Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Isolation and Culture
2.2. Aphid Rearing and Inoculation
2.3. Sampling Healthy, Mycotized, and Starved Aphids
2.4. DNA Extraction and Sequencing
2.5. Sequence Clustering and Annotation
2.6. Microbiome Statistical Analyses
3. Results
3.1. Sequence and Microbiome Statistical Analyses
3.2. Taxonomic Distribution of Aphid-Associated Bacterial and Fungal Communities
3.3. Representative OTUs in Bacterial Communities
3.4. Representative OTUs in Fungal Communities
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, C.-C.; Spencer, J.L.; Curzi, M.J.; Zavala, J.A.; Seufferheld, M.J. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc. Natl. Acad. Sci. USA 2013, 110, 11917–11922. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.; Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. USA 2011, 108, 19288–19292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andongma, A.A.; Wan, L.; Dong, Y.-C.; Li, P.; Desneux, N.; White, J.A.; Niu, C.-Y. Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis. Sci. Rep. 2015, 5, 9470. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, J.-P.; Outreman, Y.; Mieuzet, L.; Simon, J.-C. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA. PLoS ONE 2015, 10, e0120664. [Google Scholar] [CrossRef] [PubMed]
- Dohet, L.; Grégoire, J.-C.; Berasategui, A.; Kaltenpoth, M.; Biedermann, P.H. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles. FEMS Microbiol. Ecol. 2016, 92, fiw129. [Google Scholar] [CrossRef] [Green Version]
- Doremus, M.R.; Oliver, K.M. Aphid Heritable Symbiont Exploits Defensive Mutualism. Appl. Environ. Microbiol. 2017, 83, e03276-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnin, D.; Jackson, R.; Kiers, E.T.; Bunker, M.; Ellers, J.; Henry, L.M. Parallel Evolution in the Integration of a Co-obligate Aphid Symbiosis. Curr. Biol. 2020, 30, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Blow, F.; Bueno, E.; Clark, N.; Zhu, D.T.; Chung, S.H.; Güllert, S.; Schmitz, R.A.; Douglas, A.E. B-vitamin nutrition in the pea aphid-Buchnera symbiosis. J. Insect Physiol. 2020, 126, 104092. [Google Scholar] [CrossRef]
- Zabalou, S.; Riegler, M.; Theodorakopoulou, M.; Stauffer, C.; Savakis, C.; Bourtzis, K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc. Natl. Acad. Sci. USA 2004, 101, 15042–15045. [Google Scholar] [CrossRef] [Green Version]
- Whittle, M.; Barreaux, A.M.G.; Bonsall, M.B.; Ponton, F.; English, S. Insect-host control of obligate, intracellular symbiont density. Proc. R. Soc. B 2021, 288, 20211993. [Google Scholar] [CrossRef]
- Vilcinskas, A. Evolutionary ecology of parasitic fungi and their host insects. Fungal Ecol. 2018, 38, 12–20. [Google Scholar] [CrossRef]
- Enders, L.S.; Miller, N.J. Stress-induced changes in abundance differ among obligate and facultative endosymbionts of the soybean aphid. Ecol. Evol. 2016, 6, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Zytynska, S.E.; Weisser, W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Èntomol. 2016, 41, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Gerardo, N.M.; Altincicek, B.; Anselme, C.; Atamian, H.; Barribeau, S.M.; De, V.M.; Vilcinskas, A. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 2010, 11, R21. [Google Scholar] [CrossRef] [Green Version]
- Scarborough, C.L.; Ferrari, J.; Godfray, H.C.J. Aphid Protected from Pathogen by Endosymbiont. Science 2005, 310, 1781. [Google Scholar] [CrossRef]
