and the elevated ratio of Ka/Ks, the genes nad2 and nad6 may be
evaluated as potential markers for future phylogeny and species delimitation in Gryllotalpidae. The
results of phylogenetic analyses provide supports for the mitogenomic and transcriptomic trees, but
partially contradict those of the multilocus phylogenies.

Abstract: Owing to limited molecular data, the phylogenetic position of the family Gryllotalpidae is
still controversial in the infraorder Gryllidea. Mitochondrial genome (mitogenome) plays a crucial
role in reconstructing phylogenetic relationships and revealing the molecular evolution of insects.
However, only four mitogenomes have been reported in Gryllotalpidae to date. Herein, we obtained
the first mitogenomes of Gryllotalpa henana Cai & Niu, 1998 and the Chinese G. orientalis Burmeister,
1838, made a detailed comparison of all mitogenomes available in Gryllotalpidae and reconstructed
the phylogeny of Gryllidea based on mitogenomes using Bayesian inference (BI) and maximum
likelihood (ML) methods. The results show that the complete mitogenome sequences of G. henana
(15,504 bp) and G. orientalis (15,497 bp) are conserved, both exhibiting the double-stranded circular
structure, typical gene content and the ancestral insect gene arrangement. The complete mitogenome
of G. henana exhibits the lowest average AT content ever detected in Gryllotalpidae, and even
Gryllidea. The gene nad2 of both species has atypical initiation codon GTG. All tRNAs exhibit typical
clover-leaf structure, except for trnS1 lacking the dihydrouridine (DHU) arm. A potential stem–loop
structure, containing a (T)n(TC)2(T)n sequence, is detected in the control region of all gryllotalpids
investigated and is likely related to the replication initiation of the minority strand. The phylogenetic
analyses recover the six families of Gryllidea as Gryllotalpidae + (Myrmecophilidae + (Mogoplistidae
+ (Trigonidiidae + (Phalangopsidae + Gryllidae)))), similar to the trees based on transcriptomic and
mitogenomic data. However, the trees are slightly different from the multilocus phylogenies, which
show the sister-group relationship of Gryllotalpidae and Myrmecophilidae. The contradictions
between mitogenomic and multilocus trees are briefly discussed.

Keywords: Gryllidea; Gryllotalpa; mitochondrial genome; phylogeny

1. Introduction

The mitochondrial genomes (or mitogenomes) of insects are double-stranded circular
molecules with lengths ranging from approximately 15 kb to 20 kb, and generally com-
prise 37 genes with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two
ribosome RNA genes (rRNAs) and a non-coding control region (CR) [1]. Mitogenomes are
one of the most information-rich characteristics, and are useful in phylogeny, evolutionary
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history, species delimitation and population genetics [2–5]. Such studies have been well
documented in many insect groups, and greatly contributed to understanding their phy-
logeny and evolution [6–9]. In Gryllotalpidae, however, only four species have available
mitogenomes in GenBank to date [10–13].

Gryllotalpidae is a small family of mole crickets and currently consists of more than
100 species in eight extant genera worldwide [14,15]. Gryllotalpids comprise an exclusive
group that possesses a pair of digging forelegs, a tumescent pronotum, short antennae and
hind legs lacking jumping ability [16]. Owing to the limited molecular data, the phyloge-
netic position of Gryllotalpidae in Gryllidea is still controversial. Gryllotalpidae is sister
to Myrmecophilidae based on multilocus analysis [17], but has conflicting phylogenetic
positions in mitogenome-based trees [8,18].

Gryllotalpa Latreille, 1802, characterized by forelegs with four tibial dactyls, is the
largest and most widespread genus in Gryllotalpidae and comprises more than 1/2 the
species of the family recorded from all zoogeographical regions, with only 11 species
distributed in China [19,20]. The species of Gryllotalpa are similar in external morphology,
but exhibit complicated variations intraspecifically in morphology of wing venation and
male genitalia, leading to difficulties in species delimitation [21,22]. The application of
additional characteristics is necessary to resolve the taxonomic problem.

In this study, we present the first complete mitogenomes of G. henana and the Chinese
G. orientalis, make a detailed comparison of gryllotalpid mitogenomes, and reconstruct the
phylogeny of the infraorder Gryllidea, in an attempt to contribute the mitogenomic data of
Gryllotalpidae for future phylogenetic studies of Orthoptera.

2. Materials and Methods
2.1. Sample Collection and Processing

An adult female of G. henana and an adult male of G. orientalis were collected at the
Danjiang River Beach (33◦5′ N, 111◦13′ E, elevation 220–240 m) in Xichuan County, Henan
Province, China, from late May to middle June 2021. The middle leg on one side of each
specimen was stored in dry ice and sent to Biomarker Technologies, Inc. (Beijing, China) for
extraction and sequencing. The complete mitogenome sequences were generated using the
Illumina HiSeq™ 4000 system. The rest of the specimens were preserved in 75% ethanol
and placed in the Laboratory of Agricultural Entomology and Pest Control, College of
Agriculture, Ningxia University.

2.2. Sequence Analyses

The mitochondrial invertebrate genetic code was selected as the general code for all
the programs used in the present study. The raw paired reads were retrieved and quality
trimmed by CLC Genomics Workbench v7.0.4 (CLC Bio, Aarhus, Denmark) with default
parameters, using the mitogenomic sequence of G. unispina (KC894752) and G. orientalis
(AY660929) as references, respectively. The mitochondrial genomes of G. henana and the
Chinese G. orientalis were annotated with Geneious 8.1.3 [23] with the same references.
All 13 PCGs were determined by comparing with the ORF Finder and the homologous
sequences of reference mitogenomes. Twenty-two tRNAs and two rRNAs were identified
using the MITOS Web Server (http://mitos2.bioinf.uni-leipzig.de/index.py, accessed on
20 June 2022) [24]. Transfer RNAs were manually plotted, according to the secondary
structure predicted by MITOS, using Adobe Illustrator CS5 (Adobe Inc., San Jose, CA,
USA). Tandem Repeats Finder server (https://tandem.bu.edu/trf/trf.html, accessed on
17 May 2022) [25] and Mfold Web Server (http://www.mfold.org/, accessed on 17 May
2022) [26] were used to identify tandem repeats and to infer the stem-loop structure,
respectively. Mitogenome maps were drawn using OGDRAW [27].

