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Simple Summary: Acyrthosiphon gossypii is a sap-sucking pest that causes direct cotton damage by
sucking sap and indirect damage by honeydew contamination and induced fungal growth. Chemical
pesticides are widely used to combat the damage caused by A. gossypii. However, the escalating
use of pesticides has had a notable impact on the resurgence and resistance of pests. In addition,
microbes that live in insects as symbionts have recently been found to protect their hosts against
toxins. In this study, we determined the toxicity and sublethal effects of the neonicotinoid insecticide
imidacloprid on A. gossypii and further determined the effects of imidacloprid on symbiotic bacteria.
The sublethal concentrations of imidacloprid had a negative effect on the reproduction and longevity
of the G0 generation of A. gossypii, increased the population growth parameters of the G1 and G2
generations, but not those of the G3 generation, and altered the abundance of symbiotic bacteria. Our
results revealed the transgenerational and sublethal effects of imidacloprid on A. gossypii, which may
have implications for the endosymbiont-insecticide of the major pest.

Abstract: Symbiotic bacteria and hormesis in aphids are the driving forces for pesticide resistance.
However, the mechanism remains unclear. In this study, the effects of imidacloprid on the popu-
lation growth parameters and symbiotic bacterial communities of three successive generations of
Acyrthosiphon gossypii were investigated. The bioassay results showed that imidacloprid had high
toxicity to A. gossypii with an LC50 of 1.46 mg·L−1. The fecundity and longevity of the G0 generation
of A. gossypii decreased when exposed to the LC15 of imidacloprid. The net reproductive rate (R0),
intrinsic rate of increase (rm), finite rate of increase (λ), and total reproductive rate (GRR) of G1
and G2 offspring were significantly increased, but those of the control and G3 offspring were not.
In addition, sequencing data showed that the symbiotic bacteria of A. gossypii mainly belonged to
Proteobacteria, with a relative abundance of 98.68%. The dominant genera of the symbiotic bacterial
community were Buchnera and Arsenophonus. After treatment with the LC15 of imidacloprid, the
diversity and species number of bacterial communities of A. gossypii decreased for G1–G3 and the
abundance of Candidatus-Hamiltonella decreased, but Buchnera increased. These results provide insight
into the resistance mechanism of insecticides and the stress adaptation between symbiotic bacteria
and aphids.

Keywords: Acyrthosiphon gossypii; imidacloprid; hormesis; transgenerational effects; symbiotic bacteria

1. Introduction

Cotton, as an important economic crop, is widely planted all over the world [1]. In
China, Xinjiang, cotton area is the biggest production base of high-quality cotton, with
an area of 24,970 hm2 and a total production of 53,910 tons in 2022, accounting for 83.2%
and 90.2%, respectively. Acyrthosiphon gossypii Mordviiko (Hemiptera: Aphididae) is an
important cotton pest in Xinjiang province, China. This species is widely distributed in
Central Asia and India, through southern Ukraine and the Middle East to the Mediterranean
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and Atlantic [2], causing economic losses to legumes and cotton crops [3]. In addition, it also
occurs in Malvaceae, Cruciferae, Tribulus, Compositae, and Rosaceae plants [4]. In China,
A. gossypii is only distributed in Gansu and Xinjiang provinces [4]. This pest causes damage
directly by sucking the juice of the young leaves and tender shoots, as well as indirectly
by secreting honeydew, which may induce cotton sooty mold and affect the quality of the
cotton [5]. Currently, chemical pesticides are widely used as the main measures to control
cotton aphids. Due to a great quantity of chemical pesticides being used for a long time,
cotton aphids have developed different levels of resistance and resurgence [6–8], which
has become a key challenge for chemical pesticides. These characteristics have drawn
increasing attention to the safety and application of pesticides.

Neonicotinoids are a major class of insecticides, which have been successfully used for
the control of sucking insect pests since the 1980s. Imidacloprid is the first neonicotinoid
insecticide and has stomach toxicity, inhalation, and contact insecticidal activity. Imidaclo-
prid has been proven effective to control pests with piercing-sucking mouthparts and is
widely used in more than 140 crops in agricultural production [9,10]. Imidacloprid acts on
acetylcholine receptors of target insects to cause paralysis to death [11] and is lowly toxic
to fish, amphibians, reptiles, birds, and mammals [12]. However, imidacloprid is highly
toxic to nontarget organisms. These include Ceratomegilla undecimnotata [13], Hippodamia
variegata [14], Trichogramma cacoeciae [15], and other natural enemy insects and pollina-
tors [16,17]. Especially, over-dependence on pesticides has resulted in the development of
resistance and resurgence of pests such as Sitobion avenae [18], Rhopalosiphum padi [18], and
Nilaparvata lugens [19], and pest prevention and control is becoming increasingly difficult.

In addition, pesticides cause significant death of target pests, and low-lethal concentra-
tions of chemical insecticides that have degraded over time could also exhibit sublethal ef-
fects to exposed arthropods due to environmental factors in agricultural ecosystems [20,21].
The exposure of insects to this concentration of pesticides affects their lifespan, devel-
opment, survival, and fecundity [22,23]. At a certain concentration, the fecundity and
longevity of surviving individuals may increase [18], but in some cases, these surviving
individuals can inhibit fecundity and longevity [24]. Stimulatory effects by the sublethal
dose of insecticide are generally known as hormesis, which is an adaptive manifestation
of the continuous evolution of organisms under environmental stress, and these hormesis
effects could enable organisms to better respond to subsequent exposure to higher levels of
stimuli [25] and be linked to the pest resurgence under field conditions.