- Oliver, K.M.; Russell, J.A.; Moran, N.A.; Hunter, M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 2003, 100, 1803–1807. [Google Scholar] [CrossRef] [Green Version]
- Renoz, F.; Lopes, M.R.; Gaget, K.; Duport, G.; Eloy, M.-C.; de Merxem, B.G.; Hance, T.; Calevro, F. Compartmentalized into Bacteriocytes but Highly Invasive: The Puzzling Case of the Co-Obligate Symbiont Serratia symbiotica in the Aphid Periphyllus lyropictus. Microbiol. Spectr. 2022, 10, e0045722. [Google Scholar] [CrossRef]
- Nakabachi, A.; Ishikawa, H.; Kudo, T. Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum. J. Invertebr. Pathol. 2003, 82, 152–161. [Google Scholar] [CrossRef]
- Vogel, K.J.; Moran, N.A. Functional and Evolutionary Analysis of the Genome of an Obligate Fungal Symbiont. Genome Biol. Evol. 2013, 5, 891–904. [Google Scholar] [CrossRef] [Green Version]
- Pell, J.K.; Eilenberg, J.; Hajek, A.E.; Steinkraus, D.C.; Wraight, S.P. Biology, ecology and pest management potential of Entomophthorales. In Fungi as Biocontrol Agents Progress Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI Publishing: Wallingford, UK, 2001; pp. 71–153. [Google Scholar]
- Humber, R.A. Entomophthoromycota: A new overview of some of the oldest terrestrial fungi. In Biology of Microfungi; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Reingold, V.; Kottakota, C.; Birnbaum, N.; Goldenberg, M.; Lebedev, G.; Ghanim, M. Intraspecies variation of Metarhizium brunneum against the green peach aphid, Myzus persicae, provides insight into the complexity of disease progression. Pest Manag. Sci. 2021, 77, 2557–2567. [Google Scholar] [CrossRef]
- Grell, M.N.; Jensen, A.B.; Olsen, P.B.; Eilenberg, J.; Lange, L. Secretome of fungus-infected aphids documents high pathogen activity and weak host response. Fungal Genet. Biol. 2011, 48, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Małagocka, J.; Grell, M.N.; Lange, L.; Eilenberg, J.; Jensen, A.B. Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission. J. Invertebr. Pathol. 2015, 128, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, X.; Guo, K.; Zhang, X.; Lin, H.; Montalva, C. Transcriptomic insight into pathogenicity-associated factors of Conidiobolus obscurus, an obligate aphid-pathogenic fungus belonging to Entomopthoromycota. Pest Manag. Sci. 2018, 74, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, T.; Yu, W.; Wang, X.; Zhou, X.; Zhou, X. Genome-Wide Study of Conidiation-Related Genes in the Aphid-Obligate Fungal Pathogen Conidiobolus obscurus (Entomophthoromycotina). J. Fungi 2022, 8, 389. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feng, M.-G.; Huang, Z.-H. Effects of Cryopreservation at −80 °C on the Formulation and Pathogenicity of the Obligate Aphid Pathogen Pandora nouryi. Pol. J. Microbiol. 2014, 63, 211–215. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, D.W.; Zhang, X.; Wang, J.H. The influence of the aphid-specific pathogen Conidiobolus obscurus (Entomophthoromycota: Entomophthorales) on the mortality and fecundity of bamboo aphids. J. For. Res. 2014, 19, 388–394. [Google Scholar] [CrossRef]
- Guo, K.; Lin, H.; Su, X.; Wang, J.; Montalva, C.; Shao, S.; Zhou, X. The spatial–temporal dynamics of bamboo aphid dispersal flight along with their natural enemies: Biocontrol implication. Agrofor. Syst. 2019, 93, 631–639. [Google Scholar] [CrossRef]