The base composition, codon usage and relative synonymous codon usage (RSCU)
were all calculated using PhyloSuite [28]. DnaSP 6.0 [29] was used to conduct the nucleotide
diversity (Pi), and non-synonymous (Ka) and synonymous (Ks) substitutions of each PCG
among the species of Gryllotalpidae. Sliding window analyses with a window of 100 bp and
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a step size of 25 bp were performed to estimate the sequence diversity for each independent
PCG, using DnaSP 6.0. Genetic distances based on 13 PCGs were estimated using MEGA
7.0 with Kimura-2-parameter (K2P) [30]. AT-content (the proportion of A + T out of the
total) was used to assess the overall composition of the double-stranded molecule [31].
Strand asymmetry was calculated according to the formula: AT-skew = (A− T)/(A + T) and
GC-skew = (G − C)/(G + C) [32]. The AT-content, AT-skew and GC-skew were graphically
plotted by Origin 2018 (OriginLab Corp., Northampton, MA, USA). The Pi values were
graphically plotted by CorelDRAW 2020 (Corel Corp., Ottawa, ON, Canada). The genetic
distance and Ka/Ks ratios were graphically plotted by Microsoft Excel spreadsheet.

2.3. Phylogenetic Analyses

Twenty-eight species from six families of Gryllidea were chosen as the ingroup, and
four species in Tettigoniidea and one species in Schizodactyloidea were selected as out-
groups. The detailed information of species used in phylogenetic analyses were listed
in Table 1. Statistics for the basic characteristics of the mitogenome and the extraction
of PCGs and rRNAs were produced by PhyloSuite. The alignment of all 13 PCGs was
conducted in batches with MAFFT integrated into PhyloSuite with codon alignment mode
setting [33,34]. Two rRNAs were aligned using the Q-INS-i algorithm incorporated into
MAFFT-with-extensions software (http://mafft.cbrc.jp/alignment/server/, accessed on
29 March 2022) [33]. Ambiguous sites of alignments of all genes were manually removed,
and the modified alignments were concatenated using PhyloSuite [34].

Phylogenetic analyses were conducted using four different datasets: (1) P123: 13 PCGs
(10,899 bp), (2) P123R: 13 PCGs + 2 rRNAs (13,550 bp), (3) P12: 13 PCGs excluding the third
codon position (7266 bp), (4) P12R: 13 PCGs excluding the third codon position + 2 rRNAs
(9917 bp). Phylogenetic trees were reconstructed using Bayesian inference (BI) and maxi-
mum likelihood (ML) analyses, with partition strategies for analyzing mitogenome data
according to Leavitt [35]. The best-fit partition schemes and models for BI analyses were
inferred using PartitionFinder 2 [36] integrated into PhyloSuite [34], and are shown in
Supplementary Table S1. BI trees were conducted using MrBayes 3.2.6 [37] with 10 million
MCMC generations, sampling every 1000 generations. The convergence was considered to
be reached when the average standard deviation of the split frequencies was lower than
0.01. The first 25% were discarded as “burn-in”, and the remaining samples were used
to generate the majority consensus trees and estimate the posterior probabilities (PPs).
The best-fit substitution models for ML analyses were selected by ModelFinder [38], and
shown in Supplementary Table S2. ML trees were reconstructed using IQ-TREE integrated
into PhyloSuite under Ultrafast bootstrap. Bootstrap supports (BSs) were evaluated with
1000 replicates.

Table 1. Details of the species investigated and the relative information.

Superfamily Family Species Locality Size (bp) Accession No. Resource

Gryllotalpoidea Gryllotalpidae Gryllotalpa henana Cai & Niu, 1998 China 15,504 ON243749 This study
G. orientalis Burmeister, 1838 China 15,497 ON210982 This study
G. orientalis Burmeister, 1838 Korea 15,521 AY660929 [12]
G. pluvialis (Mjöberg, 1913) Australia 15,525 EU938371 [11]
Gryllotalpa sp. China 15,506 MK903562 [10]
G. unispina Saussure, 1874 China 15,513 KC894752 [13]

Myrmecophilidae Myrmecophilus kubotai Maruyama, 2004 Japan 15,345 MZ440658 [18]
M. manni Schimmer, 1911 USA 15,323 EU938370 [11]
Myrmecophilus sp. Japan 15,341 MZ440659 [18]

Grylloidea Phalangopsidae Meloimorpha japonica (Haan, 1844) China 15,880 MH580273 [39]
Cacoplistes rogenhoferi Saussure, 1877 China 16,018 MH580272 [39]

Mogoplistidae Ornebius bimaculatus (Shiraki, 1930) China 16,136 MH580274 [39]

http://mafft.cbrc.jp/alignment/server/
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Table 1. Cont.