Hormesis induced by sublethal insecticides is the change at the population level
caused by the stress response of the individual organism in the population, which is related
to the outbreak of insect pests and insecticide resistance [26]. The physiological and/or
biochemical changes in organisms after sublethal concentrations of pesticides can explain
the enhanced tolerance or resistance of organisms [27,28]. Previous studies on insecticide
resistance focused on the overexpression of these critical detoxification genes which can
also explain the enhanced tolerance in insects [29]. For instance, the overexpression of P450
CYP6AY1 leads to an efficient metabolism of imidacloprid and induces resistance of N.
lugens to imidacloprid [30]. Moreover, insecticide stress remarkably affects the symbiotic
bacteria in insects [31]. Bacillus cereus in the intestinal tract has been shown to degrade
the resistance of Plutella xylostella to pirimicarb [32]. The secondary symbiont Hamiltonella
plays an important role in the wheat aphid Sitobion miscanthi and increases its resistance to
acetamiprid, chlorpyrifos, cyanobenzamide, and imidacloprid [33]. Together, these studies
suggest that symbiotic bacteria mediate insecticide resistance in insects. Nevertheless, how
sublethal concentrations of imidacloprid exposure can affect the biological traits of the
population and the symbiotic bacteria in A. gossypii is still unclear.

A life table was constructed to evaluate the sublethal effects of imidacloprid on the
biological traits and population growth parameters of A. gossypii. In addition, to explore
the potential association of sublethal effects of imidacloprid, 16S rDNA sequencing analysis
was used to study the changes in symbiotic bacteria in the A. gossypii population under
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imidacloprid stress. The results of this study provide a reference for understanding the
chronic effect of imidacloprid stress on the symbiotic bacteria of A. gossypii.

2. Materials and Methods
2.1. Insect Rearing and Insecticide

The A. gossypii used in this study were collected from Tarim University Agricultural
Experimental Station cotton fields where cotton is not sprayed with any pesticide during
the whole growth period (Aral, Xinjiang province) on 10 June 2021. They were reared on
pot-grown cotton (Xinluzhong No. 67) as the host under the conditions of temperature
22 ± 1 ◦C, relative humidity 60% ± 5%, photoperiod L//D = 16 h//8 h, and no contact
with any pesticide in the climate chamber. After four generations of propagation, the
experimental population strains were established. Imidacloprid (99% purity) was supplied
by Taihe Pharmaceutical Co., Ltd. (Ji’an, China). Triton X-100 was purchased from Solebold
Technology Co., Ltd. (Beijing, China).

2.2. Bioassay of Imidacloprid Toxicity to A. gossypii

Under laboratory conditions, the toxicity of imidacloprid to A. gossypii was determined
using the leaf dipping method [34]. Imidacloprid was added with a small amount of acetone
until it was completely dissolved and then further diluted with distilled water containing
0.05% Triton X-100 to a gradient of 6 pesticide concentrations. The fresh cotton leaves
without any contact with pesticides were soaked in the solution for 15 s and dried naturally.
The 1.8% agar solution was poured into a petri dish (diameter 90 mm, height 20 mm). After
solidification, the cotton leaves were attached to the agar, and 30 apterous adults (≤24 h) of
the same size were placed in the petri dish in a constant temperature and humidity climatic
chamber. Distilled water containing 0.05% Triton X-100 was used as the control. Each
concentration was repeated three times, and the mortality rate was recorded after 72 h. The
bioassay results were analysed using IBM SPSS Statistics 25.0 software to calculate LC15,
LC50, and LC90 values and 95% confidence intervals.

2.3. Sublethal Effects of Imidacloprid on A. gossypii

To ensure the uniformity of the growth period of A. gossypii, more than 300 offspring
nymphs produced on the same day were selected from the cotton leaves and fed contin-
uously for 6 days as the G0 generation of the experimental population. The offspring
of G0 adults were collected as the G1 generation, and so on. According to the toxicity
determination results, the imidacloprid LC15 (0.54 mg·L−1) was selected as the sublethal
concentration to treat A. gossypii. The fresh cotton leaves were immersed in the insecticide
solution for 15 s, air-dried at room temperature, and placed in a corresponding number of
apterous adults. After 72 h, the surviving individuals were transferred to a petri dish with
leaves and 1.8% agar and raised individually in a petri dish in a climatic chamber. There
were no less than 30 new nymphs (<24 h) in each group, with 10 replicates per treatment.
The life table parameters of each individual were recorded every 3 h, including develop-
ment time, daily reproduction, longevity, and other data. Fresh leaves and petri dishes
were replaced every 4 days during the whole experimental period until all the G3 aphids
died. The life table data of A. gossypii were imported into TWOSEX-MSChart software for
analysis [35], and the net reproductive rate (R0), intrinsic rate of increase (rm), fecundity,
finite rate of increase (λ), and mean generation time (T) were calculated. The mean and
standard error of the experimental data were obtained by 100,000 random samplings using
the bootstrap program. The obtained data were analysed using paired bootstrap test to
examine the significant difference between the treatments and the control [36]. The survival,
reproduction, and life expectancy curves were plotted using Sigmaplot 14.0 software.
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2.4. Effect of Imidacloprid on the Symbiotic Bacteria of A. gossypii

The adults of A. gossypii were treated with imidacloprid LC15 at sublethal concentra-
tions with acetone as a control. The apterous adults of the G1–G3 offspring were collected
for 16S rDNA analysis. Each treatment was repeated four times.

