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Simple Summary: The fall armyworm (FAW) is of tropical–subtropical origin and defined as one
of the most destructive agricultural pests globally. Superior migratory performance, reproductive
ability and adaptability make it successful in causing a serious loss to agricultural production. Since
this species lacks a diapause mechanism, temperature influences the population dynamic of the FAW
to a great extent and changes metabolic and developmental states as a result, indirectly affecting the
degree of crop infested. Control technologies can be put forward comprehensively in consideration
of the effects of temperature on the FAW. In this review, we discussed the biological manifestation
and tolerance of the FAW with various temperatures and proposed constructive suggestions for
controlling this species and future research direction. This information is valuable for understanding
the relationships between insect pests and temperature, strengthening the monitoring and pest
control, providing service and support for newly developed strategies in the near future.

Abstract: The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith, 1797), known as an important
agricultural pest around the world, is indigenous to the tropical–subtropical regions in the Western
Hemisphere, although its distribution has expanded over large parts of America, Africa, Asia and
Oceania in the last few years. The pest causes considerable costs annually coupled with its strong
invasion propensity. Temperature is identified as the dominant abiotic factor affecting herbivorous
insects. Several efforts have reported that temperature directly or indirectly influences the geographic
distribution, phenology and natural enemies of the poikilothermal FAW, and thus may affect the
damage to crops, e.g., the increased developmental rate accelerates the intake of crops at higher
temperatures. Under some extreme temperatures, the FAW is likely to regulate various genes
expression in response to environmental changes, which causes a wider viability and possibility
of invasion threat. Therefore, this paper seeks to review and critically consider the variations of
developmental indicators, the relationships between the FAW and its natural enemies and the
temperature tolerance throughout its developmental stage at varying levels of heat/cold stress. Based
on this, we discuss more environmentally friendly and economical control measures, we put forward
future challenges facing climate change, we further offer statistical basics and instrumental guidance
significance for informing FAW pest forecasting, risk analyses and a comprehensive management
program for effective control globally.

Keywords: Spodoptera frugiperda; fluctuating temperature; temperature tolerance; pest management
program

1. Introduction

Climate change has been occurring in the 21st century and the result of such changes
may raise the loss of host plants and increase the risks to food security because of the
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occurrence and spread of insect pest herbivores, great challenge will arise for biologists
due to the consequence on natural ecosystems. Climate change can impact directly or
indirectly, through other factors, notably the host plant and natural enemy resources,
the physiology and behavior of insect pests. At the temperature optimum, survivability,
fecundity and development can perform well [1,2]. Consequently, a temperature value
either higher or lower than the optimum temperature has more noteworthy adverse effects
on insect populations [3]. Although insects can survive under low temperature, resulting
in immature gonads in adults and less fecundity, sustained heat breaks the mitochondria
of insect cells, enzymes, hormone activities and the mating behavior of adults [4]. Much
progress has been made in documenting shifts in insect pest development parameters and
distributions in response to temperature change scenarios and scholars have proposed
several efficient models of the developmental rate–temperature relationship of insect
pests [5–7]. Understanding how insect pests respond to changing temperature is crucial in
the context of climate change and can steer the decision-making to the rationalization of
the anticipatory management principle in order to minimize pest infestation levels [8].

The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera,
Noctuidae), is an increasingly essential laboratory and field model organism in biological
and agricultural research considering its widespread and expanding dispersal and financial
and socioeconomic relevance. The FAW is an extremely destructive omnivorous pest of
subtropical and tropical origin with higher viabilities over a wide range of temperatures and
distributions [9]. Its strong fertility ability, high migratory capacity and ecological plasticity
contribute to the FAW’s major economic damage by voraciously infiltrating key growing
areas of at least 353 known different host plant species belonging to 76 botanical families,
e.g., corn (Zea mays L.), rice, sorghum, sugarcane, cotton and varieties of vegetables [10].
Without any effective control methods, the yield losses are expected to reach 8.3 million
to 20.6 million tons in 12 main African corn-producing countries, 32% in Ethiopia and
47% in Kenya based on socioeconomic surveys [11,12]. Corn is the first grain crop and
has been widely grown and maintained in China [13], the infested area of corn by the
FAW has reached 1.14 billion m2 by May 2022 (National Agro-Tech Extension and Service
Center, NATESC), ranging from the eastern boundary (33.4◦ N) to the western point (31.6◦

N) [14–16]; without strict supervision measures for the FAW, it would pose a serious threat
to the safe production of food crops in China.

