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Simple Summary: This study evaluated the minimum as well as the maximum label dose of d-
tetramethrin plus acetamiprid applied on plastic, glass, metal, wood, and ceramic surfaces, against
adults of both species, in terms of immediate and delayed mortality. All T. molitor died after a 7-day
exposure to the maximum dose at all tested surfaces when food was absent. In the presence of food,
only glass-, metal-, and ceramic-treated surfaces killed all adults at the same dose. Even the minimum
dose provided 100% mortality on glass, metal, and ceramic surfaces in both food scenarios. In the
case of A. diaperinus, only the maximum dose caused the death of all exposed individuals on glass
(with food) and on glass and plastic (no food). Overall, the maximum dose of d-tetramethrin plus
acetamiprid is effective against the tested species on certain types of surfaces.

Abstract: Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Alphitobius diaperinus Panzer (Coleoptera:
Tenebrionidae) are two common tenebrionids occurring in grain storages. In this study, we assessed
the immediate and delayed mortalities caused by d-tetramethrin plus acetamiprid on five different
surfaces, i.e., plastic, glass, metal, wood, and ceramic, against adults of the two species. The tests
included two label doses of the insecticide (minimum and maximum) and two food scenarios (food
and no food). Generally, the maximum dose was more efficient than the minimum dose, and the
presence of food resulted in lower observed mortalities than when food was absent. Tenebrio molitor
was more susceptible than A. diaperinus, at all dose, food, and surface scenarios. At delayed bioassays,
both doses killed all T. molitor on plastic, while on wood, mortality ranged between 80.6 and 100.0%,
regardless of the food scenario. Concerning A. diaperinus, delayed mortalities ranged among treated
surfaces, food scenarios, and dose from 58.3 to 100.0%. The insecticide killed the most individuals
when it was treated on glass, while when it was applied on wood caused the death of the least
individuals. Concerning plastic, metal, and ceramic surfaces, no general trend was observed. The
maximum dose of the tested insecticide provides elevated mortalities for both species when food
is absent.

Keywords: plastic; glass; metal; wood; ceramic; surface treatment; yellow mealworm; lesser mealworm

1. Introduction

Tenebrio molitor L. (Coleoptera: Tenebrionidae) is an important and noxious stored-
product insect related to poor storage conditions and hygiene [1]. Apart from the direct
consumption of the grains during their storage, T. molitor contaminates the products with
its excrements and dead body particles, decreasing food quality [2]. This species can
provoke allergic reactions, such as respiration problems and eczema, commonly appearing
in people handling storage foods [3–8]. Lately, T. molitor has been in the spotlight since
it is used by the food and recycling industry [9–19]. Its insect powder enhances food
properties such as nutritional value, crispness, taste, and digestibility [9,12,16,18]. Apart
from human nutrition, this species is used as feed for a plethora of organisms such as fish,
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reptiles, birds, and crustaceans [20–24]. In addition, recent studies revealed that T. molitor
extracts display antiproliferative, antimicrobial, antifreeze, antithrombotic, preservative,
and healing properties [25–29].

One other harmful insect worldwide is Alphitobius diaperinus Panzer (Coleoptera: Tene-
brionidae) [20,30]. It infests more than 70 different stored products [30], while at the same
time is really prevalent in farms where livestock is raised feeding on dead animals such
as mice and birds [1]. This species causes a huge problem at poultry facilities [20,30–32].
Alphitobius diaperinus has a short developmental period at optimal conditions and is long-
lived [1]. Due to the continuous food presence and the prevailing temperature range at
poultry houses, A. diaperinus completes its life circle in short periods of time, supporting
large populations [33]. Furthermore, chickens consume A. diaperinus individuals that may
be infected by viruses, bacteria, protozoa, and fungi, since this species is a vector of multiple
pathogens [34–39]. These microorganisms can also harm humans, causing symptoms such
as vomiting, fever, diarrhea, and cramps in the abdomen [40–42]. Employees exposed to
these insects can display allergic reactions such as asthma, rhinitis, urticaria, conjunctivitis,
and angioedema [43–45]. Apart from the health problems it provokes, it damages the
structure of facilities by consuming the insulation of walls and ceilings [46].