Genomic DNA was extracted using a DNA Extraction Kit following the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA, USA) under sterile conditions. The concen-
tration and quality of extracted DNA were detected by NanoDrop2000 and agarose gel
electrophoresis. Universal primers (343F: TACGGRAGGCAGCAG, 798R: AGGGTATC-
TAATCCT) of the V3-V4 region of the bacterial 16S rDNA gene were used for PCR am-
plification with Tks Gflex DNA Polymerase using genomic DNA as a template. The PCR
products were assessed by electrophoresis and then purified by magnetic beads as a second
round of PCR template for PCR amplification. The amplified DNA was assessed by agarose
gel electrophoresis, purified by magnetic beads, and quantified by Qubit. The purified
PCR product was mixed in equal amounts based on concentration and sequenced by OE
Biotech Co., Ltd. (Shanghai, China). The raw sequence data obtained in this study were
stored in the SRA database with the project registration number PRJNA943466. The raw
data obtained by sequencing were stored in FASTQ format. Paired-end reads were then
preprocessed using Cutadapt software to detect and cut off the adapter. After trimming,
the paired-end reads were filtering low quality sequences, denoised, and merged, and
-chimera reads were detect and cut off using DADA2 [37] with the default parameters of
QIIME2 [38]. Finally, the software outputthe representative reads and the ASV abundance
table. The representative sequences of each ASV were then selected for comparison with
the Silva (version 138) database, and the species were annotated using q2-feature-classifier
software annotation.

Based on the ASV abundance table, subsequent beta diversity (intersample) and
alpha diversity (intrasample) analyses were performed [39]. The Chao1, ACE, Simpson,
and Shannon indexes and Goods coverage in the alpha diversity analysis were used to
generate dilution curves of different sample sizes to reflect the degree of species diversity
in the biological environment. Based on the analysis results using the binary Jaccard
distance matrix, the correlation between the control group and each treatment group was
visualized by principal coordinate analysis (PCoA) [40]. LEfSe analysis was used to reveal
the composition of different species in biological communities, and LDA > 2 [41]. SPSS 26.0
software was used for data entry correlation analysis and one-way ANOVA at the level of
p < 0.05.

3. Results
3.1. Toxicity of Imidacloprid to A. gossypii Adults

The LC15, LC50, and LC90 of imidacloprid to adult Acyrthosiphon gossypii at 72 h were
0.54, 1.46, and 4.97 mg·L−1, respectively, and the 95% confidence intervals were 0.43–0.65,
1.27–1.68, and 3.94–6.79 mg·L−1, respectively (Table 1). The effects of imidacloprid on the
population parameters and symbiotic bacterial community of A. gossypii were studied with
LC15 as a sublethal concentration.

Table 1. The toxicity of imidacloprid on A. gossypii adults.

Treatment Slope ± SE LC15 (mg·L−1)
(95% CL)

LC50 (mg·L−1)
(95% CL)

LC90 (mg·L−1)
(95% CL) R2 χ2 (df )

Imidacloprid 2.53 ± 0.21 0.54
(0.43–0.65)

1.46
(1.27–1.68)

4.97
(3.94–6.79) 0.97 4.08 (12)

SE: Standard error; 95% CL: 95% confidence limits; χ2: chi-square value; df : degrees of freedom.

3.2. Sublethal Effects of Imidacloprid on the G0 Generation of A. gossypii

The fecundity and longevity of A. gossypii after 72 h of exposure to imidacloprid
were evaluated (Figure 1). Compared with the control group, the LC15 of imidacloprid
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affected the fecundity and longevity of A. gossypii, and the number of G0 individuals in the
treatment group decreased significantly.
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Figure 1. The longevity (a) and fecundity (b) of G0 generation A. gossypii exposed to the LC15 of
imidacloprid for 72 h. Asterisk indicates a significant difference between the control group and the
imidacloprid-treated group at the p < 0.05 level (t-test).

3.3. Transgenerational Effects of Imidacloprid on the G1–G3 Generation of A. gossypii

The effects of sublethal concentrations of imidacloprid (LC15) on the growth, develop-
ment, and reproduction of the G1–G3 generations of A. gossypii G0 are shown in Table 2.
Compared with that of the control, the fourth instar nymph stage of the G1 generation
was significantly shortened, and the adult pre-reproductive period (APOP) was signifi-
cantly prolonged, but there was no significant difference in the G2 generation. In addition,
longevity and fecundity increased significantly in the G1 and G2 generations, and the
total preoviposition period (TPOP) was significantly shortened. There was no significant
difference in the above life table parameters between the control and the G3 generation
(Table 2).

The effects of sublethal concentrations of imidacloprid LC15 on the population growth
parameters of the G1–G3 generation of A. gossypii are shown in Table 3. Compared with
those of the control, the net reproductive rate (R0), intrinsic rate of increase (rm), finite
rate of increase (λ), and gross reproduction rate (GRR) of G1 and G2 individuals were
significantly increased after imidacloprid LC15 treatment. However, the mean generation
time (T) decreased from 12.73 d and 13.11 d to 11.80 d and 11.97 d, respectively, and the
population doubling time (DT) also showed a decreasing trend. There was no significant
difference in the net reproductive rate (R0) and population doubling time (DT) between the
G3 generation and the control (Table 3).

The age-specific survival rate (lx), age-specific fecundity (mx), and net maternity (lxmx)
are shown in Figure 2. The lx curve of the G1–G2 generation of A. gossypii decreased in the
late growth stage. Except for G3, the lx curve of the G1–G2 generation of the imidacloprid
treatment group decreased later than that of the control. After imidacloprid treatment, the
mx and lxmx of the G1 and G2 generations were higher than those of the control group,
while there was a significant overlap between those of the G3 generation and the control.
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Table 2. Effect of imidacloprid LC15 on life history parameters of A. gossypii in the G1–G3 generation (mean ± SE).