Superfamily Family Species Locality Size (bp) Accession No. Resource

O. fuscicerci (Shiraki, 1930) China 16,368 MH580275 [39]
O. kanetataki (Matsumura, 1904) China 16,589 MH580276 [39]

Trigonidiidae Dianemobius fascipes (Walker, 1869) China 15,363 MK303550 [40]
D. furumagiensis
(Ohmachi & Furukawa, 1929) China 15,350 MK303551 [40]

Homoeoxipha nigripes Xia & Liu, 1993 China 15,679 MK303553 [40]
Natula pravdini (Gorochov, 1985) China 15,817 MG701239 [40]
Svistella anhuiensis He, Li & Liu, 2009 China 16,494 MG701238 [40]
Polionemobius taprobanensis (Walker, 1869) China 16,641 MK303552 [40]

Gryllidae Gryllodes sigillatus (Walker, 1869) China 16,369 MW365703 [41]
Gryllus bimaculatus De Geer, 1773 Korea 16,075 MT993975 [42]
Loxoblemmus doenitzi Stein, 1881 - 15,620 KX673202 [43]
Oecanthus sinensis Walker, 1869 China 16,142 KY783908 [44]
Truljalia hibinonis (Matsumura, 1917) China 15,120 KY783909 [44]
Turanogryllus eous Bey-Bienko, 1956 China 16,045 MK656322 [45]
Velarifictorus hemelytrus (Saussure, 1877) China 16,123 KU562918 [46]
Acheta domesticus (Linnaeus, 1758) Japan 16,071 MZ440654 [18]

Outgroup Tettigoniidae Alloxiphidiopsis emarginata
(Tinkham, 1944) China 16,207 MN562488 [47]

Tettigonia chinensis Willemse, 1933 - 16,244 KX057727 [48]

Gryllacrididae Camptonotus carolinensis
(Gerstaecker, 1860) - 15,211 KM657333 [49]

Schizodactylidae Comicus campestris Irish, 1986 - 15,691 KM657337 [49]
Prophalangopsidae Tarragoilus diuturnus Gorochov, 2001 China 16,144 JQ999995 [50]

3. Results and Discussion
3.1. Genome Structure and Base Composition

The complete mitogenomes of G. henana (Figure 1A) and the Chinese G. orientalis
(Figure 1B) are 15,504 bp and 15,497 bp representing the smallest sizes known in Gryllotalp-
idae (Table 1). The lengths of two new mitogenomes are quite conserved, and within the
size range of orthopteran mitogenomes (14–17 kb) [35,48,51]. Size differences of the mi-
togenomes in Gryllotalpidae are mainly due to variations in the length of the control region
(CR) and the intergenic spaces between some of the tRNAs [10–13]. The mitogenomes of
both species, similar to those of other gryllotalpids, are circular double-stranded molecules
and contain the complete set of 37 genes (13 PCGs, 22 tRNAs and two rRNAs) and a
non-coding CR (AT-rich region) (Figure 1). The majority strand (J-strand) encodes 23 genes,
including nad2, nad3, nad6, cytb, cox1, cox2, cox3, atp8, atp6, trnI, trnM, trnW, trnL2, trnK,
trnD, trnG, trnA, trnR, trnN, trnS1, trnE, trnT and trnS2. The remaining 14 genes (nad1,
nad4, nad4L, nad5, trnQ, trnC, trnY, trnF, trnH, trnP, trnL1, trnV, rrnL and rrnS) are encoded
on the minority strand (N-strand). The mitogenomes obtained herein are identical to those
of other gryllotalpids in gene order and gene orientation, which are the hypothesized
ancestral arrangements found in several insect orders [1].

Two separated features, base proportion (AT-content) and strand asymmetry (AT-
and GC-skew), are used to assess the base compositional bias of mitogenomes [31,32].
The AT-content of the whole mitogenomes ranges from 66.4% in G. henana to 72.2% in
G. pluvialis (Figure 2A, Table 2), indicating that the overall composition is biased towards A
and T in Gryllotalpidae. The CR in all six species exhibits a higher value of the AT-content
(74.9–81.1%), followed successively by tRNAs (72.3–74.4%), rRNAs (67.1–73.8%) and PCGs
(64.4–71.1%). In PCGs, the third codon positions have the highest AT-content (68.1–83.6%),
compared with the first (61.0–65.1%) and second codon positions (64.1–64.9%) in all gryl-
lotalpids. The AT-contents of four genomic regions are generally lower in G. henana than in
other five gryllotalpids (Figure 2A, Table 2). The entire mitogenomes of all gryllotalpids
exhibit the typical skew pattern of insects with positive AT-skew (0.042–0.072) and negative
GC-skew (−0.451–−0.295), indicating that the majority strand of mitogenomes is biased in
favor of A and C (Figure 2B,C, Table 2). The skew patterns of the four genomic regions are
conserved in Gryllotalpa, and exhibit negative AT- and GC-skew in PCGs, positive AT- and
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GC-skew in tRNAs, negative AT-skew and positive GC-skew in rRNAs, and positive AT-
skew and negative GC-skew in CR. The values of AT-skew are small and not significantly
different from zero in the four genomic regions except for the PCGs (−0.177–−0.159). The
GC-skew values are also low, with the exception of the increased ones for rRNAs in all the
species of Gryllotalpa (0.347–0.482) and the decreased one for CR in G. henana (−0.450).
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0.181/0.147/0.144 

2st codon position 
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18.4/18.6/18.9/ 
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−0.136/−0.139/−0.139 

3st codon position 
3699/3703/3697/ 
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31.4/38.3/38.1/ 
40.3/37.9/38.1 

12.0/7.2/8.2/ 
6.2/8.2/8.1 

68.1/81.0/79.2/ 
83.6/80.3/80.2 
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−0.248/−0.168/−0.182 
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rRNAs 
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unispina. GC-skew = (G − C)/(G + C), AT-skew = (A − T)/(A + T); CHN, China; CR, control region; 
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Figure 2. Comparison of AT content and nucleotide skewness of six species in Gryllotalpidae.
(A) AT-content. (B) AT-skew. (C) GC-skew. CHN, China; KR, Korea.
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Table 2. Nucleotide composition of the mitogenomes of six species in Gryllotalpidae.

