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Simple Summary: Various types of rice pests cause huge losses to rice production every year in
China. In this paper, a deep neural network for pest detection and classification via digital images
is proposed. The targeted optimization is improved for the pest characteristics. Our experiments
determined that our model has a higher accuracy and detection speed compared with other methods.
In addition, it can be more widely used in pest detection surveys for various crops.

Abstract: In recent years, the occurrence of rice pests has been increasing, which has greatly affected
the yield of rice in many parts of the world. The prevention and cure of rice pests is urgent. Aiming at
the problems of the small appearance difference and large size change of various pests, a deep neural
network named YOLO-GBS is proposed in this paper for detecting and classifying pests from digital
images. Based on YOLOv5s, one more detection head is added to expand the detection scale range,
the global context (GC) attention mechanism is integrated to find targets in complex backgrounds,
PANet is replaced by BiFPN network to improve the feature fusion effect, and Swin Transformer is
introduced to take full advantage of the self-attention mechanism of global contextual information.
Results from experiments on our insect dataset containing Crambidae, Noctuidae, Ephydridae, and
Delphacidae showed that the average mAP of the proposed model is up to 79.8%, which is 5.4%
higher than that of YOLOv5s, and the detection effect of various complex scenes is significantly
improved. In addition, the paper analyzes and discusses the generalization ability of YOLO-GBS
model on a larger-scale pest data set. This research provides a more accurate and efficient intelligent
detection method for rice pests and others crop pests.

Keywords: rice pest detection; YOLOv5; Swin Transformer; BiFPN; self-attention

1. Introduction

Rice is the world’s main food crop, feeding half of the world’s population and about
two-thirds of China’s population [1]. According to the International Rice Research Institute,
farmers lose an average of 37% of their rice production each year due to insect pests and
diseases. Pests cause hundreds of millions of dollars in losses worldwide every year. Timely
and accurate identification of pests can carry out targeted prevention and control work to
reduce economic losses due to serious pests.

The traditional pest detection method is mainly manual identification. Agricultural
technicians observe and identify pests with the naked eye using hand lenses and mi-
croscopes. This task requires continuous monitoring of crops. For large farms, this is a
subjective, labor-intensive, and expensive task [2]. With the development of technology,
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traditional image processing techniques were used in the field of pest detection, and most
of these methods manually design image features to identify specific species of pests [3–6].
Compared with manual visual detection methods, traditional image processing techniques
can greatly improve the recognition efficiency and solve the problems of lack of agricultural
experts and poor objectivity. However, due to the limitation of manual feature extraction,
such algorithms only focus on the detection of specific pests in specific scenarios, lack
generality, and have difficulty to meeting work needs in practical scenarios.

With the continuous development of computer vision and deep learning technology,
more and more researchers are committed to combining artificial intelligence with the
field of agriculture [7]. The pest detection algorithm based on deep learning does not
need to design complex features artificially. It can automatically extract the features in the
original image for identification, positioning, and counting. Classic algorithms include
Faster RCNN [8], SSD [9], YOLOv3 [10], Cascade R-CNN [11]. Shen et al. [12] achieved the
detection of food storage insects by combining an insect trapping device with Faster RCNN.
Dai et al. [13] used an improved cascade R-CNN with high-definition cameras in the wild
to achieve citrus psyllid detection. Rong et al. [14] used Mask R-CNN to identify and count
field pests of yellow plate, and effectively solved the problem of inaccurate small target
recognition by improving the FPN structure in the feature extraction network. Various
pest detection methods based on deep learning have the characteristics of fast detection
speed, high detection accuracy, and strong generality, which provide a new method for
crop pest detection.