Treatments First Instar
(d)

Second
Instar (d)

Third
Instar (d)

Fourth
Instar (d)

Pre-Adult
(d) Adult (d) APOP (d) TPOP (d) Longevity

(d) Fecundity

G1
Control 1.63 ± 0.09

N
1.70 ± 0.08

N
1.80 ± 0.09

N
2.17 ± 0.08

*
7.30 ± 0.08

*
18.00 ± 0.12

*
0.07 ± 0.05

*
7.37 ± 0.09

*
25.30 ± 0.15

*
54.47 ± 0.89

*Imidacloprid 1.43 ± 0.09 1.57 ± 0.09 1.67 ± 0.09 1.53 ± 0.09 6.20 ± 0.10 20.53 ± 0.11 0.47 ± 0.12 6.67 ± 0.16 26.73 ± 0.17 59.83 ± 1.05

G2
Control 1.63 ± 0.08

N
1.73 ± 0.08

N
1.80 ± 0.10

N
1.87 ± 0.10

N
7.03 ± 0.09

*
18.67 ± 0.13

*
0.43 ± 0.11

N
7.47 ± 0.13

*
25.70 ± 0.13

*
55.40 ± 0.91

*Imidacloprid 1.57 ± 0.09 1.53 ± 0.09 1.60 ± 0.09 1.57 ± 0.09 6.27 ± 0.09 20.43 ± 0.10 0.60 ± 0.11 6.87 ± 0.13 26.70 ± 0.16 59.07 ± 0.64

G3
Control 1.80 ± 0.07

N
1.63 ± 0.09

N
1.63 ± 0.10

N
2.07 ± 0.08

N
7.13 ± 0.11

*
18.83 ± 0.14

*
0.17 ± 0.07

N
7.30 ± 0.13

N
25.57 ± 0.11

N
55.43 ± 0.89

NImidacloprid 1.70 ± 0.08 1.63 ± 0.09 1.53 ± 0.09 1.97 ± 0.09 6.83 ± 0.10 18.43 ± 0.13 0.40 ± 0.10 7.23 ± 0.15 25.67 ± 0.12 55.83 ± 0.87

Note: APOP, adult pre-reproductive period (days); TPOP, total pre-reproductive period (days); Fecundity, offspring per female. In the same generation, an asterisk in each column
indicates that there was a significant difference between the control group and the imidacloprid-treated group at the p < 0.05 level (t-test), and N indicates no significant difference.

Table 3. Intergenerational sublethal effects on the population growth parameters of A. gossypii in the G1–G3 generation (mean ± SE).

Treatments R0 rm λ T GRR DT

G1
Control 54.47 ± 0.89

*
0.31 ± 0.003

*
1.37 ± 0.004

*
12.72 ± 0.13

*
55.88 ± 0.96

*
2.21 ± 0.02

*Imidacloprid 59.83 ± 1.05 0.35 ± 0.006 1.41 ± 0.008 11.80 ± 0.18 60.77 ± 1.03 2.00 ± 0.03

G2
Control 55.40 ± 0.91

*
0.31 ± 0.004

*
1.36 ± 0.005

*
13.11 ± 0.16

*
56.58 ± 0.91

*
2.26 ± 0.03

*Imidacloprid 59.07 ± 0.64 0.34 ± 0.005 1.41 ± 0.006 11.97 ± 0.15 59.95 ± 0.65 2.03 ± 0.03

G3
Control 55.43 ± 0.89

N
0.32 ± 0.004

N
1.37 ± 0.006

N
12.66 ± 0.17

N
56.77 ± 0.91

N
2.19 ± 0.03

NImidacloprid 55.83 ± 0.87 0.32 ± 0.005 1.38 ± 0.007 12.43 ± 0.19 57.01 ± 0.89 2.14 ± 0.03

Note: R0, net reproductive rate (offspring per individual); rm, intrinsic rate of increase (d−1); λ, finite rate of increase (d−1); T, mean generation time (days); GRR, gross reproductive rate
(offspring/individual); DT, doubling time (days). Values in the table represent mean ± SE. In the same generation, an asterisk in each column indicates that there was a significant
difference between the control group and the imidacloprid-treated group at the p < 0.05 level (t-test), and N indicates no significant difference.
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Figure 2. Age-specific survival rate (lx), age-specific fecundity of the total population (mx), and
age-specific maternity (lxmx) of A. gossypii.

The age-stage life expectancy (exj) curve showed that the life expectancy of the G1, G2,
and G3 generations of A. gossypii under imidacloprid LC15 stress was longer than that of
the control group (Figure 3). The age-stage survival rate (sxj) curve was shown in Figure 4.
Imidacloprid harmed the survival rate of three generations of nymphs and adults of A.
gossypii. The sxj curve of imidacloprid effects on the G1 and G2 adults decreased later than
that of the control, while the control group and the pesticide group of the G3 generation
had no significant effect. In the age-stage reproduction value (Vxj) curve (Figure 5), the
reproduction value of A. gossypii increased with increasing age and reached a maximum
at the adult stage. Under imidacloprid LC15 stress, the peak values of the G1, G2, and G3
treatments were 15.02 (9 d), 15.31 (11 d), and 15.45 (10 d), respectively, which appeared
earlier than the control.
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3.4. Sequencing Data

The 16S rDNA V3-V4 hypervariable region of A. gossypii was sequenced by the Illu-
mina sequencing platform. A total of 79,877, 80,222, 79,337, and 79,825 raw reads were
obtained from samples IG1, IG2, IG3, and CK, and each treatment was repeated four times
(Table 4). Through quality filtering, noise reduction, stitching, and removal of chimaeric se-
quences, etc., at least 72,337 clean reads were obtained from each sample. These sequences
were clustered into 109, 134, 131, and 143 ASVs in the IG1, IG2, IG3, and CK samples,
respectively. The Goods coverage of sequencing data for all samples was estimated to
be one (Table 4). When the depth of random sampling of the rarefaction curves of each
sample (the number of sampled sequences) reached 40,000, the values of the Chao1 and
Shannon indexes tended to be flat. It shows that the sequencing amount is representative
(Figure 6a–c).