Feature Size (bp) A% G% AT% AT-Skew GC-Skew

Whole genome 15,504/15,497/15,521/
15,525/15,506/15,513

35.6/37.2/36.8/
37.6/37.2/37.1

9.2/10.0/10.3/
9.6/10.2/10.3

66.4/71.3/70.5/
72.2/71.0/70.9

0.072/0.043/0.044/
0.042/0.048/0.047

−0.451/−0.303/−0.302/
−0.309/−0.297/−0.295

PCGs 11,097/11,109/11,091/
11,064/11,064/11,109

26.5/29.2/29.1/
29.9/29.0/29.0

16.2/14.4/14.7/
14.0/14.7/14.7

64.4/70.0/69.4/
71.1/69.7/69.5

−0.177/−0.166/−0.161/
−0.159/−0.168/−0.165

−0.087/−0.040/−0.039/
−0.031/−0.033/−0.036

1st codon position 3699/3703/3697/
3688/3688/3703

29.6/30.8/30.4/
30.6/30.2/30.3

21.7/20.5/20.7/
20.6/20.7/20.7

61.0/64.5/64.3/
65.1/63.9/63.8

−0.030/−0.045/−0.054/
−0.060/−0.055/−0.050

0.113/0.155/0.163/
0.181/0.147/0.144

2st codon position 3699/3703/3697/
3688/3688/3703

18.4/18.6/18.9/
19.0/18.8/18.7

15.1/15.4/15.1/
15.2/15.2/15.2

64.1/64.6/64.9/
64.9/64.7/64.7

−0.426/−0.424/−0.418/
−0.414/−0.419/−0.422

−0.159/−0.130/−0.140/
−0.136/−0.139/−0.139

3st codon position 3699/3703/3697/
3688/3688/3703

31.4/38.3/38.1/
40.3/37.9/38.1

12.0/7.2/8.2/
6.2/8.2/8.1

68.1/81.0/79.2/
83.6/80.3/80.2

−0.078/−0.054/−0.038/
−0.036/−0.056/−0.050

−0.248/−0.238/−0.212/
−0.248/−0.168/−0.182

tRNAs 1443/1440/1447/
1447/1443/1443

37.7/37.8/37.5/
38.1/37.9/38.0

15.9/15.1/15.0/
14.7/14.4/14.6

72.3/73.6/73.9/
74.1/74.4/74.2

0.043/0.027/0.015/
0.028/0.019/0.024

0.148/0.148/0.149/
0.140/0.125/0.132

rRNAs 1947/1966/1966/
2019/2013/1970

31.5/33.7/32.5/
33.3/32.2/32.2

24.3/18.4/19.2/
17.7/18.8/19.0

67.1/73.2/71.6/
73.8/72.9/72.6

−0.061/−0.079/−0.092/
−0.098/−0.117/−0.113

0.482/0.373/0.347/
0.351/0.387/0.387

CR 863/913/920/
867/868/917

42.5/40.1/38.2/
39.5/38.7/39.3

5.2/9.8/10.8/
10.0/10.4/10.5

81.1/77.3/74.9/
77.7/76.9/76.8

0.048/0.038/0.020/
0.017/0.007/0.023

−0.450/−0.137/−0.139/
−0.099/−0.100/−0.099

Data are given as Gryllotalpa henana/G. orientalis CHN/G. orientalis KR/G. pluvialis/Gryllotalpa sp./G. unispina.
GC-skew = (G − C)/(G + C), AT-skew = (A − T)/(A + T); CHN, China; CR, control region; KR, Korea.

3.2. Protein-Coding Genes and Codon Usage

The concatenated sequence of the PCGs is 11,097 bp in G. henana and 11,109 bp in
the Chinese G. orientalis, accounting for 71.6% and 71.7% of their whole mitogenomes,
respectively (Tables 2 and 3). The 13 PCGs of the two new mitogenomes, similar to those of
the other four gryllotalpids, contain two ATPase subunits (atp6 and atp8), three cytochrome
c oxidase subunits (cox1–3), one cytochrome b gene (cytb), and seven NADH dehydrogenase
subunits (nad1–6 and nad4L) (Figure 1, Table 3). The lengths of the 13 PCGs range from
156 bp of atp8 to 1723 bp of nad5 in both mitogenomes newly sequenced. The shortest
atp8 and longest nad5, also found in other four gryllotalpids, are common features in
metazoan mitogenomes [52,53].

All PCGs of the two new mitogenomes have the typical initiation codon (ATN), except
for nad2 starting with GTG (Table 3). The atypical initiation codon is also present in the
mitogenomes of two other mole crickets (the Korean G. orientalis and G. unispina) and two
katydids (Kuwayamaea brachyptera Gorochov & Kang, 2002 and Ruidocollaris obscura Liu & Jin,
1999) [12,13,54]. The termination codons are relatively conserved in Gryllotalpidae. Most of
them are complete triplet bases TAA/TAG, and others are incomplete T/TA immediately
followed by or partially overlapped with a tRNA gene. Incomplete stop codons are fairly
common in the orthopteran mitogenomes and can be converted into a potential stop codon
via polyadenylation to TAA [18,39,40,55]. The results of RSCU analyses show that the
PCGs exhibit strong biases toward the nucleotides A and U in the codon usage. The four
most frequent codons (UUU/Phe, UUA/Leu2, AUU/Ile, and AUA/Met) are the same in
Gryllotalpidae, and all composed wholly of A or U (Figure 3, Supplementary Table S3).
The codons ending with A/U occur more frequently than that with G/C, suggesting that
the AU composition at third position of codons positively influences the nucleotide AT (or
AU) bias of the PCGs in Gryllotalpidae.

Table 3. Mitogenomic organization of six species in Gryllotalpidae.