Analyses from the literature have revealed that growth (passing through all life stages)
and development rates of the FAW have a temperature dependence. This ectothermic
noctuid species does not undergo diapause, so it cannot survive extended periods of
inhospitable conditions including extreme cold temperature [17]. The effect of temperature
change on the FAW can be direct, through impacts on their distribution, physiology and
flight performance, or indirect, through other factors, notably host plants and natural
enemies. At the same time, existing studies have showed that the FAW can maintain
cellular homeostasis by regulating gene expression in response to extreme environmental
stress. In this review, we summarize previously published and current data concerning the
relevant effects of changing temperature (as a principal representative of climate change)
on the FAW population distribution, phenology, natural enemies and considering the
mechanisms of temperature tolerance, hoping to come up with effective control strategies
and make reasonable predictions as to their seasonal and phenological occurrence and
migration and provide support of urgent monitoring and management for preventing the
areawide invasion of S. frugiperda, which will enhance the safety of global agriculture.

2. Emergence and Distribution of Fall Armyworm

The FAW was firstly discovered as an injurious pest in 1797 in Georgia [18]. From
1856 to 1928, numerous events of “marching-worms” outbreaks were recorded in the
U.S. [19]. After 1928, the spreads of the FAW were not well documented until the FAW
became a predominant pest and devastated crops in some southern areas. Subsequently, it
was confirmed that it had proliferated throughout almost all 44 countries of sub-Sahara
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including Nigeria, Benin, Togo, Ghana, São Tomé and Princípe in Africa and in Asian
countries such as India, Thailand, Bangladesh and Myanmar in 2016–2018 [20–23]. On
11 January 2019, the initial detection of S. frugiperda larval infestation was in a cornfield
of Jiangcheng county, Yunnan province, China, then, except for Xinjiang, Qinghai and
Northeastern China, it was confirmed in 26 provinces (autonomous regions, municipalities)
by September 2019 [24–28].

In China, a large area (south of 28◦ N, corresponding with the 10 ◦C isotherm in
January) is highly suitable for year-round occurrence of the FAW and a partial area (28◦ N
to 31◦ N, corresponding with the 6 ◦C and 10 ◦C isotherm in January) is conditional for the
winter-breeding of the FAW [29–32]. Lacking a diapause trait, this species must begin a
new series of migratory flights when conditions are not suitable for survival [17,33]. With
an elevated temperature, not only is the horizontal occurrence range expected to extend
widely, but also latitudes and altitudes will move higher among the range of activities
of the majority of populations; contrary to what was previously thought, the number of
insect species per mean area decreased with increasing latitude and altitude at normal
temperatures.

A species distribution model (SDM) is a kind of niche measuring model, which studies
the environmental tolerance of species based on the known distribution points of organ-
isms and their related environmental factors. An SDM can predict a species distribution
range under future climate scenarios, which is beneficial to facilitate forewarning of this
highly notorious pest and develop effective pest management strategies. An SDM mainly
includes a bioclimate analysis and prediction system (BIOCLIM), a genetic algorithm for
rule-set production (GARP) and a maximum entropy model (MaxEnt) [34,35]. Among
them, as a representative, a MaxEnt model provided important data on predicting re-
lationships between the distribution patterns of the FAW and climate change scenarios
in recent years [36,37]. The explicit consequence of the MaxEnt model was that the risk
zonings of S. frugiperda covered most territories of China and were divided into high (e.g.,
Guangxi, Fujian), medium (e.g., Yunnan, Hainan) and low (e.g., Sichuan, Anhui) suitable
habitats in consideration of the known distribution area and restricting factors such as
temperature and precipitation [38–40]. The noteworthy advantages of the MaxEnt model
were a higher prediction with only a small sample size, its ease of interpretation of the
prediction results, the measurement of the importance of environmental variables by the
jackknife method [41–43]; however, some limitations were that the spatial bias of occur-
rences records was not well accounted for [44], and only estimates of the relative suitability
were provided, taking no account of the background of the samples [45]. If the influencing
factors such as land utilization rate, crop species and planting pattern could be further
considered, the prediction results might be more accurate. Additionally, all our conclusions
were hypothetical and need to be validated under real conditions in future studies [46].