Table 4. 16S rDNA sequencing analysis of A. gossypii.

Samples Raw Reads Fitted ASV_Counts Observed
Species Chao1 Shannon Simpson ACE Goods

Coverage

IG1 79,877 73,689 109 108.28 108.57 1.29 0.50 108.81 1.00
IG2 80,222 74,207 134 133.50 133.95 1.19 0.41 134.21 1.00
IG3 79,337 72,337 131 130.30 130.65 1.41 0.50 131.38 1.00
CK 79,825 73,570 143 142.88 143.08 1.74 0.60 143.35 1.00
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analysis plot of bacterial communities in A. gossypii G1–G3. (a) Chao1 diversity index of all samples.
(b) Shannon diversity index. (c) Goods coverage diversity index. (d) Principal coordinate analysis
(PCoA) of G1–G3. The green, purple, yellow circles represent each generation (G1–G3) of imidacloprid
group, respectively. The bule circle represent control group.
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3.5. Diversity Analysis of Bacterial Populations

An alpha diversity analysis was used to estimate the diversity of species in the bio-
logical environment. It is represented by the Chao1, ACE, Simpson, Shannon, and other
indexes (Table 4). The observed species values showed that the control group had the
highest number of bacteria. The G0 generation of A. gossypii was treated with imidacloprid
at the LC15, and the bacterial species of the G1–G3 generation were reduced. The Chao1 and
ACE indexes estimated the actual number of species in the community, and the Simpson
and Shannon indexes indicated the community diversity. Their trends were consistent
with the observed species values, indicating that imidacloprid inhibited the diversity and
species number of symbiotic bacteria in the G1–G3 generation of A. gossypii.

3.6. Taxonomic Composition of Bacteria in A. gossypii

The composition of symbiotic bacteria in A. gossypii changed greatly after treatment
with imidacloprid at the LC15 for 72 h. A microbiome analysis showed that symbiotic
bacteria were mainly distributed in Proteobacteria, Firmicutes, and Actinobacteria. Pro-
teobacteria was the dominant phylum, accounting for 98.68%, 98.15%, 98.19%, and 98.10%
in IG1, IG2, IG3, and CK, respectively. Buchnera and Arsenophonus were the dominant
genera in the symbiotic community of A. gossypii. The average relative abundance of
each sample accounted for 63.04% and 29.10%, respectively (Table A1).

3.7. Effects of Imidacloprid Treatment on Three Successive Generations of the Bacterial Community
in A. gossypii

Beta diversity can reflect the community similarities and differences of different
biological environments (different groups). In this study, PCoA was performed based on
the binary Jaccard distance matrix to determine the differences between individuals or
groups at the genus level. Each point in Figure 6d represents a sample, and the same colour
represents the same group. The closer the sample in the same group was, the more obvious
the distance from other groups was, indicating that the bacterial community structure was
different and the grouping effect was good. Figure 6d shows that the bacterial community
structures of the A. gossypii G1 and G2 generations and the control group were significantly
different, but the control and IG3 samples had similar bacterial community structures.

At the family level, imidacloprid affected the diversity and abundance of symbi-
otic bacteria in the offspring (G1–G3) of A. gossypii. Under imidacloprid LC15 stress,
the number of species with decreased abundances was greater than that with increased
abundances. With the replacement of generations, the rate of decrease in the number of
species slowed down in the G2 and G3 generations. The abundance of Lactobacillaceae,
Bacteroidaceae, Muribaculaceae, and Lachnospiraceae decreased in the G1 generation,
while the abundance of Morganellaceae and Rikenellaceae increased. The abundance
of Lactobacillaceae, Bacteroidaceae, Muribaculaceae, and Rikenellaceae decreased in the
G2 generation, while the abundance of Morganellaceae, Lachnospiraceae, Moraxellaceae,
Prevotellaceae, and Oscillospiraceae increased. The abundance of Bacteroidaceae, Murib-
aculaceae, and Lachnospiraceae decreased in the G3 generation, while the abundance of
Morganellaceae, Xanthomonadaceae, Lactobacillaceae, Flavobacteriaceae and Weeksel-
laceae increased (Figure 7a, Table A2).

At the genus level, the relative abundance of the top 15 symbiotic bacteria in the
offspring of A. gossypii was significantly different after 72 h of treatment with sublethal
imidacloprid concentrations (LC15). The symbiotic bacterial communities in the A. gossypii
control group and the treatment groups were dominated by the primary symbiotic bacte-
ria Buchnera and the secondary symbiotic bacteria Arsenophonus, accounting for 46–74%
and 22–33%, respectively. After treatment with imidacloprid at the LC15, the relative
abundance of Buchnera in the G1–G3 generations increased, and the abundance in the G2
generation increased by 28% compared with that of the control. The species number of
Candidatus_Hamiltonella species in the three generations was lower than that of the control
(Figures 7b and 8, Table A3).
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Figure 7. Changes of symbiotic bacteria of A. gossypii at different classification levels for three
generations. (a,b) A histogram of relative abundance of the top 15 bacterial communities in A. gossypii
G1–G3 after initial adult G0 exposure to imidacloprid LC15 for 72 h. The abundance values of ASVs
in the treatment group and the pesticide group were analysed at the family and genus levels. The
histogram is generated based on the data in Table A2.
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Figure 8. Comparison of relative abundance of two typical symbiotic bacteria in A. gossypii imidaclo-
prid treatment group and control group. (a) an asterisk indicates a significant difference between the
control group and the imidacloprid-treated group at the p < 0.05 level (t-test). (b) an asterisk indicates
a significant difference based on one-way ANOVA followed by Turkey’s HSD multiple comparison
test (p < 0.05).