Gene
Position

Size IGN
Codon

Direction
From To Start Stop

trnI 1/1/1/1/1/1/1 66/65/65/65/65/66 66/65/65/
65/65/66 J/J/J/J/J/J

trnQ 64/63/63/63/63/64 132/130/130/
130/130/131

69/68/68/
68/68/68

−3/−3/−3/
−3/−3/−3 N/N/N/N/N/N

trnM 180/148/153/
150/153/159

247/216/221/
218/221/226

68/69/69/
69/69/68

47/17/22/
19/22/27 J/J/J/J/J/J

nad2 249/218/223/
232/230/228

1256/1231/1237/
1237/1240/1239

1008/1014/1015/
1006/1011/1012 −1/1/1/13/8/1 GTG/GTG/GTG/

ATT/ATT/GTG
TAA/TAA/T/
T/TAA/T J/J/J/J/J/J

trnW 1261/1230/1238/
1238/1239/1240

1325/1293/1305/
1303/1303/1304

65/64/68/
66/65/65 4/−2/-/-/−2/- J/J/J/J/J/J

trnC 1318/1286/1298/
1296/1296/1297

1379/1346/1359/
1356/1357/1358

62/61/62/
61/62/62

−8/−8/−8/
−8/−8/−8 N/N/N/N/N/N
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Table 3. Cont.