3. Effects of Temperature on Phenology

Biological phenology is the scientific research of periodic biological phenomena, such
as the migration of animals in relation to climate conditions, close to ecology and meteo-
rology in biology. The data of phenological observations reflect the synthesis of climate
conditions and effects on organisms, such as the insect pest response to temperature and
humidity, and need to be monitored simultaneously with meteorological factors, which can
be utilized to forecast the occurrence of insect pests. In this part, we discuss the relationship
between representative ecological traits (life cycle, herbivory, flight capability) and temper-
ature changes of the FAW and point out some areas that are rarely covered and worth an
in-depth study, which contribute to predicting the physiological and ecological responses
of the FAW in the context of future climate change, especially temperature change, and
improve the effectiveness of the FAW control.
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3.1. Life Cycle of Fall Armyworm

Temperature fluctuations affect insects’ life-cycle strategies and many data resources
have assessed the direct impact of temperature on the FAW biological characteristics. The
developmental stages of the FAW are divided into four stages, namely, egg, larva, pupa and
adult. The periods of the egg, larval, pupal and adult stages vary with different ambient
temperatures, which are about 2–3 days, 13–14 days, 7–8 days and 10 days in warm summer,
respectively [47–49]. The periods of egg hatching is 2~4 d at 21~27 ◦C [50], in comparison
with 1~3 d at 32~36 ◦C [51]. Larva, pupa and adult experience 14~17 d, 7.82~30.70 d and
14~15 d at 24~27 ◦C, 18~32 ◦C and 17~27 ◦C, respectively [52,53]. The overall period is
22.57~58.73 d from 17~37 ◦C [52,54], and it takes about 30 d to go through a generation
at 28 ◦C [47–55]. The FAW will be inclined to migrate to annual breeding areas (such as
Florida, southern Texas in the USA and most areas of Africa) with suitable temperature
conditions [11,56]. In China, Yunnan, Guangxi, Guangdong, Hainan and other provinces
(regions) are the annual suitable breeding areas of the FAW [57] (Table 1).

Table 1. Developmental periods of FAW at various temperature.

Stage Temperature (◦C) Period (d) References

Egg hatch 21~27 2~4 [50]
Egg hatch 32~36 1~3 [51]

Larva 24~27 14~17 [53]
Pupa 18~32 7.82~30.70 [53]
Adult 17~27 14~15 [52]

Overall development 20~35 23.0~48.3 [54]
Overall development 17~37 22.57~58.73 [52]
Overall development 28 30 [55]

Temperature change is inclined to induce phenological changes in potentially invasive
insects. The temperature in Florida gradually rises toward the south, which means that
the number of FAW generations increases if temperatures remain at high levels, and
farmers may face new challenges to cope with an increase in population numbers of the
FAW [34]. The combination of accelerated developmental rates and the increased number of
generations can hence lead to an expansion of the insect’s geographical range and outbreaks
under higher temperatures [58–60]. Generally, the “temperature–size rule” refers to the
fact that elevated temperatures increase metabolic rate, resulting in a higher growth rate,
a shorter development time and abnormal body figures [61]. Examples occurring in S.
frugiperda caterpillars have been proved by many scholars at high temperatures [51–54,62],
but temperatures slightly to moderately increased affects body length and weight when
reared on an artificial diet [25]. On the contrary, when FAW larvae are exposed to corn
foliage at cooler temperatures, they reduce intakes, grow more slowly to avoid unfavorable
environmental conditions, as it takes as long as 80~90 days to breed a generation, and the
period is longer [63]. Over a period of time, FAW infestations occur during cooler periods
and cause less damage than during warmer periods in the field [64]. S. frugiperda cannot,
however, survive periods of extreme cold, as well as periods with mild cold and rainfall
(Table 2).
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Table 2. The detrimental effect of temperatures on FAW and other species.

Species Temperature (◦C) State of FAW References

S. frugiperda 32~36 Developmental period was shortened with
increasing temperature [51]

S. frugiperda 17~32 Developmental period was shortened with
increasing temperature [52]

S. frugiperda 18~32 Developmental period was shortened with
increasing temperature [53]

S. frugiperda 20~35 Developmental period was shortened with
increasing temperature [54]

S. frugiperda 23~31 Developmental period was shortened with
increasing temperature [62]

S. frugiperda Below 5 Lethal effect at extreme low temperature [65]
S. frugiperda Below 10 Lethal effect at extreme low temperature [30]