Given the fact that both pests are enemies of major importance, several insecticides,
mainly synthetic chemicals, i.e., neonicotinoids, organophosphates, pyrethroid compounds,
and synergized pyrethrins, as well as insecticides of natural origin, i.e., essential oils,
diatomaceous earths, and nanoemulsions, have been utilized over the years in order to
handle possible invasions [2,47–58]. Among all these studies, only a few of them examined
the effectiveness of the insecticides applied on surfaces. In particular, Athanassiou et al. [48]
studied the efficacy of α-cypermethrin and thiamethoxam applied on concrete against
T. molitor adults, while Kavallieratos et al. [56,57] examined chlorfenapyr and deltamethrin
sprayed on concrete surfaces against A. diaperinus adults. In the case of A. diaperinus, the
tests investigated the impact of the presence/absence of food on the treated surfaces [56,57],
whereas, regarding T. molitor, all tests included food [48]. Furthermore, Lyons et al. [49]
experimented with permethrin and β-cyfluthrin treated on pressure-treated wood, particle
board (wood-chip-type), and concrete to control A. diaperinus adults.

The formulation consisting of the two active ingredients (a.i.s) (i) d-tetramethrin
(pyrethroid insecticide) and (ii) acetamiprid (neonicotinoid insecticide), and the insecti-
cide synergist piperonyl butoxide, is used for surface treatments [55,59–61]. Previously,
the efficacy of this formulation was assessed against small/large larvae of A. diaperinus,
with/without food, on concrete surfaces [55]. This mixture of a.i.s was more effective
against small larvae than large larvae, but its effectiveness against adults of the species is
yet to be discovered.

Given that insect farms, storage units, and poultry houses consist of numerous sur-
faces [20,62], there are no data available considering the impact of plastic, glass, metal,
wood, and ceramic surfaces on the effectiveness of d-tetramethrin plus acetamiprid against
adult individuals of T. molitor and A. diaperinus, to reveal the optimal surface for treatment.
Therefore, in this study, the immediate and delayed mortality of the minimum and max-
imum label dose of the aforementioned formulation was assessed. To delve deeper, the
parameter of food presence/absence was taken into consideration.

2. Materials and Methods
2.1. Insects and Food

The two tested tenebrionids were bred at the Laboratory of Agricultural Zoology and
Entomology (Agricultural University of Athens, Athens, Greece). Both were laboratory
cultures derived from Laboratory of Agricultural Entomology (Benaki Phytopathological
Institute, Kifissia, Attica, Greece). The rearing mediums were wheat bran with potato, or
apple cuts for extra moisture, for T. molitor and A. diaperinus, respectively. Both species were
kept under the following conditions: 30 ◦C, 65% relative humidity (RH), and complete light
absence [53,63,64]. The participating tenebrionids were taken randomly from the colonies.
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The adults were younger than 14 or 7 days old (days since their emergence from pupae) for
T. molitor and A. diaperinus, respectively.

2.2. Insecticide

Dobol® EC was used to treat the tested surfaces. This insecticide consists of d-tetramethrin
[3,4,5,6-tetrahydrophthalimidomethyl (1RS)-cis-trans-chrysanthemate] (2.5% w/v) plus ac-
etamiprid [N-[(6-chloropyridin-3-yl)methyl]-N′-cyano-N-methylethanimidamide] (5% w/v),
and piperonyl butoxide (3,4-methylenedioxy-6-propylbenxyl n-butyl diethyleneglycol
ether) (10% w/v) a.i.s (Société Kwizda France, Marly le Roi, France). There are two label
doses tested for surface applications: (i) minimum (min), i.e., 0.0001 mL formulation/cm2,
and (ii) maximum (max), i.e., 0.0002 mL formulation/cm2.