At present, there are few effective machine learning detection algorithms for rice pests,
due to the problems such as high similarity between classes, large changes in target scale,
and complex backgrounds that are difficult to detect. Sethy et al. [15] proposed a simple
method to quantify the degree of infection of Rice Brown Plant Hopper (RBPH, Nilaparvata
lugens Stal, Hemiptera: Delphacidae). Median filtering and K-mean clustering were used to
segment the RBPH area in the image, and then the ratio of infested RBPH area and total area
was compared to quantify the degree of infection. Qing et al. [16] collected images through
a self-made handheld image acquisition device, and detected and counted white-backed
planthoppers through a three-layer detector including AdaBoost classifier, SVM classifier,
and threshold judgment of multiple features, with a detection rate of 85.2%. However,
this method needs to be manually set the threshold, and the model lacks universality as
the detection target is only for rice planthoppers. Liu et al. [17] used a global contrast
region-based method to calculate a saliency map for locating pest objects. Then, based
on the saliency map for extracting the boundary containing the target, Liu et al. sent the
target area an image adjusted to a fixed size for the DCNN network for classification,
identified 12 types of typical rice pests, and finally achieved a mean accuracy precision
(mAP) of 0.95. However, the basis of the feasibility of this method is the sharp contrast
between the pest and the background, and it cannot handle the situation that the target is
not salient enough or has occlusion. In addition, the optimal threshold based on saliency
map segmentation needs to be determined by experiments. An inappropriate threshold
will also affect its accuracy. He et al. [18] used a dual-layer target detection algorithm to
detect brown planthoppers. Both layers of networks are fast RCNN, but each layer selects
different feature extraction networks. Experiments show that the detection result of a
dual-layer algorithm is obviously better than that of single-layer detection algorithm. This
method provides a new way for pest detection, but the model structure of fast RCNN is
very large, and the detection speed of the algorithm is slow.
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Although many researchers have performed a lot of work in the detection of rice pests,
there is still a lack of intelligent and effective rice pest detection algorithms under open
fields based on deep learning. The existing algorithms still need to be further improved
in terms of the types of pests that can be detected and the requirements for the detection
scene. In addition, agricultural applications are often used outdoors, with limited available
resources, and lower computing power often results in lower detection speed. Therefore,
it is necessary to explore an accurate and efficient rice pest identification algorithm. This
study improves the YOLOv5 network model by integrating the GC attention mechanism,
enhancing the ability of the network to extract image features, adding a detection head
to increase the detection scale range, and introducing BiFPN and Swin Transformer to
improve the detection performance. Based on the above improved methods, the YOLO-GBS
algorithm is proposed for the detection of rice pests.

The YOLO-GBS has great potential for practical applications in the field of pest
screening, surveyors, and management. For pest screeners, the model can provide accurate
and efficient identification of pests, greatly reducing the workload and improving the
accuracy of pest identification. For surveyors, the model can help identify pests in the early
stages of infestation and monitor their spread, thus helping to prevent and control pest
outbreaks. For managers, the model can provide valuable information for decision-making,
such as identifying areas that require targeted pest control measures and tracking the
effectiveness of control efforts. Overall, the YOLO-GBS model can greatly enhance the
efficiency and effectiveness of pest management practices, which is of great importance
for agriculture.

2. Materials and Methods
2.1. Image Dataset

The dataset in this research comes from the IP102 dataset [19] and web crawler. IP102
is a large-scale dataset for pest identification, which contains more than 75,000 images
with 102 categories. It was proposed in 2019 and so far still has the largest pest data set.
In this work, seven types of adult pests of rice were selected, including rice leaf roller
(Cnaphalocrocis medinalis, Lepidoptera: Crambidae), pink rice borer (Sesamia inferens, Lepi-
doptera: Noctuidae), rice leaf caterpillar (Naranga aenescens Moore, Lepidoptera: Noctuidae),
paddy stem maggot (Hydrellia griseola, Diptera: Ephydridae), plant hopper (Nilaparvata
lugens Stal, Sogatella furcifera Horvath, Laodelphax striatellus Fallén, Homoptera: Delphacidae),
Asiatic rice borer (Chilo suppressalis Walker, Lepidoptera: Crambidae), and yellow rice
borer (Scirpophaga incertulas Walker, Lepidoptera: Crambidae). The samples of the seven
categories are shown in Figure 1. Due to the problems such as the duplication of images
and low resolution in the IP102 dataset, the images were manually screened and cleaned,
leaving 684 images. Due to the prominent long-tail phenomenon of the dataset, 181 pictures
were collected by web crawlers to balance the data, and finally, a total of 865 images of
pests were obtained. LabelImg software v1.8.1 was used for manual annotation to ob-
tain a ground truth for subsequent training. The original dataset was divided into the
training set, validation set, and test set with the ratio of 6:2:2. Data enhancement adopted
online enhancement. Before each epoch training, each image was enhanced according
to the set probability. The enhancement strategies included mosaic, clipping, horizontal
flipping, translate, hue, saturation, and brightness adjustment. The number of labels for
each category is shown in Figure 2.
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2.2. The Proposed Method (YOLO-GBS)