S. frugiperda Below 20
Exceed 36 Flight capability was reduced [66]

S. frugiperda Above 38 Growth was inhibited [67]
Sitobion avenae (Fabricius) 31 Reproduction was decreased [68]

Mysus persicae (Sulzer) 37 Developmental rate was decreased [69]
Epiphyas postvittana (Walker) Above 40.4 Lethal effect at extremely high temperature [70]

Bemisia tabaci (Gennadias) 44 Growth was inhibited [71]

Oryzaephilus surinamensis (Linne) 36~48 Developmental rate and fecundity were
decreased [72]

The FAW adult has a strong reproductive ability; the lifespan of a female adult is
generally 7–21 d. Adults can mate and lay eggs many times with 1500 eggs on average and
a maximum of 2000 eggs. The FAW is nocturnal, and mating activity peaks before midnight,
mainly depending on temperature [48]; the highest number of matings occurs from 20 ◦C
to 30 ◦C with little mating at 10 or 15 ◦C [73]. The responses of virgin fall armyworm moths
to changing temperature would be most significant than either single or multiple-mated
moths, and they tend to mate earlier in the night [74]. However, there is no correlation with
the number of matings, fertility, longevity and temperature. The average number of eggs
laid by a single female is the highest at 27 ◦C after about 2 days of mating [51], which is
consistent with the optimal temperature previously reported in terms of length and weight
for this species [62].

3.2. Effects of Temperature on the Host Plants Selection

Omnivorous FAW populations annually infest a variety of plant species, mainly
including Poaceae, Compositae and Leguminosae, feed mainly on all growth stages of
corn (sweet corn and waxy corn preferably). In general, the growth parameters appear
differently when FAW populations infest Poaceae over other groups of plants [17]. For
instance, FAW larvae are divided into six instars and the developmental period of every
instar on cotton is shorter than on corn, about 1.5~3.3 days when they feed on corn leaf
tissue at 25 ◦C, slightly different from the 2.0~3.4 days when they feed on sweet corn kernels
at 26 ◦C; the life cycle and survival rate of larvae are significantly lower on cotton than
artificial diet or corn [53,75,76]. Host-associated genetic differentiation has subdivided the
FAW into two morphologically indistinguishable strains by molecular identification (mainly
by cytochrome c oxidase subunit I, COI gene and triose-phosphate isomerase, Tpi gene), the
“corn-strain” (C) primarily feeds on corn, cotton and sugarcane; the “rice-strain” (R) gives
priority to feed rice and various grasses [77,78]. Although molecular identification results
of the FAW populations’ samples from several provinces of China were different using
molecular markers, according to the increased number of samples covered with different
types of host plants and a more detailed gene fragment detection, it was concluded that the
FAW population that invaded China evolved from the hybrid of an “R” female parent and
a “C” male parent and the special “C” with dominant nuclear genome [27]. In addition,
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differences between the larval development times, wing shape and size, host plant range,
sex pheromone composition, mating behavior and resistance from the “C” and “R” were
documented [79–83].

A tight synchronization of phenology between certain herbivore species and host
plants is often necessary for both to perform well [15]. The host plant can only serve as
a food resource for a limited time, and in most cases, the temperature suitable for the
growth of the host plant is also suitable for the development of the FAW. Temperatures
that are extremely high or low for a host plant’s growth can also influence the growth
of the FAW. At higher latitudes with lower temperatures, the host plant grows slowly
and cannot provide sufficient food resources to support the FAW’s development, thereby
reducing the digestibility and swelling rate of plants’ cellulose, while in mid/low latitudes
(warmer areas), the host plant may be sufficient to provide food resources, thus accelerating
the destruction of the host plant. For the FAW migratory pest, seeding fresh corns in
different time and regions is conducive to the migration occurrence and a concentration
of the infestation. It is relatively complex to predict future FAW’s population dynamics in
relation to the host plant’s growth strategies simultaneously, and large field and laboratory
studies should be conducted over a range of temperatures. The knowledge of the status
of available host plants infested by the FAW under temperature change contributes to the
field management and pest control.