2.3. Bioassays

For the experiment, surfaces of plastic, glass, metal, wood, and ceramic were treated
with the aforementioned doses of insecticide. For this purpose, three replicates of Petri
dishes, consisting of three subreplicates each, were prepared. The dishes were plastic (in
the cases of plastic, metal, wood, and ceramic surfaces) or glass (in the case of glass sur-
faces) and had the following dimensions: 1.5 cm height; 8 cm diameter. Metal, wood, and
ceramic surfaces were cut from galvanized metal sheets (1 mm thick), pieces of plywood
(4 mm thick), and ceramic tiles (6 mm thick), respectively, purchased from local stores. The
type of plastic that dishes were made from was polystyrene. Concerning plastic and glass,
insecticides were applied directly to the dishes, while metal, wood, and ceramic pieces were
cut to fit perfectly (<50.27 cm2 area) into plastic dishes. The internal vertical dish surface
of each dish (plastic or glass) was coated with polytetrafluoroethylene, acquired from
Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). This coat prevented tenebrionids
from escaping. Lids had a circular cut (1.5 cm diameter); thus, dishes were fully aerated.
This cut was covered with cloth. Each surface/dish was sprayed with 1 mL volume that
contained the desired quantity of each tested dose. The spraying was conducted with an
airbrush (AG-4 Mecafer S.A., Valence, France) in a fine mist. Afterward, a balance (Precisa
XB3200D, Alpha Analytical Instruments, Gerakas, Greece) was used to weigh quantities of
0.5 g, derived from the diet of the tested tenebrionids, which was finally spread into the
treated dishes. The above procedure was repeated, but this time no diet was introduced into
the dishes. As controls, additional series of dishes (of each type of surface) were sprayed
with distilled water. The control series were repeated twice, once with and once without
diet. Two hours after spraying, 10 individuals were inserted in each dish and transferred
into 30 ◦C/65% RH incubators, for the entire duration of the experiments. After 1, 3, 5, and
7 days, mortality of both tenebrionid species was counted with a stereomicroscope (Olym-
pus SZX9, Bacacos S.A., Athens, Greece). For the insect inspection, a brush was used to
gently poke the individuals. No movement detection meant that insects were dead. After a
7-day exposure to the treated surfaces, all living insects were transferred to non-treated
surfaces for 7 additional days to evaluate delayed mortality. Adults that were exposed to a
certain type of treated surface were put into dishes with the same type of non-treated sur-
face. Furthermore, adults exposed to the insecticide with diet into the dishes were conveyed
to non-treated dishes with new 0.5 g diet. Similarly, adults exposed to the insecticide with
no diet on the dishes were conveyed to non-treated dishes with no diet. This procedure
was followed to evaluate delayed mortality for controls. Mortalities were counted as above,
at the end of the experiment.

2.4. Data Analysis

Both mortality (immediate and delayed) control values were lower than 5% for the
two tenebrionid species. Therefore, no corrections were made to the mortality data, but
they were log (x + 1) converted in advance of the analysis to ensure the variance normal-
ization [65,66]. Each species was submitted to a separate repeated-measures multivariate
analysis of variance (MANOVA) [67]. The repeated factor was exposure, response variable
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was mortality, and main effects were dose, surface, and presence/absence of food. Associ-
ated interactions (of main effects) were incorporated into the analysis. For each species,
delayed mortality data were separately analyzed with a two-way ANOVA, separately for
each tested dose. The response variable was mortality, whereas surface and food pres-
ence/absence were the main effects. The Tukey–Kramer test (HSD) or the two-tailed t test
assorted means at 0.05 level of significance were used [68]. The JMP 16.2 software was used
for all analyses [69].

3. Results
3.1. Immediate Mortality of Tenebrio molitor

Between exposure intervals, all main effects and food × surface interaction were
significant (Table 1). Concerning the intervals within exposure, all main effects were
significant. Exposure × food × surface and exposure × dose × food × surface interactions
were also significant. On the first day of the experiment, mortalities of the minimum dose
of d-tetramethrin plus acetamiprid ranged from 0.0% (applied on metal) to 8.9% (applied
on glass) when food was present (Table 2). By the end of the week, this dose killed all
T. molitor adults when applied on glass, metal, and ceramic surfaces. Meanwhile, plastic
and wood surfaces treated with this dose provided 96.7 and 87.8% mortality, respectively, in
the same food scenario. The minimum dose caused significantly variable mortalities on the
first day of exposure (1.1–37.8%) on surfaces without food. After 5 days, the treated glass
and ceramic surfaces caused the death of all exposed adults. By the end of the experiments,
plastic and metal killed all T. molitor individuals, while wood provided 92.2% mortality at
the same exposure interval. Glass and ceramic surfaces treated with the maximum dose of
the insecticide caused the death to all exposed adults after a 5-day exposure in the presence
of food. The same dose and food scenario killed all adults exposed to metal after 7 days,
while plastic and wood-treated surfaces reached 97.8 and 94.4% mortality, respectively.
Similarly, the maximum dose, when food was absent, killed all individuals exposed to
treated glass and ceramic surfaces after 5 days. All T. molitor adults were dead on treated
plastic, metal, and wood 7 days post-exposure in the same food and dose scenario.