The YOLO [20] series of network models are widely used in various fields due to their
excellent performance in speed and accuracy. YOLOv5 was released and open sourced
by ultralytics in 2020. As the best single-stage target detection model so far, the backbone
of the network is composed of the classic CSPDarknet53 structure, Focus module, and
SPP module, using PANet as the neck network, as well as head, using the classic YOLO
detection head. By controlling the depth and width of each module in the network, YOLOv5
can be divided into four different models, including YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x, and the model scales increase sequentially. Considering the miniaturization and
real-time requirements for agriculture applications, this study selected YOLOv5s model
with the smallest number of parameters and the fastest inference speed as the baseline
model. After applying the YOLOv5s model to rice pest detection, it was found that due to
the huge difference between pest detection and general target detection, YOLOv5s model
was not found satisfactory in the detection of complex scenes, dense small targets, and
occluded targets. In view of this situation, an improved algorithm called YOLO-GBS
(YOLO with GCNet, BiFPN and Swin Transformer) was proposed in the study to adapt to
specific rice pest detection tasks, and the structure of YOLO-GBS is shown in Figure 3.
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Considering the characteristics of slight differences in appearance, large changes
in the size of pest images, and the low accuracy of the existing recognition algorithm,
this study introduced the GC attention mechanism to improve the feature extraction
effect, used BiFPN to replace the original PANet feature fusion network to increase the
richness of network features after fusion, adopted Swin Transformer to replace part of
the convolutional structure in the deep network to improve the ability to extract global
information, and increased the number of detection heads to increase the detectable target
scale range.

2.2.1. Global Context Attention Mechanism

For agricultural images, complex backgrounds and non-salient targets often bring
difficulties to the recognition of the model. To better extract target features and reduce the
interference caused by non-target areas, the global context attention mechanism (GC) [21]
was introduced to the main feature extraction module C3, which is a self-attention-based
attention mechanism that combines the capture ability of non-local network [22] for long-
range dependencies and SENet [23] lightweight. The GC attention mechanism consists
of three steps: (1) context modeling—using 1 × 1 convolution Wk and softmax function
to obtain attention weights through global attention pooling, and then obtaining global
context features through pooling; (2) transformation—performing feature transformation
through 1 × 1 convolution Wv, referring to the bottleneck design in SE block, controlling
the parameter through a dimensionality-reduction layer with reduction ratio r, and using
layer normalization to reduce the optimization difficulty; (3) feature fusion—fusing the
global context features to each location.

The mathematical expression of GC attention is as follows:

zi = xi + Wv2ReLU

(
LN(Wv1

Np

∑
j=1

eWk xj

∑
Np
m=1 eWk xm

xj)

)
(1)

where Np is the number of positions in the feature map, for pictures Np = height × width.

αj = eWk xj

∑ eWk xm is the weight for global attention pooling, and δ(·) = Wv2ReLU(LN(Wv1(·)))
denotes the bottleneck transform. xi represents input features, and zi represents GC block
output features.

The structure of the C3_GC and GC block is shown in Figure 4.
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2.2.2. Multi-Scale Feature Fusion

For the target detection task, the fusion of multi-scale features can greatly reduce the
loss of features in the convolution process and improve the detection effect. At present,



Insects 2023, 14, 280 7 of 17

the main feature fusion networks are FPN [24], PANet [25], NAS-FPN [26], BiFPN [27], etc.
BiFPN simplifies the network while retaining the bottom-up and top-down bidirectional
integration of PANet, and deletes the nodes with only one input side because these nodes
make little contribution to the network. A skip connection was added between the original
input node and the output node to achieve the purpose of fusing more, richer features. In
feature fusion, learnable weights are introduced to learn the importance of different input
features, and thus adjust the contribution of each input feature.