- Douglas, A.E. Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic Bacteria Buchnera. Annu. Rev. Èntomol. 1998, 43, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Harada, H.; Oyaizu, H.; Ishikawa, H. A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora. J. Gen. Appl. Microbiol. 1996, 42, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Grenier, A.-M.; Duport, G.; Pagès, S.; Condemine, G.; Rahbé, Y. The Phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) Is a Pathogen of the Pea Aphid. Appl. Environ. Microbiol. 2006, 72, 1956–1965. [Google Scholar] [CrossRef]
- Stavrinides, J.; No, A.; Ochman, H. A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host. Environ. Microbiol. 2010, 12, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Costechareyre, D.; Dridi, B.; Rahbe, Y.; Condemine, G. Cyt toxin expression reveals an inverse regulation of insect and plant virulence factors of Dickeya dadantii. Environ. Microbiol. 2010, 12, 3290–3301. [Google Scholar] [CrossRef]
- Renoz, F.; Foray, V.; Ambroise, J.; Baa-Puyoulet, P.; Bearzatto, B.; Mendez, G.L.; Grigorescu, A.S.; Mahillon, J.; Mardulyn, P.; Gala, J.-L.; et al. At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Front. Cell. Infect. Microbiol. 2021, 11, 660007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Wang, J.; Zhou, X. Characterization of a cytolytic-like gene from the aphid-obligate fungal pathogen Conidiobolus obscurus. J. Invertebr. Pathol. 2020, 173, 107366. [Google Scholar] [CrossRef] [PubMed]
- Ment, D.; Gindin, G.; Samish, M.; Glazer, I. Comparative response of Metarhizium brunneum to the cuticles of susceptible and resistant hosts. Arch. Insect Biochem. Physiol. 2021, 105, e21756. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.C.; Jagdish, T.; Slough, G.; Hoinville, M.E.; Wollenberg, M.S. Death becomes them: Bacterial community dynamics and stilbene antibiotic production in cadavers of Galleria mellonella killed by Heterorhabditis and Photorhabdus spp. Appl. Environ. Microbiol. 2016, 82, 5824–5837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouhy, Y.; Scanlon, K.; Schouest, K.; Spillane, C.; Crossman, L.; Avison, M.B.; Ryan, R.P.; Dow, J.M. Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J. Bacteriol. 2007, 189, 4964–4968. [Google Scholar] [CrossRef] [Green Version]
- Ryan, R.P.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M.B.; Berg, G.; van der Lelie, D.; Dow, J.M. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 2009, 7, 514–525. [Google Scholar] [CrossRef]
Sample a | Reads | OTUs | Chao | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
16S rRNA for bacteria | ||||||
HAB | 40,600 | 63 | 63.00 | 3.28 | 0.82 | 1.00 |
MAB | 34,301 | 42 | 44.50 | 2.29 | 0.66 | 1.00 |
SAB | 25,758 | 36 | 37.50 | 3.72 | 0.90 | 1.00 |
ITS for fungi | ||||||
HAF | 79,522 | 68 | 64.62 | 2.11 | 0.67 | 1.00 |
MAF | 45,042 | 61 | 63.14 | 2.29 | 0.64 | 1.00 |
SAF | 32,692 | 60 | 66.12 | 0.66 | 0.16 | 1.00 |
Order | Family | Best Match in GenBank | HAB | MAB | SAB |
---|---|---|---|---|---|
Xanthomonadales | Xanthomonadaceae | Stenotrophomonas sp. in nematode (KT151870.1) | 34.01 | 55.02 | 18.21 |
Enterobacteriales | Enterobacteriaceae | Klebsiella sp. in bioaerosols (KY911397.1) | 8.72 | 15.25 | 10.23 |
Pseudomondales | Moraxellaceae | Acinetobacter sp. in ant colonies (KT025919.1) | 10.99 | 11.74 | 10.46 |
Enterobacteriales | Enterobacteriaceae | Pantoea sp., an endophyte (KR094823.1) | 0.42 | 4.53 | 2.77 |