Table 1. MANOVA parameters for main effects and associated interactions for the immediate
mortality of Tenebrio molitor and Alphitobius diaperinus adults between and within exposure intervals
(error DF = 160).

Effect Tenebrio molitor Alphitobius diaperinus

Between exposure intervals
Source DF F p F p

Intercept 1 23,297.2 <0.01 18,841.7 <0.01
Dose 1 18.5 <0.01 64.9 <0.01
Food 1 38.6 <0.01 28.4 <0.01

Surface 4 57.0 <0.01 78.2 <0.01
Dose × food 1 0.48 0.49 0.1 0.72

Dose × surface 4 1.0 0.43 3.6 0.01
Food × surface 4 2.7 0.04 1.1 0.37

Dose × food × surface 4 2.1 0.09 1.1 0.37
Within exposure intervals

Exposure 3 616.5 <0.01 790.7 <0.01
Exposure × dose 3 12.3 <0.01 11.1 <0.01
Exposure × food 3 13.7 <0.01 6.8 <0.01

Exposure × surface 12 25.1 <0.01 26.6 <0.01
Exposure × dose × food 3 0.4 0.74 1.9 0.14

Exposure × dose × surface 12 1.6 0.09 1.8 0.05
Exposure × food × surface 12 2.1 0.02 0.5 0.89

Exposure × dose × food × surface 12 2.4 0.01 2.4 0.01
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Table 2. Mean immediate mortality (% ± SE) of Tenebrio molitor adults exposed to surfaces treated
with d-tetramethrin plus acetamiprid for 1 day, 3 days, 5 days, and 7 days. Within each row, means
followed by the same uppercase letter are not significantly different (in all cases, DF = 3, 35, Tukey–
Kramer HSD test at p = 0.05). Within each column, means that are followed by the same lower-case
letter are not significantly different (in all cases, DF = 4, 44, Tukey–Kramer HSD test at p = 0.05).

Surfaces 1 Day 3 Days 5 Days 7 Days F p

Min/Food
Plastic 3.3 ± 1.7 Cabc 28.9 ± 3.1 Bab 76.7 ± 4.4 Ab 96.7 ± 1.7 Aa 65.8 <0.01
Glass 8.9 ± 2.0 Ba 54.4 ± 4.4 Aa 95.6 ± 2.4 Aa 100.0 ± 0.0 Aa 43.6 <0.01
Metal 0.0 ± 0.0 Cc 26.7 ± 4.1 Bb 94.4 ± 2.4 Aa 100.0 ± 0.0 Aa 798.0 <0.01
Wood 1.1 ± 1.1 Cbc 14.4 ± 2.4 Bc 64.4 ± 4.1 Ab 87.8 ± 4.0 Ab 80.7 <0.01

Ceramic 6.7 ± 2.4 Bab 47.8 ± 4.0 Aab 94.4 ± 1.8 Aa 100.0 ± 0.0 Aa 43.6 <0.01
F 5.6 11.0 17.6 7.1
p <0.01 <0.01 <0.01 <0.01

Min/No food
Plastic 17.8 ± 4.7 Cab 47.8 ± 4.9 Bab 96.7 ± 1.7 Aa 100.0 ± 0.0 Aa 25.0 <0.01
Glass 37.8 ± 5.2 Ca 67.8 ± 4.3 Ba 100.0 ± 0.0 Aa 100.0 ± 0.0 Aa 41.6 <0.01
Metal 1.1 ± 1.1 Cc 41.1 ± 3.9 Bb 95.6 ± 2.4 Aa 100.0 ± 0.0 Aa 213.6 <0.01
Wood 3.3 ± 2.4 Cc 18.9 ± 3.1 Bc 66.7 ± 5.0 Ab 92.2 ± 2.2 Ab 65.0 <0.01

Ceramic 7.8 ± 2.8 Bbc 65.6 ± 5.8 Aa 100.0 ± 0.0 Aa 100.0 ± 0.0 Aa 39.3 <0.01
F 15.5 25.5 26.6 11.7
p <0.01 <0.01 <0.01 <0.01