Because of the above advantages, BiFPN was adopted to replace the original PANet of
YOLOv5 in the neck network. The structural model diagrams of FPN, PAN, and BiFPN are
shown in Figure 5. The FPN is one-way fusion, PANet adds bottom-up two-way fusion,
and BiFPN adds skip structure and weight to each fusion feature.
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2.2.3. Swin Transformer

Transformer was originally used in the field of natural language processing and first
proposed by Google in Attention as All You Need [28]. In 2020, Vision Transformer [29]
brought the transformer to the computer vision field for the first time, and began to shine in
this field. A large number of excellent networks such as DeiT [30], Swin Transformer [31],
DETR [32], SETR [33], and GANsformer [34] came out one after another.

In the standard Transformer structure, the global self-attention is calculated every
time, which is very computationally expensive for high-resolution images. In order to
improve efficiency, a window-based Multi-head Self-Attention (W-MSA), which divides
the original image into multiple non-overlapping windows and performs self-attention
operation inside each small window, is introduced in Swin Transformer, and a Shifted
Windows Multi-Head Self-Attention (SW-MSA) is also introduced to Swin Transformer
to make up for the information transfer between different windows. By moving the
position of the window on the previous layer, a connection is introduced between the
non-overlapping windows on the previous layer, thereby greatly increasing the receptive
field. The comparison between Transformer and Swin Transformer is shown in Figure 6.

A convolutional neural network (CNN) is good at extracting shallow features, but not
good at capturing global information and context in deep features, which are exactly what
transformers are good at. In this paper, considering that there are many small targets and
occluded targets (part of the body is obscured) in rice pest detection application, such fea-
tures are easily ignored in the convolution process; the 3 × 3 convolution of the C3 module
in the YOLOv5s neck is replaced by a Swin Transformer block, expecting to achieve better
classification and localization effects through better contextual information extraction.
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2.2.4. Additional Detection Head

The scale of agricultural pest targets varies widely. Figure 7 shows a visualization of
the width and height of the pest targets in the dataset as a proportion of the total image.
The horizontal axis represents the ratio of the target’s width to the total width of the image,
while the vertical axis represents the ratio of the target’s height to the total height of the
image. It can be found in Figure 7 that the target scales are widely distributed in various
ranges. In this study, to better capture various targets ranging from large (such as various
moths) to small (such as the rice planthopper), an additional detector head P6 is added,
generated from a high-level and low-resolution feature map, with an output feature size of
10 × 10. This detection head is more sensitive to large-sized targets.

2.3. Experiment Environment and Model Evaluation

The hardware configuration for the experiments includes Intel(R) Core(TM) i7-10700
CPU @ 2.90 GHz and memory with 32 GB, NVIDIA RTX 3090 graphics card with 24 GB
graphics memory. The software environment is Windows 10 Professional 64-bit operating
system, CUDA version 11.1, CUDNN version 8.0.5, Python version 3.7 and PyTorch version
1.10.1.
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In the experiment, the input image pixels were 640 × 640. The model was trained on
self-built rice pest dataset for 300 epochs. The batch size was set to 32, and online data
enhancement methods such as mosaic, mirroring, flipping, and brightness adjustment were
used in the training process to enrich the background of the detected objects further and
strengthen the cognition of the network model on pest characteristics. AdamW was used as
the optimizer, the initial learning rate was set as 1× 10−3, and the one-cycle linear learning
rate was updated and optimized during the training process.

To measure the accuracy of the proposed method, the evaluation indicators were
adopted such as Precision, Recall, Average Precision (AP), and mean Average Precision
(mAP) as evaluation indicators; the formula of those indicators are shown as
Equations (2)–(5):

Precision = TP
TP+FP (2)

Recall = TP
TP+FN (3)

AP =
∫ 1

0 P(R)dR (4)

mAP = ∑ AP
Nclass

(5)

where TP represents the number of true positive samples, FP represents the number of false
positive samples, and FN represents the number of false negative samples. By drawing the
curve showing that P changes with R in the interval 0–1, the value of AP can be calculated
with the area under the curve, and the final mAP value can be obtained by averaging the
AP values of each category.
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3. Results
3.1. Ablation Studies

To verify the contribution of each proposed module to the overall performance of the
network, ablation experiments were carried out on the dataset. The results of all ablation
experiments are shown in Table 1, where it can be found that the performance improvement
gradually increased from the YOLOv5s (baseline) to the final YOLO-GBS.

Table 1. Results of ablation experiment.