Gene
Position

Size IGN
Codon

Direction
From To Start Stop

trnY 1379/1347/1360/
1357/1358/1359

1445/1415/1425/
1425/1426/1427

67/69/66/
69/69/69 −1/-/-/-/-/- N/N/N/N/N/N

cox1 1447/1419/1427/
1427/1428/1429

2980/2952/2960/
2960/2961/2962

1534/1534/1534/
1534/1534/1534 1/3/1/1/1/1 ATG/ATG/ATG/

ATG/ATG/ATG T/T/T/T/T/T J/J/J/J/J/J

trnL2 2981/2953/2961/
2961/2962/2963

3045/3017/3025/
3025/3025/3026

65/65/65/
65/64/64 -/-/-/-/-/- J/J/J/J/J/J

cox2 3046/3019/3027/
3027/3028/3029

3727/3700/3708/
3708/3709/3710

682/682/682/
682/682/682 -/1/1/1/2/2 ATG/ATG/ATG/

ATG/ATG/ATG T/T/T/T/T/T J/J/J/J/J/J

trnK 3728/3701/3709/
3709/3710/3711

3797/3770/3779/
3778/3779/3780

70/70/71/
70/70/70 -/-/-/-/-/- J/J/J/J/J/J

trnD 3797/3770/3779/
3778/3779/3780

3862/3834/3843/
3847/3843/3844

66/65/65/
70/65/65

−1/−1/−1/
−1/−1/−1 J/J/J/J/J/J

atp8 3863/3835/3884/
3857/3844/3845

4018/3990/3999/
4003/3999/4000

156/156/156/
147/156/156 -/-/-/9/-/- ATT/ATT/ATT/

ATA/ATT/ATT
TAA/TAA/TAA/
TAA/TAA/TAA J/J/J/J/J/J

atp6 4012/3984/3993/
4000/3996/3994

4689/4661/4669/
4674/4670/4671

678/678/677/
675/675/678

−7/−7/−7/
−4/−4/−7

ATG/ATG/ATG/
ATA/ATA/ATG

TAA/TAA/TA/
TAA/TAA/TAA J/J/J/J/J/J

cox3 4689/4661/4670/
4674/4670/4671

5472/5444/5453/
5457/5453/5454

784/784/784/
784/784/784

−1/−1/-/
−1/−1/−1

ATG/ATG/ATG/
ATG/ATG/ATG T/T/T/T/T/T J/J/J/J/J/J

trnG 5473/5445/5454/
5458/5454/5455

5535/5507/5517/
5520/5516/5517

63/63/64/
63/63/63 -/-/-/-/-/- J/J/J/J/J/J

nad3 5536/5508/5518/
5530/5517/5518

5887/5859/5869/
5872/5870/5869

352/352/352/
343/354/352 -/-/-/9/-/- ATT/ATT/ATT/

ATA/ATT/ATT T/T/T/T/TAG/T J/J/J/J/J/J

trnA 5888/5860/5870/
5873/5869/5870

5951/5921/5932/
5935/5931/5932

64/62/63/
63/63/63 -/-/-/-/−2/- J/J/J/J/J/J

trnR 5951/5922/5932/
5935/5931/5932

6013/5983/5993/
5996/5992/5993

63/62/62/
62/62/62

−1/-/−1/
−1/−1/−1 J/J/J/J/J/J

trnN 6015/5989/5999/
6002/5994/5995

6080/6052/6062/
6066/6057/6058

66/64/64/
65/64/64 1/5/5/5/1/1 J/J/J/J/J/J

trnS1 6081/6053/6063/
6068/6058/6059

6147/6119/6129/
6132/6124/6125

67/67/67/
65/67/67 -/-/-/1/-/- J/J/J/J/J/J

trnE 6149/6135/6141/
6149/6135/6136

6213/6199/6205/
6213/6199/6200

65/65/65/
65/65/65

1/15/11/
16/10/10 J/J/J/J/J/J

trnF 6212/6198/6204/
6212/6198/6199

6276/6262/6268/
6276/6262/6263

65/65/65/
65/65/65

−2/−2/−2/
−2/−2/−2 N/N/N/N/N/N

nad5 6277/6263/6269/
6277/6263/6264

7999/7985/7991/
7999/7985/7986

1723/1723/1723/
1723/1723/1723 -/-/-/-/-/- ATG/ATG/ATG/

ATG/ATG/ATG T/T/T/T/T/T N/N/N/N/N/N

trnH 8003/7987/7993/
8001/7987/7988

8066/8050/8058/
8064/8050/8051

64/64/66/
64/64/64 3/1/1/1/1/1 N/N/N/N/N/N

nad4 8067/8051/8059/
8065/8051/8052

9402/9386/9394/
9400/9386/9387

1336/1336/1336/
1336/1336/1336 -/-/-/-/-/- ATG/ATG/ATG/

ATG/ATG/ATG T/T/T/T/T/T N/N/N/N/N/N

nad4L 9396/9380/9388/
9394/9380/9381

9692/9676/9684/
9690/9676/9677

297/297/297/
297/297/297

−7/−7/−7/
−7/−7/−7

ATG/ATG/ATG/
ATG/ATG/ATG

TAA/TAA/TAA/
TAA/TAA/TAA N/N/N/N/N/N

trnT 9695/9679/9687/
9693/9679/9680

9759/9742/9750/
9756/9743/9744

65/64/64/
64/65/65 2/2/2/2/2/2 J/J/J/J/J/J

trnP 9760/9743/9751/
9757/9744/9745

9824/9807/9816/
9821/9808/9809

65/65/66/
65/65/65 -/-/-/-/-/- N/N/N/N/N/N

nad6 9827/9810/9819/
9842/9829/9812

10,345/10,322/10,330/
10,336/10,323/10,324

519/513/512/
495/495/513 2/2/2/20/20/2 ATC/ATT/ATT/

ATA/ATA/ATT
TAA/TAA/TA/
TAA/TAA/TAA J/J/J/J/J/J

cytb 10,345/10,322/10,331/
10,336/10,323/10,324

11,478/11,455/11,462/
11,467/11,456/11,455

1134/1134/1132/
1132/1134/1132

−1/−1/-/
−1/−1/−1

ATG/ATG/ATG/
ATG/ATG/ATG

TAA/TAA/T/T/
TAA/T J/J/J/J/J/J

trnS2 11,477/11,454/11,463/
11,468/11,455/11,456

11,540/11,522/11,530/
11,536/11,523/11,524

64/69/68/
69/69/69 −2/−2/-/-/−2/- J/J/J/J/J/J

nad1 11,569/11,548/11,565/
11,569/11,555/11,556

12,504/12,483/12,500/
12,504/12,490/12,491

936/936/936/
936/936/936

28/25/34/
32/31/31

ATG/ATG/ATG/
ATG/ATG/ATG

TAG/TAA/TAA/
TAG/TAA/TAA N/N/N/N/N/N

trnL1 12,506/12,485/12,502/
12,506/12,492/12,493

12,570/12,549/12,566/
12,570/12,556/12,557

65/65/65/
65/65/65 1/1/1/1/1/1 N/N/N/N/N/N

rrnL 12,554/12,550/12,567/
12,571/12,557/12,558

13,767/13,785/13,813/
13,806/13,793/13,802

1214/1236/1247/
1236/1237/1245 −17/-/-/-/-/- N/N/N/N/N/N

trnV 13,839/13,786/13,814/
13,807/13,794/13,803

13,907/13,854/13,882/
13,875/13,862/13,871

69/69/69/
69/69/69 71/-/-/-/-/- N/N/N/N/N/N

rrnS 13,909/13,855/13,883/
13,876/13,863/13,872

14,641/14,584/14,601/
14,658/14,638/14,596

733/730/719/
783/776/725 1/-/-/-/-/- N/N/N/N/N/N

CR 14,642/14,585/14,602/
14,659/14,639/14,597

15,504/15,497/15,521/
15,525/15,506/15,513

863/913/920/
867/868/917

Data are given as Gryllotalpa henana/G. orientalis CHN/G. orientalis KR/G. pluvialis/Gryllotalpa sp./G. unispina.
CHN, China; CR, control region; IGN, intergenic nucleotides; KR, Korea. Negative numbers indicate the overlaps
of adjacent genes.
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Figure 3. Relative synonymous codon usage (RSCU) of the mitochondrial genomes of six species
in Gryllotalpidae. CHN, China; KR, Korea. The numbers above the colored columns indicate the
frequencies of amino acids.

3.3. Transfer and Ribosomal RNA Genes

The 22 tRNAs of the two new mitogenomes are scattered around the circular DNA
molecule, and are arranged identically in order and direction (Figure 1). The tRNAs of
gryllotalpids retain the ancestral gene order [10–13], whereas multiple patterns of tRNA
rearrangements have been detected in many other ensiferans [39,48] and most caelifer-
ans [35]. All tRNAs exhibit typical clover–leaf structure, except for trnS1 (Figure 4). The
dihydrouridine (DHU) arm of trnS1 forms a simple loop as in many other metazoans
including gryllotalpids [10–13,52,56]. The length of tRNAs varies from 62 bp (trnC) to
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71 bp (trnK) in G. henana and from 61 bp (trnC) to 71 bp (trnK) in the Chinese G. orientalis
(Table 2), both within the variation range in Gryllotalpidae. The trnG gene of gryllotalpids
generally exhibits the lowest nucleotide substitutions, while trnL1, trnW and trnY genes
tend to be more variable among 22 tRNA genes (Figure 4). All tRNAs in the mitogenomes
of Gryllotalpidae possess invariable length of 7 bp for both the acceptor stem and the
anticodon loop. The length of anticodon stem is relatively conservative, varying from 4 bp
in trnK and trnM to 5 bp in the rest of tRNAs. Most of the size variations among tRNAs
stemmed from the length variation in DHU and TψC arms, within which the size of loops
(all 3–10 bp) is more variable than that of stems (all 3–5 bp).
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The tRNAs of G. henana possess a total of 36 unmatched base pairs, including 31 GU
mismatches in most tRNAs, three AC mismatches in the anticodon stem of trnS1 and trnW
and the TψC stem of trnN, and two UU mismatches in the acceptor stem of trnD and the
anticodon stem of trnA (Figure 4, Supplementary Table S4). A total of 30 mismatches were
detected in the Chinese G. orientalis. Twenty-seven of them are GU pairs, two are UU
mismatches in the DHU stem of trnC and the acceptor stem of trnL1, and one is AA pair
in the anticodon arm of trnS1. The mismatch number in the Chinese G. orientalis is lower
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than that in the Korean one (36 mismatches) (Supplementary Table S4), suggesting that the
mitogenomes are differentiated intraspecifically.