3.3. Effects of Temperature on Flight Performance

This exceptional rapid invasion of the FAW can be ascribed to its long-distance disper-
sal behavior. Through main scientific technologies such as radar observation, trajectory
analysis and meteorological analysis, it has been detected that the FAW is a typical long-
distance migratory pest. Team academician Wu from the Chinese Academy of Agricultural
Sciences (CAAS) predicted that this pest showed a seasonal migration from north to south
in spring and summer (march to august) through the analysis of the path of a Burmese
insect source into China, the falling areas and a seasonal migration rule [25,84]. Prof. Hu of
Nanjing Agriculture University (NAU) reported that the FAW from northern Indochina
and Myanmar could enter the annual breeding area of China and migrate to the main
maize producing areas in the north through two routes, namely, east and west, based on a
migration trajectory analysis and historical meteorological data [85]. Moreover, the FAW
can also cross the sea from the south and east of China into Japan and Korea [86].

Nevertheless, this pest ontogeny does not have a diapause mechanism [33]. A strong
flight performance, together with appropriate environmental conditions, is a key factor
contributing to long-distance migration [87,88]. Inappropriate environmental temperatures
force the FAW to descend to an altitude with a more suitable temperature or land, which
affects migration and flight capabilities [89,90]. To survive in the low temperatures of
winter in the Americas, FAW adults migrate south for warmer climates and then reinvade
throughout the USA and into Canada the following summer [91] or migrate from the
western parts of the African continent to southern Sahara in one single night or over a few
consecutive nights [92].

There is only restricted information on quantifying the relationship between tempera-
ture and flight performance in this species. The first comprehensive radar-based monitoring
of S. frugiperda’s flight performance using a flight mill apparatus revealed that all flight
parameters initially increased and then gradually dropped at 10~30 ◦C, inherently pos-
sessed a strong flight ability at 20~25 ◦C and a low temperature, especially 10 ◦C, could
obviously reduce flight speed and wingbeat frequency [93]. Based on the logit regression,
the threshold temperatures of flight of S. frugiperda were 14.9 ◦C and 13.1 ◦C at 10~20 ◦C
and 20~10 ◦C, respectively [94]. However, S. frugiperda adults showed the highest flight
performance at 32 ◦C, which is unfavorable for development but favorable for escaping
from a detrimental environment [66]. Additionally, by adjusting flight time and speed, the
trial insect could achieve the same flight distance, which could correspond with an energy
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metabolism that is slow at low temperature to meet the energy supply for longer flight and
thus achieve longer flight distance.

4. Effect of Temperature on the Biological Agents as Representation

Many reviews have summarized in detail and comprehensively the control techniques
of the FAW, including agricultural, biological, chemical control and monitoring techniques.
The Ministry of Agriculture and Rural Affairs, China (MARA), NATESC and other relevant
departments have proposed that the strategy of “regional management, joint prevention
and control, comprehensive management” be implemented, addressing the ecological
control and agricultural control as the basis, biological control and physical and chemi-
cal control as the focus and chemical control as the bottom line [95]. Biological control
agents (natural enemy resources such as parasitoids, predators and entomopathogens)
show environmentally friendly and sustainable advantages, present positive application
prospects in the management of S. frugiperda, while chemical and other controls, such as
the application of synthetic insecticides, are accompanied by environmental contamination
and resistance development. Therefore, this paper mainly reviews the relationship between
biological agents and temperature. In total, 250 natural enemy insect resources (206 para-
sitoids and 44 predators) of S. frugiperda giving priority to Hymenoptera and Diptera [96],
47 entomopathogens resources centered on Hemiptera and Coleoptera were summarized [97].
Here, we just listed several parasitoids, predators and entomopathogens of S. frugiperda and
the effects of temperature on their growth and control effect, providing critical information
for the development and implementation of enhanced biological control programs.

Many parasitoids possess strong parasitic ability for S. frugiperda [72,98,99], such as
Telenomus remus Nixon and Trichogramma pretiosum Riley [100]. There is an inverse correla-
tion between developmental time and temperature at 15~34 ◦C [101,102]. To ensure a high
parasitic efficiency, the time of parasitoids release should be early in the morning to allow
adults to find shelter from high temperatures, avoiding the late evening because the para-
sitoid is inactive at that time [103,104]. Of note, the sex ratio and number of parasitoids per
egg are not influenced by temperature (this may be related to the number of host available
and age of the parasitoids females) [105,106], thus ensuring the quality of laboratory insect
mass production to meet the needs of a large-scale release on field. In the case of predators,
predation efficiency varies with temperature and age; for instance, in Orius sauteri Poppius,
the highest instantaneous attack rate and predation quantity occurred predominantly at
low instar larvae especially the first instar at 25 ◦C and the predatory efficiency of Eocan-
thecona furcellata Wolff for low instar larvae of the FAW gradually increased at 17~32 ◦C
and was optimal at 32 ◦C [107]. In conclusion, the comprehensive considerations of field
environmental factors and the larval instars of S. frugiperda are vital for later successful
field releases, including times, rates and frequencies [108].