A LEfSe analysis revealed the composition of different species in two or more biological
communities. The results showed that there were different biomarkers (LDA > 2.0) in the
pesticide treatment group and the control group using sublethal imidacloprid concentration
stress. Nine biomarkers were identified in all samples, and the biomarkers identified in
the control group were Pseudomonas, Lachnospira, and Clade_Ia. Only one biomarker,
Succinivibrio, was found in the G1 generation of the insecticide group. The biomarker
Buchnera was found in the IG2 samples. Sphingobacterium, Sulfitobacter, Yoonia_Loktanella,
and Algitalea were identified as biomarkers of IG3 (Figure 9).



Insects 2023, 14, 427 12 of 17

Insects 2023, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 8. Comparison of relative abundance of two typical symbiotic bacteria in A. gossypii imidaclo-
prid treatment group and control group. (a) an asterisk indicates a significant difference between 
the control group and the imidacloprid-treated group at the p < 0.05 level (t-test). (b) an asterisk 
indicates a significant difference based on one-way ANOVA followed by Turkey’s HSD multiple 
comparison test (p < 0.05). 

A LEfSe analysis revealed the composition of different species in two or more biolog-
ical communities. The results showed that there were different biomarkers (LDA > 2.0) in 
the pesticide treatment group and the control group using sublethal imidacloprid concen-
tration stress. Nine biomarkers were identified in all samples, and the biomarkers identi-
fied in the control group were Pseudomonas, Lachnospira, and Clade_Ia. Only one bi-
omarker, Succinivibrio, was found in the G1 generation of the insecticide group. The bi-
omarker Buchnera was found in the IG2 samples. Sphingobacterium, Sulfitobacter, 
Yoonia_Loktanella, and Algitalea were identified as biomarkers of IG3 (Figure 9). 

 
Figure 9. Identification of specific phylogenetic types at the genus level of bacteria between the im-
idacloprid-treated group and the control in three successive generations. 

4. Discussion 
The results showed that imidacloprid had high toxicity to adult A. gossypii. The tox-

icity value (LC50) at 72 h was 1.46 mg·L−1, which is equivalent to the LC50 of imidacloprid 
reported by predecessors, and the LC50 value of 24 h exposure was 3.75 mg·L−1 [42]. In 
addition to the direct lethal effect, with the long-term continuous use of insecticides, ran-
dom increases in dosage and application times, and other unreasonable phenomena, the 
toxicity of insecticides in the environment gradually decreased to sublethal doses over 
time after application, resulting in sublethal effects on insects [43,44]. Sublethal effects 
usually manifest as changes in insect growth and development, reproduction, ecological 
behaviour, etc. [45]. Excessive dependence on pesticides can easily lead to pest resurgence 
and an imbalance of ecosystem regulation [46]. In this study, sublethal concentrations of 

Figure 9. Identification of specific phylogenetic types at the genus level of bacteria between the
imidacloprid-treated group and the control in three successive generations.

4. Discussion

The results showed that imidacloprid had high toxicity to adult A. gossypii. The toxicity
value (LC50) at 72 h was 1.46 mg·L−1, which is equivalent to the LC50 of imidacloprid
reported by predecessors, and the LC50 value of 24 h exposure was 3.75 mg·L−1 [42].
In addition to the direct lethal effect, with the long-term continuous use of insecticides,
random increases in dosage and application times, and other unreasonable phenomena,
the toxicity of insecticides in the environment gradually decreased to sublethal doses over
time after application, resulting in sublethal effects on insects [43,44]. Sublethal effects
usually manifest as changes in insect growth and development, reproduction, ecological
behaviour, etc. [45]. Excessive dependence on pesticides can easily lead to pest resurgence
and an imbalance of ecosystem regulation [46]. In this study, sublethal concentrations of
imidacloprid had significant effects on the life history traits and symbiotic bacteria of A.
gossypii. Therefore, imidacloprid stress and symbiotic bacteria in A. gossypii affected the
adaptability of organisms to stimuli.

Most pests are sublethally affected by direct exposure to low concentrations of insecti-
cides, which usually have a negative impact on their biological traits. The results showed
that the longevity and fecundity of G0 adults of A. gossypii decreased significantly after
72 h of imidacloprid treatment. This result is consistent with the sublethal effect of Aphis
gossypii exposed to afidopyropen [24], imidacloprid [47], and acetamiprid [48]. Therefore,
low concentrations of imidacloprid have an inhibitory effect on the current population
growth of A. gossypii, and similar results were observed when Aphis glycines were exposed
to acetamiprid [49].

The analysis of the life table parameters of this study showed that when the parent
aphid (G0) was exposed to the sublethal concentration of imidacloprid LC15, the G1 and G2
nymphal and TPOP were shortened, while the longevity and fecundity were significantly
increased (Table 2). These results indicate that the sublethal concentration (LC15) of imida-
cloprid had a stimulating effect on the G1 and G2 generations of A. gossypii. This hormesis
of changes in the performance of organisms caused by sublethal doses of insecticides has
been widely reported [50] and is often considered to be the main mechanism for the resur-
gence of pest populations [51]. When A. glycines Matsumura was stressed by a sublethal
imidacloprid concentration (0.05 mg·L−1), the reproductive level and population growth
increased [42]. Nitenpyram LC20 increased fitness for life table parameters and popula-
tion growth parameters of N. lugens [28]. Similarly, low concentrations of imidacloprid
stimulated reproduction in Myzus persicae [25].