Methods Precision (%) Recall (%) mAP (%)

YOLOv5s (baseline) 71.2 68.4 74.4
YOLOv5s + P6 71.9 70.7 75.1

YOLOv5s + P6 + BiFPN 72.8 71.2 75.4
YOLOv5s + P6 + BiFPN + GC 73.2 72.7 76.5

YOLO-GBS (previous + Swin Transformer) 73.8 75.1 79.8

From Table 1, the model can capture a wider range of target scales by adding an
additional detection head (YOLOv5s + P6). Although the number of model layers and
calculation amount increased from 270 layers and 16.5 GFLOPs to 355 layers and 16.9
GFLOPs separately, the model recall was also greatly improved, which was 2.3% higher
than that of YOLOv5s network, and the mAP also increased by 0.7%. The BiFPN feature
fusion network (YOLOv5s + P6 + BiFPN) and the GC attention mechanism (YOLOv5s + P6
+ BiFPN + GC) further improve the model’s ability to detect targets through better fusion
and extraction of features, so that the model mAP increased by 0.3% and 1.1% respectively.
YOLOv5s + P6 + BiFPN + GC + Swin Transformer, namely YOLO-GBS, which is the final
solution network for this paper, achieved the best performance with it excellent global
information and context acquisition ability. The mAP of the YOLO-GBS proposed in this
study was 79.8% on the pest dataset, which was 5.4 percentage points higher than the
original YOLOv5s on the same test set, indicating the feasibility and effectiveness of the
improved model in this study. The proposed YOLO-GBS played a great role in detecting
small targets, dense targets, and occluded targets.

To better show the effect of the improved model, YOLOv5 and YOLO-GBS models
were compared with three typical complex scenarios in the test set, including dense and
occluded target, small target, and camouflaged target, as shown in Figure 8. The left side
shows the original image, the middle side shows the detection result of YOLOv5s, and
the right side shows the detection results of the YOLO-GBS model. Obviously, YOLOv5s
detection misses some pest targets, while the YOLO-GBS model recognizes all targets in
typical complex scenes.

3.2. Comparison of Various Mainstream Networks

To better verify the performance of the improved model, SSD300, YOLOv3, YOLOv3-
tiny, and faster RCNN, which are the mainstream networks, were used to compare with
YOLO-GBS, and the comparison performance is shown in Table 2. It can be seen that single
image detection time of YOLO-GBS is 3.2 ms, second only to 1.9ms of YOLOv3-tiny, but the
mAP is significantly ahead by 10%. The average accuracy of the improved YOLO-GBS is
the highest among all the comparison models, 4.4 percentage points higher than the second
place Faster RCNN, and the single image detection time is about 6 times faster. Considering
both accuracy and speed, YOLO-GBS has the best comprehensive performance and can
complete well in the task of detecting rice pests. The comparison visualization results are
shown in Figure 9. In addition to YOLO-GBS, other models have some problems such as
missed detection or bounding box positioning errors. Regarding the small target in the last
row, only YOLO-GBS successfully detects and locates it accurately.
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Table 2. Comparison of the model performance.

Methods mAP (%) Detection Time (ms)

SSD300 68.3 11.9
YOLOv3-tiny 69.6 1.9

YOLOv3 74.6 7.6
Faster RCNN 75.4 18.3
YOLO-GBS 79.8 3.2
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Figure 9. Visualization results.

3.3. Model Generalization Capability

In order to further explore the generalization ability of the model in the detection of
crop diseases and pests, the generalization ability of the model was evaluated using the
unwashed IP102 dataset. Different from the previous training process, the dataset used this
time includes 18,976 pest pictures of 102 classes and their corresponding annotation files.
The dataset was divided into training set, validation set, and test set in the ratio of 6:2:2.
The same YOLO-GBS network was trained again on this complex and diverse dataset, and
the comparison testing results of different models are shown in Table 3.

Table 3. Comparison of detection effects of different networks in IP102 dataset.

Methods mAP (%)

Faster RCNN [19] 47.9
FPN [19] 54.9

SSD300 [19] 47.2
RefineDet [19] 49.0
YOLOv3 [19] 50.6

YOLOv5s 51.4
YOLO-GBS 55.7

It can be seen from Table 3 that YOLO-GBS can still effectively identify and classify
pests even for larger and more complex data sets. Compared with other models, the
proposed YOLO-GBS has the best mAP, indicating that the model has good generalization
performance and may be further applied to various pests of various crops.