Entomopathogen resources of S. frugiperda are relatively abundant including bac-
terium, virus, fungi, microsporidia and nematode. In the Americas, local farmers sometimes
collect dead and dying larvae (the body is filled with virus particles or other pathogens that
are in the stage of infection). After grinding and filtering, filtrate containing virus or fungus
and water are mixed, then they are sprayed in the field, especially where the plants are being
infested [109]. Biological products made from entomopathogen e.g., Bacillus thuringiensis
(Bt), Beauveria bassiana, Metarhizium anisopliae and nucleopolyhedrovirus (NPV) have
been approved for the control of S. frugiperda in China [47,110–114]. Entomopathogens
can modulate the physiology, ecology and behavior of the host to maximize their own
reproduction and adaptability to the environment [115–119]. Appropriate temperature
is the prerequisite for successful control and has a direct influence on the parasitism and
infectivity of nematodes, for Noctuidonema guyanense Remillet & Silvain, 32 ◦C is the
most suitable for parasitoid population growth [120,121] and is also within the favorable
range for the FAW’s growth. The effect of other temperatures on the overall abundance of
FAW populations remains unknown due to a lack of equivalent data on natural enemies.
Not only the own reproductive capacity of insect pest populations, but also the abundance



Insects 2022, 13, 981 8 of 17

of predators and parasitoids decide the population density of insect pests [122]. In the case
of a more rapid expansion of the FAW over natural enemies, it will undoubtedly cause
more outbreaks.

5. Temperature Tolerance and Regulating Genes

The capability of temperature tolerance of an invasive species is interpreted to be a
crucial challenge in its successful establishment and dissemination under extreme climate
change [123]. In general, within a certain temperature range, especially when it comes to
inappropriate temperature regions for development, some ectotherms could maintain cell
homeostasis and improve the body’s defense ability by improving gene and protein levels;
however, a weak development or extinction damage will be shown when the ambient
temperature exceeds the insect’s natural tolerated environmental limit and even a brief
exposure to extreme temperatures could affect population dynamics, organism phenology
and community structure [30,124,125].

A successful adaptation to environmental temperatures can promote opportunities
to complete its life cycle and is also an important reason for the rapid outbreak of the
FAW globally. However, the literature about the heat hardiness of the FAW remains poorly
elucidated; although modern molecular techniques may soon allow rapid progress, studies
have only reported that the population growth is inhibited at extreme high temperature [67].
Similarly, for other pest species, the survival and reproduction of B. tabaci, S. avenae, M.
persicae and E. postvittana were inhibited at extremely high temperatures [68–72]. All of
the developmental life stages of the FAW withstand low temperatures to varying degrees:
egg < adult < larva < pupa [126]. However, the adult stage was also reported to be the
most sensitive stage to cold temperatures, with only 25% surviving at ~5 ◦C and death at
colder temperatures, while the most tolerant stage, the egg stage, had a 30% survival at
~10 ◦C, which violates our conclusion from the discussion above; we suspect that different
measurement and analysis methods led to the two different results [65] (Table 2). Insects
can be divided into freezing-susceptible and freezing-tolerant according to supercooling
points (SCP) [84,126–128]. However, most studies revealed that populations from different
regions, insects infesting different host plants and SCP determination methods could
affect the results of SCP, resulting in the SCP not being an adequate predictor of cold
hardiness [129,130].

To resist temperature stresses, insects will make corresponding physiological adjust-
ments, including gene expression, aimed to improve the viability ability under environ-
mental stress. Studies on heat shock protein genes (e.g., Hsc70, Hsp90, sHsp19.07, sHsp20.7
and sHsp19.74) and trehalose-6-phosphatesynthase (TPS) genes (CYP4G15 and CYP4L4) have
shown that they participate in the regulation of the tolerance of FAW to temperature fluctua-
tions [131–135]. The heat shock response was first discovered by Italian geneticist Fernando
Ritossa, when he observed a new buffing pattern on the salivary gland chromosomes of
Drosophila as a response to increasing temperature and exposure to certain chemicals [136].
The tolerance proteins are products of different environmental stress (such as low/high
temperature) and enhance the organism’s resistance for a better survival [137–140]. In
addition, the expression levels of Hsps genes differed among the developmental stages
(larva, adult) and tissues (ovary, abdomen, head, compound eyes, antennae) of male and
female adults [139,141], suggesting that these are related to the external environmental
stimuli, requiring a large number of proteins to assist cell transport of chemical signals.
Research on temperature tolerance is instrumental for decoding the molecular mechanism
behind its wide adaptation ability across different regions and helping us develop better
control management.