The two rRNA genes (rrnL and rrnS) are located in the conserved positions as in
mitogenomes of other gryllotalpids [10–13]. rrnL is present between trnL1 and trnV, while
rrnS between trnV and the CR (Figure 1). The two genes rrnL and rrnS are 1214 and
733 bp long in G. henana, and 1236 and 730 bp long in the Chinese G. orientalis, respectively
(Table 3). The lengths range from 1214 to 1247 bp for rrnL, and from 719 to 783 bp for
rrnS in Gryllotalpidae. The AT content of rRNAs is 67.1% in G. henana and 73.2% in the
Chinese G. orientalis. The value of AT content is lower in G. henana than those in the other
gryllotalpids and many other orthopterans [12,48,57–63].

3.4. Intergenic Spacers and Gene Overlaps

In G. henana, intergenic spacers are distributed in 12 regions and range in size from 1
to 71 bp with a total of 162 bp (Table 3). Eleven intergenic spacers exist in the mitogenome
of the Chinese G. orientalis, ranging from 1 to 25 bp and adding up to 73 bp. The largest has
71 bp located between rrnL and trnV in G. henana, whereas there are 25 bp located between
trnS2 and nad1 in the Chinese G. orientalis. Two identical intergenic spacers were detected
in the mitogenomes of all gryllotalpids. One is between nad4L and trnT (2 bp), and the
other is between nad1 and trnL1 (1 bp). In most cases, the intergenic spacers consist of only
1 or 2 bp.

The gene overlaps of G. henana are distributed in 13 locations with a total of 52 bp,
whereas those of the Chinese G. orientalis are in 10 locations with a total of 34 bp (Table 3).
The longest gene overlap is 17 bp between trnL1 and rrnL in G. henana, and 8 bp between
trnW and trnC in the Chinese G. orientalis. All six gryllotalpids have five identical over-
lapping regions, including trnK-trnD (1 bp), trnE-trnF (2 bp), trnI-trnQ (3 bp), nad4-nad4L
(7 bp) and trnW-trnC (8 bp). In general, the variability of gene overlaps is lower than that
of intergenic spacers.

3.5. Control Region

The CR, also called AT-rich region, is located in the conserved position between rrnS
and trnI (Figure 1, Table 2). The AT-content of this region is 81.1% in G. henana and 77.3% in
the Chinese G. orientalis. In all six gryllotalpids, the Korean G. orientalis shows the lowest AT
content of 74.9%, whereas G. henana exhibits the highest 81.1%. The CRs of Gryllotalpidae
show low variations in lengths, which range from 863 bp in G. henana to 920 bp in the
Korean G. orientalis. The low variations of CR in length are likely attributed to the lacking
of conspicuous repeats, which are often found in other insects [6,54,64–66]. Two kinds of
short repeats were detected in Gryllotalpidae for the first time (Supplementary Table S5).
One is the microsatellite (TA)n element found in G. henana and the Chinese G. orientalis.
The other recognized in G. pluvalis is the duplicated tandem repeat, containing 18 bp
(ATATAATTAAATATTTAA) with 2.3 copies. A potential stem–loop structure, containing
(T)n(TC)2(T)n sequences, was detected in the CR near the trnI gene of G. henana and
the Chinese G. orientalis, same as the findings in other gryllotalpids (Figure S1). Similar
structures were also found in many crickets of Gryllidea [46,67], and likely related to
replication initiation of the N-strand [68].

3.6. Genetic Diversity and Selective Constraints

Sliding window analyses exhibit the estimations of nucleotide diversity (Pi) for each
PCG of the six mitogenomes (Figure 5A, Supplementary Table S6). The gene atp8 has the
highest nucleotide diversity (Pi = 0.244), followed by nad2 (Pi = 0.235) and nad6 (Pi = 0.191).
The genes cox3 (Pi = 0.134), cox1 (Pi = 0.130) and nad1 (Pi = 0.129) are the lower variable.
A similar pattern was also detected in terms of mean genetic distances (Figure 5B). atp8,
nad2 and nad6 show high distances with 0.331, 0.302 and 0.245, whereas cox3, cox1 and nad1
exhibit low distances with 0.154, 0.147 and 0.146, respectively.
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illustrates the position of each PCG. The Pi value of each PCG is shown below the arrowheads.
(B) Genetic distance and Ka/Ks ratio of each PCG in Gryllotalpidae. Ka, non-synonymous substitu-
tion rates; Ks, synonymous substitution rates.

Ka/Ks ratio (ω) is an important indicator for detecting molecular adaptation correlated
to the biological evolution [69,70]. The Ka/Ks ratios of 13 PCGs are all lower than 1 in all
mitogenomes of Gryllotalpidae (Figure 5B, Supplementary Table S6), indicating that these
PCGs are evolving under purifying selection and suitable for phylogenetic reconstructions
in Gryllotalpidae. The Ka/Ks of atp8 (ω = 0.393), nad2 (ω = 0.266) and nad6 (ω = 0.192) are
much higher than those of other PCGs, suggesting that the former three genes experience
more relaxed evolutionary constraints and retain more non-synonymous mutations. The
gene cox1 exhibits the lowest Ka/Ks ratio (ω = 0.041) implying the greatest evolutionary
limitation on cox1 among 13 PCG genes. The strong evolutionary constraints (ω << 1) of
mitochondrial PCGs suggest that the deleterious mutations are eliminated by purifying
selection to maintain highly conserved genes that encode core subunits of the respiratory
chain complexes [10,71].
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The species of Gryllotalpidae are similar in external morphology but exhibit compli-
cated variations in genitalia, leading to taxonomic difficulties based solely on morphological
characters [21,22]. Designing species-specific markers is crucial for resolving such problems.
The cox1 gene has long been used as a universal DNA marker for species identification
in insects [72–75], but is the most conservative protein coding gene in mitogenomes of
gryllotalpids. Considering both the high nucleotide divergence and the elevated ratio
of Ka/Ks, the genes nad2 and nad6 may be evaluated as potential markers for species
delimitation in Gryllotalpidae.