The population growth parameters of the control and treatment groups of A. gossypii
offspring (G1 and G2) observed in this study showed that the sublethal concentration (LC15)
of imidacloprid affected the cross-generational population of A. gossypii. After imidacloprid
stress, the rm, λ, and GRR of A. gossypii offspring (G1 and G2) increased significantly, while
the T and DT were significantly shortened (Table 3). Therefore, imidacloprid promoted
the growth of the A. gossypii population at low or sublethal concentrations. When the
parent aphid (F0) was treated with thiamethoxam at a sublethal concentration (LC15), the
longevity and fecundity of the Aphis gossypii progeny (F1) were significantly increased, and
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the biological traits rm, λ, R0 were significantly enhanced [52]. Sulfoxaflor has the potential
to stimulate the reproduction of the F1 generation of M. persicae [53]. Flupyradifurone
had similar effects on the F1 generation of M. persicae [54] and the offspring of Aphis
Craccivora [55]. Therefore, low or sublethal concentrations of imidacloprid had significant
hormetic effects on the offspring of A. gossypii.

Notably, the longevity and fecundity of the G0 generation were significantly inhibited
when A. gossypii was stressed by sublethal concentrations of imidacloprid. The fecundity
of its offspring (G1 and G2) increased significantly, and the population parameters rm and
λ increased significantly. However, the life table parameters of the G3 generation treatment
group returned to the same level as the control. This may reflect the adaptive trade-offs
in the early generations of A. gossypii due to increased energy consumption required for
survival and reproduction and increased fecundity (hormesis) [25,56].

As an important part of insect individuals, symbiotic bacteria form a mutually ben-
eficial relationship with the host. They play an important role in insect nutritional func-
tion [57], reproductive regulation [58], and adaptability to biotic or abiotic factors [59,60].
Increasing evidence shows that many symbiotic bacteria of insects are related to the detox-
ification of chemical insecticides [33,61–63]. In this study, the microbial community in
A. gossypii was explored by 16S rDNA Illumina sequencing analysis. After imidacloprid
treatment, the bacterial community composition of A. gossypii changed significantly. PCoA
showed that the bacterial community structure was disturbed in the offspring (G1–G2) and
recovered in the G3 generation. The abundance of symbiotic bacteria also changed in the
same way. In addition, after the parents were treated with imidacloprid at a sublethal con-
centration (LC15), the symbiotic bacteria of the offspring (G1–G3) of A. gossypii were mainly
distributed in Proteobacteria, Firmicutes, and Actinobacteria, among which Proteobacteria
was the dominant phylum (98.10–98.68%). At the genus level, both in the control group
and the treatment group, Buchnera and Arsenophonus were dominant bacteria (Table A2).
The results of this study are similar to those of the bacterial community composition of
other aphids by imidacloprid [64,65]. The primary symbiont Buchnera plays a key role
in the growth and development of insects, especially in the development of insect resis-
tance [66,67]. Compared with the control, the relative abundance of Buchnera increased in
three consecutive generations and increased to a significant level in the G2 generation after
imidacloprid treatment. The results showed that Buchnera in the offspring of A. gossypii
responded to pesticide stimulation after maternal exposure to imidacloprid for 72 h.

In addition, aphids contain one or more groups of bacteria called secondary symbionts.
Candidatus_Hamiltonella is a common secondary symbiotic bacterium in aphids, and the
infection rate is relatively high. Compared with the control group, the relative abundance
of Candidatus_Hamiltonella in the imidacloprid treatment group decreased. Similar results
were observed when Sitobion miscanthi was treated with chlorpyrifos-methyl, imidacloprid,
cyantraniliprole, and acetamiprid for 24 h, and the density of the genus Hamiltonella
decreased [33]. Our data suggest that Hamiltonella is involved in the adaptability of A.
gossypii to imidacloprid and that the increase in the density of Hamiltonella may be beneficial
to the development of resistance of A. gossypii to imidacloprid. Many other symbiotic
bacteria may be contaminants caused by environmental factors, such as Stenotrophomonas
and Chryseobacterium.

In summary, the LC15 of imidacloprid has a transgenerational effect on A. gossypii.
After treatment with imidacloprid for 72 h, the fecundity and longevity of G0 generation in-
dividuals decreased. The R0 and rm of the G1 and G2 offspring were significantly increased,
and the population grew rapidly and returned to normal levels in the G3 generation. In
addition, imidacloprid affected the relative abundance of symbiotic bacteria and reduced
the microbial diversity and species number of aphid offspring (G1–G3). Through LEfSe
analysis, different biomarkers were identified in each group for three consecutive gener-
ations. The results of this study provide new ideas for the integrated management of A.
gossypii and a theoretical basis for understanding the interaction between symbiotic bacteria
and A. gossypii.
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5. Conclusions

In the present study, we examined the adaptability of A. gossypii to imidacloprid by
analysing the transgenerational sublethal effects of imidacloprid on population growth
parameters and symbiotic bacterial communities. The results show that the LC15 of imida-
cloprid has a transgenerational effect on A. gossypii. The net reproductive rate (R0), intrinsic
rate of increase (rm), finite rate of increase (λ), and total reproductive rate (GRR) of G1 and
G2 offspring were significantly increased. The sequencing data showed that the diversity
and species number of bacterial communities of A. gossypii for three consecutive generations
(G1–G3) decreased, while the abundance of Buchnera increased. Our study revealed the
transgenerational effect of sublethal concentrations of imidacloprid on A. gossypii, which
will help to evaluate related studies on endosymbiont-insecticide resistance of A. gossypii.
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Appendix A

Table A1. Bacterial community composition(%) of A. gossypii treatment group and control group at
different taxonomic levels (only showed proportion > 5%).