6. Management Strategies in the Background of Global Warming

Currently, synthetic insecticides are most frequently used to control FAW, however,
the overuse and continuous repeated spraying of synthetic chemicals is not only ineffective,
uneconomical and unsustainable, but also poses health and environmental hazards to farm-
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ers, consumers and the ecosystem [142]. Moreover, host plant resistance, the abundance of
natural enemies and the effectiveness of synthetic chemicals used for pest management
will be reduced with changes in global temperature [143]. Integrated pest management
(IPM), known as a robust construct to arise in agricultural sciences, encourages the users or
producers to take full advantage of available optimal pest control options within ecological
systems in consideration of economic, environmental and social benefits. Authorities have
recommended climate-smart pest management (CSPM) strategies, including the combina-
tion of local climate forecasting and actual changing observations together with a pest risk
assessment into pest management planning strategies [144]. Together with the reduction in
pest-induced crop losses that CSPM brings a double-win effect of adapting to evolving pest
threats and ultimately raising food security. Given this, there are components of IPM that
could enable a sustainable control of the FAW after climate change, as discussed below.

6.1. Monitoring and Early Warning

At the country and community levels, we propose that the public and private sectors
establish an integrated system of pest and climate conditions forecasting, surveillance, de-
tection and control based on CSPM, making farming systems more resilient to climate, e.g.,
temperature change, reducing the negative impacts on the broader ecosystem. Methods
mainly involve field reconnaissance, releasing pheromone traps, mass effective data collec-
tion and creating databases, helping uncover the development–temperature relationship of
insect pests’ models and creating data visualization tools contributing to predict possible
future outbreaks [145]. The FAO has recommended that early warnings consist of a central-
ized cloud-based platform comprising a global database linked to a geographic information
system (GIS). More awareness should also be raised by governments to enact relevant
policies and regulations to speed up the evaluation, registration and quality management
of the fall armyworm management options. We put forward some control suggestions
and recommended measures, which should be implemented by relevant departments
including federal and local authorities, research institutes, major agricultural stakeholders
and farmers so the battle between man and the FAW is successful.

6.2. Suitable Cropping System

A cropping system describes how crop patterns can maximize the rational use of land
resources, reduce disease and insect pests and improve output. The aim is to promote
a crop’s healthy growth and improve the crop’s resistance through strengthening field
management, rational fertilization and watering. According to temperature conditions, the
sowing date of crops can also be adjusted to stagger the sensitive growth period and the
occurrence period of insect pest and diseases to minimize the suitable habitat for insect
pests. CSPM puts forward that the strategy of minimum tillage and planting natural
barriers not only increases organic carbon sequestration in soil, but also increases the
resilience to certain pests. Identifying and introducing plants that house natural enemies
and facilitate their reproduction is also a simple and cost-effective alternative. The rotation
of crops repelling pests or attracting natural enemies reduces food source and oviposition
on the host plant, which may significantly reduce recurrent pest infestations each growing
season. For instance, the “push-pull” companion cropping strategy means interplanting
crops to drive the FAW (“pull”) and plant weed traps nearby to attract the FAW to the
surrounding weeds (“push”); it has been proved effective in reducing the number of larvae
per corn plant (82.7%), decreasing damage degree (86.7%) and increasing yield (2.7 times)
in Kenya, Uganda and Tanzania [146]. Governments should also encourage the growers
to modify crop planting plans for plants that are vulnerable to be attacked by the FAW at
certain temperature and even provide financial support to the modification and take strict
measures of prevention and control to prevent the invasion of this pest to a continent of
low suitability.
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6.3. Use of Biological Control

As an ecologically friendly means, a biological agent would be an ideal alternate
for effectively combating and sustainably managing the S. frugiperda. However, different
thermal preferences between crop pests and their natural enemies may lead to a loss of
synchronization between the two biologies and increased risks of pest outbreaks [147,148].
Additionally, for other biological control agents, due to the development of high resistance
levels for Bt transgenic events in recent years [149,150], vegetative insecticidal proteins
(Vips) are considerable alternatives of resistance management strategy and have a specific
insecticidal activity to lepidopteran pests resistant to Cry insecticidal proteins and promis-
ing no cross-resistance with Cry proteins [151,152]. When the biological products are used
in practice, attention should be paid to the host plant’s growth status and the occurrence of
insect pests under temperature conditions in the field and the release of biological products
reasonably should be aimed to maximize their effectiveness.