3.7. Phylogenetic Analyses

The phylogenetic trees based on the four datasets (P12, P12R, P123 and P123R) are highly
consistent, except for the positions of the Korean G. orientalis and Velarifictorus hemelytrus
(Saussure, 1877) (Figure 6, Supplementary Figures S2–S4). For the same dataset, the nodal
support values in BI trees are generally higher than those in ML trees. For the same
inference method (BI or ML), different data combinations slightly affected the topology
and support values. The P123 trees are markedly more resolved, and have overall higher
supports at nodes than the others. The ingroup topologies between BI and ML trees are
identical based on the P123 and P123R datasets, but are inconsistent based on the P12 and
P12R datasets, indicating that the inclusion of the third codon positions make topologies
more stable in both ML and BI trees. The nodal supports of phylogenetic trees based
on P123 dataset are higher than that of P123R dataset. A similar situation was observed
between P12 and P12R trees, reflecting that the exclusion of the rRNA genes can improve
branch supports of phylogenetic trees. The monophyly of the infraorder Gryllidea was well
supported by all datasets with high nodal supports (PPs = 1; BSs = 100), and consistent with
the results proposed by Chintauan-Marquier et al. [17], Zhou et al. [48], Chang et al. [10],
Song et al. [8] and Sanno et al. [18].

The monophyletic Grylloidea was confirmed and the relationships within this super-
family were present as Mogoplistidae + (Trigonidiidae + (Phalangopsidae + Gryllidae)).
This finding corroborates the generally accepted classification schemes [15] as well as mostly
recent studies [8,17,18,39,40,76]. The monophyly of the superfamily Gryllotalpoidea, how-
ever, was rejected in the present study. Gryllotalpidae formed the sister taxon to the clade
of Myrmecophilidae + Grylloidea rather than solely to Myrmecophilidae. This result is
similar to the mitogenome-based trees [8,18], but conflicts with the multilocus-based phy-
logeny proposed by Chintauan-Marquier et al. [17], which is adopted prevalently as a
reference classification. Mitogenomes may experience selective pressures in some insects
with peculiar ecological and morphological traits [77,78]. The small and wingless crickets
in Myrmecophilidae inhabit subterranean ant nests of low oxygen levels [79,80], whereas
mole crickets have larger sizes and short wings, and usually hide in horizontal burrows
near the soil surface [81]. The positively selective sites associated with hypoxic adaptability
were identified in the cox1 genes of Myrmecophilidae, but were failed to be detected in
those of Gryllotalpidae [18], suggesting that the mitogenomes of Myrmecophilidae and
Gryllotalpidae have different evolutionary properties. Therefore, we speculated that the
contradictions between mitogenomic and multilocus trees are partially attributed to the
evolutionary differences of mitogenomes of the two families. In addition, the inconsis-
tent trees may also be influenced by the lack of nuclear genes, which are important for
reconstructing deep-level phylogenetic relationships [82–84]. The present investigation
improved the resolution of the phylogram by Sanno et al. [18], although more species and
markers are necessary for future studies.

In Gryllotalpidae, G. henana first split from the remaining gryllotalpids (BSs = 100, PPs = 1)
(Figure 6; Supplementary Figures S2–S4). Interestingly, in the second clade, the two spec-
imens of G. orientalis were failed to be clustered in one branch. The Korean G. orientalis
was clustered with the clade of Gryllotalpa sp. + G. unispina based on P123 and P123R
datasets (Figure 6, Supplementary Figure S2), but was placed with the clade of the Chinese
G. orientalis + G. pluvialis based on P12 and P12R datasets (Supplementary Figures S3 and S4).
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Moreover, the K2P genetic distance of the two specimens of G. orientalis (0.145) is relatively high
compared with the interspecific distances of Gryllotalpa (0.022–0.321) (Supplementary Table S7).
We speculate that the so-called G. orientalis in China is likely a new species, and further
morphological and biological evidences are needed to confirm this inference.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13100919/s1, Table S1: The best partitioning schemes
and models for the Bayesian inference (BI) method in different datasets selected by PartitionFinder.
Table S2: The best partitioning schemes and models for the Maximum likelihood (ML) method in
different datasets selected by ModelFinder. Table S3: The count and relative synonymous codon
usage (RSCU) of six species in Gryllotalpidae. Table S4: The numbers of mismatched base pairs in
the secondary structure of the tRNAs in the six species of Gryllotalpidae. Table S5: Tandem repeat
regions in the control region of six species in Gryllotalpidae. Table S6: Nucleotide diversity (Pi),
non-synonymous substitutions rates (Ka), synonymous substitutions rates (Ks), Ka/Ks ratio and
genetic distance of six species in Gryllotalpidae. Table S7: The K2P genetic distances in Gryllotalpidae.
Figure S1: Location and structure of the potential stem-loops in Gryllotalpidae. (A) The location of
the predicted stem-loops in the mitogenome. (B) The structures of potential stem-loops. Figure S2:
Phylogenetic tree produced by Bayesian inference (BI) based on the dataset of P123R. Bayesian
posterior probabilities (PPs) and bootstrap support values (BSs) are present at nodes. Figure S3:
Phylogenetic tree produced by Bayesian inference (BI) based on the P12 dataset. Numerals at nodes
are Bayesian posterior probabilities (PPs) and bootstrap support values (BSs). The divergent dotted
lines showed the topological tree based on Maximum likelihood (ML) method with underlined
bootstrap support values at nodes. Figure S4: Phylogenetic tree produced by Bayesian inference
(BI) based on the P12R dataset. Numerals at nodes are Bayesian posterior probabilities (PPs) and
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bootstrap support values (BSs). The divergent dotted lines showed the topological tree based on
Maximum likelihood (ML) method with underlined bootstrap support values.
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