The FPN and YOLO algorithms, which have higher accuracy rates among the above
methods, are chosen to compare their effects with the methods in this paper. It can be seen
that every insect in Figures 10–12 can be detected by our method, and each presents good
performance in terms of detection and classification accuracy.
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3.4. Grad-CAM Visualisation

This experiment used Gradient-weighted Class Activation Mapping (Grad-CAM) [35]
to visualize the reasoning process, trying to both further explain the process of generating
the results and analyzing and discussing the advantages and disadvantages of the model as
well as future improvements. In order to show how the improved model makes decisions,
each result at different layers was visualized using a heatmap drawn by Grad-CAM to
show the regions of interest at different layers. Three examples were used to visualize the
decision-making process, and some key Grad-CAM diagrams of the network were selected,
including the tenth layer of the backbone network, the BiFPN structure, and the output
layer. Although there is a certain degree of deviation between the hot spot of layer 10
shown in Figure 13b and the actual target shown in Figure 13a, after the weighted fusion of
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BiFPN structure and other layer features, the hot spot has been biased towards the actual
target shown in Figure 13c. After the Swin Transformer structure, the final output layer
was further optimized, as shown in Figure 13d, where the hot spot position displayed by
the heat map is basically consistent with the real target.
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4. Discussion

Although YOLO-GBS has achieved promising results, there are several issues that
deserve attention. Firstly, due to the low image resolution of the public datasets used, there
are often cases where the localization is accurate, but the classification is incorrect, especially
in scenes where two types of worms have similar colors and can only be distinguished by
their textures. Therefore, high-granularity insect classification remains a future research
direction worth pursuing.

Secondly, to further realize unmanned pest detection and field application without
network, the model may need to be deployed on various edge devices, such as high-definition
cameras, various insect trapping devices, unmanned vehicles, etc. How to further reduce the
demand for computing power will become the direction of further research. For example,
Wang et al. [36] changed the YOLOv4 backbone from CSPDarknet53 to MobileNetv3, and
used depth separation convolution instead of ordinary convolution in the feature fusion stage
to reduce the amount of model parameters. The size of the model is greatly reduced without
reducing the accuracy, and the detection speed is improved. With no significant reduction in
accuracy, lighter and faster models will definitely be the future trend.

Individuals and organizations involved in rice pest monitoring and management will
benefit from this study, e.g., rice farmers, agronomists, and pest control companies. The
proposed YOLO-GBS model can assist in the automatic monitoring and counting of rice
pests, which can help farmers and agronomists make more informed decisions on pest
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management strategies. Pest control companies can also utilize this technology to enhance
their pest detection and control services, leading to more efficient and effective pest control
practices. Overall, the study’s findings can benefit the agricultural industry by improving
pest management practices and reducing economic losses caused by rice pest damage.
In the future, the combination of our proposed method with additional aspects, such as
gender classification [37], could provide even more accurate and effective decision-making
data support to personnel involved in protecting crops. This would be critical in improving
crop protection measures and minimizing damage caused by pests.

5. Conclusions

In this study, seven kinds of rice pests were taken as the research object, an improved
model named YOLO-GBS was proposed based on YOLOv5s—where GC attention mecha-
nism and an additional detection head were introduced to YOLOv5s—BiFPN was used to
replace PANet, and Swin Transformer from deep network was used to replace convolution.
The improved network was trained on the data set containing 7 kinds of rice pests and the
complete IP102 data set with 102 classes. Conclusions can be drawn as follows:

1. Based on the self-made rice pest data set with seven categories, the mean average
precision of the improved YOLO-GBS target detection algorithm is 79.8%, which is
5.4% higher than the original YOLOv5s. It can also achieve better detection results in
complex scenes.

2. By comparing the improved YOLO-GBS with common target detection algorithms
such as YOLOv3, Faster RCNN, SSD, etc., the results show that YOLO-GBS has
excellent performance in detection accuracy and time. It has an incredibly good
comprehensive performance, meeting the requirements of real-time detection accuracy
and the speed of rice pests.

3. This study discusses the detection performance of YOLO-GBS on large-scale pest data
sets. The experimental results show that the improved model has good robustness
and generalization performance, with the possibility of further applications to other
crop pest detection.
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