Enterobacteriales | Enterobacteriaceae | Erwinia sp., an endophyte (KU891828.1) | 20.74 | 4.01 | 15.8 |
Enterobacteriales | Enterobacteriaceae | Buchnera aphidicola, an endosymbiont of Aphis craccivora (EF614236.1) | 5.17 | 2.4 | 2.15 |
Burkholderiales | Comamonadaceae | Delftia lacustris in fall armyworm gut (KX273063.1) | 0.77 | 1.58 | 1.24 |
Pseudomonadales | Moraxellaceae | Acinetobacter sp., an endophytic bacterium (KU725922.1) | 2.72 | 1.24 | 5.56 |
Burkholderiales | Comamonadaceae | Comamonas koreensis in Monochamus alternatus gut (KX461916.1) | 0.69 | 0.94 | 2.85 |
Sphingobacteriales | Sphingobacteriaceae | Sphingobacterium multivorum, an epiphyte (KJ638992.1) | 1.22 | 0.61 | 5.95 |
Bacillales | Planococcaceae | Staphylococcus xylosus on cotton root (LT797529.1) | 3.06 | 0.14 | 0.21 |
Campylobacterales | Helicobacteraceae | Helicobacter pylri (AP017348.1) | 1.03 | 0.07 | 0 |
Pseudomonadales | Pseudomonadaceae | Pseudomonas sp. on tomato root (KY231156.1) | 0.11 | 0.05 | 2.27 |
Flavobacteriales | Weeksellaceae | Chryseobacterium sp. on guarana root (KT699830.1) | 0.89 | 0.05 | 3.44 |
Rhizobiales | Rhizobiaceae | Agrobacterium tumefaciens in fire ant (KY874047.1) | 1.88 | 0.05 | 0.99 |
Flavobacteriales | Flavobacteriaceae | Flavobacterium johnsoniae in soil (HM224403.1) | 1.13 | 0.02 | 7 |
Flavobacteriales | Flavobacteriaceae | Flavobacterium sp. in soil (KU877342.1) | 0.3 | 0.01 | 6.86 |
Enterobacteriales | Enterobacteriaceae | Serratia marcescens in bumble bee gut (LT631777.1) | 0 | 0 | 1.48 |
Order | Family | Best Match in GenBank | HAF | MAF | SAF |
---|---|---|---|---|---|
Saccharomycetales | Pichiaceae | Pichia guilliermondii (EF151440.1) | 55.96 | 41.14 | 5.88 |
Capnodiales | Mycosphaerellaceae | Cladosporium sp. Deschampsia caespitosa seed associated (KX839295.1) | 2.88 | 16.82 | 11.46 |
Capnodiales | Mycosphaerellaceae | Cladosporium sp. Ericaceae root (KU986780.1) | 30.3 | 16.16 | 56.96 |
Hypocreales | Nectriaceae | Fusarium sp. in Monarda citriodora flower (KU527799.2) | 0.27 | 6.14 | 1.05 |
Eurotiales | Trichocomaceae | Penicillium sp. endophytic fungus in lotus leaves (KX722229.1) | 1.5 | 4.84 | 1.67 |
Ustilaginales | Ustilaginaceae | Pseudozyma aphidis (KM268868.1) | 2.26 | 3.94 | 3.16 |
Capnodiales | Mycosphaerellaceae | Cladosporium sp., potential pathogen inducing black spot of Dendrobium officinale (KY114871.1) | 0.87 | 3.57 | 6.15 |
Eurotiales | Trichocomaceae | Penicillium sp., Persian oak (KX611014.1) | 2.56 | 2.52 | 3.6 |
Eurotiales | Trichocomaceae | Penicillium sp., fungal endophyte (KT291052.1) | 0.13 | 0.08 | 1.1 |
Hypocreales | Nectriaceae | Gibberella zeae, phytpathogen (HQ333195.1) | 0 | 0 | 2.02 |
Hypocreales | Nectriaceae | Fusarium sp., phytopathogen (KU578346.1) | 0.04 | 0 | 1.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Wang, X.; Zhou, X. Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina). Insects 2022, 13, 1040. https://doi.org/10.3390/insects13111040
Yang T, Wang X, Zhou X. Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina). Insects. 2022; 13(11):1040. https://doi.org/10.3390/insects13111040
Chicago/Turabian StyleYang, Tian, Xiaojun Wang, and Xiang Zhou. 2022. "Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina)" Insects 13, no. 11: 1040. https://doi.org/10.3390/insects13111040
APA StyleYang, T., Wang, X., & Zhou, X. (2022). Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina). Insects, 13(11), 1040. https://doi.org/10.3390/insects13111040