Taxonomic Categories Taxa CK IG1 CK IG2 CK IG3

Phylum Proteobacteria 98.10 98.68 98.10 98.15 98.10 98.19
Class Gammaproteobacteria 97.96 98.63 97.96 98.06 97.96 98.07
Order Enterobacterales 86.94 98.54 86.94 97.10 86.94 94.44
Family Morganellaceae 86.91 98.53 86.91 97.00 86.91 94.40

Genus
Buchnera 46.14 67.09 46.14 74.47 46.14 64.45

Arsenophonus 33.33 31.42 33.33 22.49 33.33 28.74

Table A2. Changes in the main symbiotic groups of A. gossypii for three consecutive generations at
the family level (top 15 abundance).

Taxon CK IG1 CK IG2 CK IG3

Morganellaceae 0.87 0.99 0.87 0.97 0.87 0.94
Pseudomonadaceae 0.11 0.00 0.11 4.38 × 10−4 0.11 3.30 × 10−5

Xanthomonadaceae 1.40 × 10−4 2.14 × 10−5 1.40 × 10−4 2.79 × 10−4 1.40 × 10−4 0.03
Lactobacillaceae 3.56 × 10−3 2.06 × 10−3 3.56 × 10−3 2.58 × 10−3 3.56 × 10−3 2.49 × 10−3

Moraxellaceae 2.79 × 10−4 6.76 × 10−5 2.79 × 10−4 8.22 × 10−3 2.79 × 10−4 5.06 × 10−4

Bacteroidaceae 3.05 × 10−3 1.47 × 10−3 3.05 × 10−3 2.23 × 10−3 3.05 × 10−3 1.90 × 10−3

Muribaculaceae 2.52 × 10−3 9.15 × 10−4 2.52 × 10−3 1.72 × 10−3 2.52 × 10−3 1.51 × 10−3

Lachnospiraceae 1.85 × 10−3 1.36 × 10−3 1.85 × 10−3 1.90 × 10−3 1.85 × 10−3 1.28 × 10−3

Rikenellaceae 1.12 × 10−3 1.38 × 10−3 1.12 × 10−3 1.07 × 10−3 1.12 × 10−3 7.66 × 10−4

Prevotellaceae 8.19 × 10−4 9.61 × 10−4 8.19 × 10−4 1.04 × 10−3 8.19 × 10−4 7.88 × 10−4

Oscillospiraceae 8.34 × 10−4 5.87 × 10−4 8.34 × 10−4 1.21 × 10−3 8.34 × 10−4 8.14 × 10−4

Ruminococcaceae 7.66 × 10−4 9.22 × 10−4 7.66 × 10−4 8.97 × 10−4 7.66 × 10−4 7.44 × 10−4

Flavobacteriaceae 2.30 × 10−4 7.48 × 10−5 2.30 × 10−4 8.51 × 10−4 2.30 × 10−4 1.43 × 10−3

Weeksellaceae 1.21 × 10−4 4.27 × 10−5 1.21 × 10−4 2.12 × 10−5 1.21 × 10−4 1.88 × 10−3

[Eubacterium]_
coprostanoligenes_group 6.07 × 10−4 5.77 × 10−4 6.07 × 10−4 5.19 × 10−4 6.07 × 10−4 3.08 × 10−4

others 6.03 × 10−3 4.29 × 10−3 6.03 × 10−3 7.02 × 10−3 6.03 × 10−3 8.13 × 10−3
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Table A3. Changes of main symbiotic groups of three successive generations of A. gossypii at the
Genus level (top 15 abundance).

Taxon CK IG1 CK IG2 CK IG3

Buchnera 0.46 0.67 0.46 0.74 0.46 0.64
Arsenophonus 0.33 0.31 0.33 0.22 0.33 0.29
Pseudomonas 0.11 0.00 0.11 4.38 × 10−4 0.11 3.30 × 10−5

Candidatus_Hamiltonella 0.07 8.54 × 10−5 0.07 2.22 × 10−4 0.07 0.01
Stenotrophomonas 8.30 × 10−5 2.14 × 10−5 8.30 × 10−5 2.68 × 10−4 8.30 × 10−5 0.03

Lactobacillus 3.56 × 10−3 2.06 × 10−3 3.56 × 10−3 2.58 × 10−3 3.56 × 10−3 2.49 × 10−3

Acinetobacter 2.79 × 10−4 1.07 × 10−5 2.79 × 10−4 8.22 × 10−3 2.79 × 10−4 5.06 × 10−4

Bacteroides 3.05 × 10−3 1.47 × 10−3 3.05 × 10−3 2.23 × 10−3 3.05 × 10−3 1.90 × 10−3

Muribaculaceae 2.52 × 10−3 9.15 × 10−4 2.52 × 10−3 1.70 × 10−3 2.52 × 10−3 1.51 × 10−3

Alistipes 7.73 × 10−4 1.03 × 10−3 7.73 × 10−4 8.33 × 10−4 7.73 × 10−4 5.28 × 10−4

Prevotella 5.92 × 10−4 6.91 × 10−4 5.92 × 10−4 8.62 × 10−4 5.92 × 10−4 5.57 × 10−4

Algitalea 1.81 × 10−4 0.00 1.81 × 10−4 7.91 × 10−4 1.81 × 10−4 1.34 × 10−3

[Eubacterium]_
coprostanoligenes_group 6.07 × 10−4 5.77 × 10−4 6.07 × 10−4 5.19 × 10−4 6.07 × 10−4 3.08 × 10−4

Chryseobacterium 8.68 × 10−5 0.00 8.68 × 10−5 2.12 × 10−5 8.68 × 10−5 1.83 × 10−3

Sphingomonas 2.75 × 10−4 4.56 × 10−4 2.75 × 10−4 4.98 × 10−4 2.75 × 10−4 3.85 × 10−4

others 9.97 × 10−3 7.55 × 10−3 9.97 × 10−3 0.01 9.97 × 10−3 0.01
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