The global climate conditions are complex; we should timely adjust measures accord-
ing to the climatic environment in different regions and crop planting patterns, establish
an integrated prevention and control technology system on the basis of the ecological
regulation, with biological control as the core and the emergency prevention and control of
chemical pesticides as a complementary measure, in order to minimize hazard losses and
ensure the safety of national food production.

7. Conclusions

Summarizing, future climatic change will affect the FAW’s occurrence in different
ways and degrees; higher temperatures, all other things remaining fixed and equal, allow
elevated development rates, probably additional generations within the same time, then
an earlier migration into wider geographical ranges, infesting more host plants. Warmer
winters may lead to a greater survival, advancing the first flight threshold of the year, but
may result in a lower adult weight and fecundity. On the contrary, low temperature prevents
essential movement to new feeding sites, leading to death due to starvation. The tolerance
responses of the FAW to temperature stress could mitigate the adverse effects of climatic
change. In this review, we discussed that temperature directly influenced the geographic
distribution, life cycle and flight performance, or indirectly influenced the development of
host plants and natural enemies of the poikilothermal FAW, thus may affect the damage to
host plants. We also summarized the partial temperature tolerance mechanism, including
genes and proteins expression, and put forward some control strategies in the background
of future climate change (focusing on temperature).

What is noteworthy is that detailed laboratory experiments are usually designed in
a way that allows the biological behavioral response to the variation of one element only
and keep the others as constant as possible, which accelerates the experimental process of
simulating actual conditions or operating under field temperature stress [153]. However,
the thermal performance of insect pests at fluctuating temperatures may differ from those
at constant temperatures set up in lab conditions [124]. The outbreak of FAWs is not out of
mere coincidence, but a product of being driven by multiple factors [154]. Climate change
increases the likelihood of other extreme events (e.g., droughts) that needs to be emphasized.
The interactions between abiotic and biotic and direct and indirect components may prevent
the determination of community-level consequences.

The influences of climate change on the FAW’s manifestation are complex; there
are still several unknowns that were not illustrated by this review: (i) Although FAW
populations are subdivided into two morphologically indistinguishable strains (“R” and
“C”) by the COI and Tpi genes based on a host-associated genetic differentiation, the
difference between the two strains’ response to temperature change remains unknown;
thus, a further monitoring of the “R” strain occurrence and trends in the evolution of the
two strains in China and finding strategies to cope with ambient temperature adaptation,
is necessary; (ii) Although direct effects and indirect ones are difficult to disentangle,
currently, little is known as to how these may change in the near future and they warrant a
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discussion. A comprehensive analysis should also be carried out based on the considerably
more detailed investigation of actual field and climatic conditions, aiming to provide more
comprehensive and reliable data support for the division and prediction of the damaging
region of S. frugiperda in the near future; (iii) When considering that temperature acclimation
increases the tolerance of S. frugiperda, it is necessary to further investigate whether the
genes that are induced by cold/heat stress are significantly upregulated during recovery
from cold/heat shock and their variations at the protein and metabolism levels. Moreover,
the underlying mechanism explaining how other proteins counteract stressful temperatures
in this invasive pest remains murky and needs further refinements.

Research on the effects of climate change on the FAW, especially temperature, still
has many challenges, including formulating the unknowns mentioned above; for future
research, we suggest considering the following points:

1. Paying close attention to global climatic change, developing international cooper-
ation and improving capacities of forecasting and surveillance, making efforts for
controlling the FAW globally;

2. Multiple factors including limits of natural enemies and host plants need to be con-
sidered when assessing the effects of temperature on the FAW’s dynamics, putting
together a wider context. Additionally, abiotic factors such as precipitation might
alter relative humidity and is likely to affect important physiological functions, e.g.,
reproduction, which indirectly affects the direct effect of temperature on the FAW;

3. The occurrence of the FAW around the world will be normal and long-term prevention
and control strategies should be adopted in annual breeding areas. Information about
long-term FAW population-level variation to global climatic change is scarce, so this
context should be further strengthened.
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