Max/Food
Plastic 13.3 ± 3.3 Ba 64.4 ± 4.1 Aa 96.7 ± 1.7 Aa 97.8 ± 1.5 Aab 27.1 <0.01
Glass 10.0 ± 2.9 Bab 56.7 ± 2.9 Aa 100.0 ± 0.0 Aa 100.0 ± 0.0 Aa 32.7 <0.01
Metal 2.2 ± 1.5 Cb 43.3 ± 3.7 Ba 96.7 ± 1.7 Aa 100.0 ± 0.0 Aa 111.0 <0.01
Wood 2.2 ± 1.5 Cb 18.9 ± 3.9 Bb 73.3 ± 3.3 Ab 94.4 ± 2.4 Ab 52.2 <0.01

Ceramic 7.8 ± 2.2 Bab 56.7 ± 3.7 Aa 100.0 ± 0.0 Aa 100.0 ± 0.0 Aa 43.0 <0.01
F 3.6 12.0 34.0 3.6
p 0.01 <0.01 <0.01 0.01

Max/No food
Plastic 18.9 ± 4.2 Bab 66.7 ± 3.7 Aa 97.8 ± 1.5 Aa 100.0 ± 0.0 A 17.8 <0.01
Glass 47.8 ± 2.8 Ca 81.1 ± 3.5 Ba 100.0 ± 0.0 Aa 100.0 ± 0.0 A 99.7 <0.01
Metal 2.2 ± 1.5 Cc 45.6 ± 5.0 Bb 98.9 ± 1.1 Aa 100.0 ± 0.0 A 110.7 <0.01
Wood 3.3 ± 1.7 Cc 33.3 ± 3.3 Bb 90.0 ± 3.3 Ab 100.0 ± 0.0 A 73.5 <0.01

Ceramic 13.3 ± 2.4 Bb 71.1 ± 3.1 Aa 100.0 ± 0.0 Aa 100.0 ± 0.0 A 42.3 <0.01
F 15.2 24.7 5.8 -
p <0.01 <0.01 <0.01 -

3.2. Immediate Mortality of Alphitobius diaperinus

Between and within exposure, all main effects were significant (Table 1). Dose × surface
(between), exposure × dose × surface, and exposure × dose × food × surface interactions
(within) were also significant. When A. diaperinus adults were exposed to the minimum
dose of d-tetramethrin plus acetamiprid in the presence of food, no dead individuals were
detected on the 1st day of the experiments on metal and wood, while treated ceramic,
plastic, and glass surfaces provided mortality ranging from 1.1 to 17.8% (Table 3). After
7 days of exposure, this dose killed 53.3% (applied on wood) to 97.8% (applied on glass)
in the same food scenario. When the minimum dose of this insecticide was applied in the
absence of food, mortalities ranged between 0.0% (applied on metal) and 18.9% (applied on
glass) after 1 day of exposure and between 63.3% (applied on wood) and 98.9% (applied on
glass) 7 days post-exposure. The maximum dose of d-tetramethrin plus acetamiprid with
food provided complete mortality (100.0%) when it was applied on glass, 97.8% on plastic,
87.8% on ceramic, 84.4% on metal, and 80.0% on wood surfaces 7 days post-exposure. The
same dose in the absence of food provoked the death of all individuals that were exposed
to treated plastic and glass surfaces by the end of the experiments. When the insecticide
was applied on the other three types of surfaces, it killed 87.8% (wood), 92.2% (ceramic),
and 97.8% (metal) after a 7-day exposure.
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Table 3. Mean immediate mortality (% ± SE) of Alphitobius diaperinus adults exposed to surfaces
treated with d-tetramethrin plus acetamiprid for 1 day, 3 days, 5 days, and 7 days. Within each row,
means followed by the same uppercase letter are not significantly different (in all cases, DF = 3, 35,
Tukey–Kramer HSD test at p = 0.05). Within each column, means that are followed by the same
lower-case letter are not significantly different (in all cases, DF = 4, 44, Tukey–Kramer HSD test at
p = 0.05).

Surfaces 1 Day 3 Days 5 Days 7 Days F p

Min/Food
Plastic 5.6 ± 2.4 Bb 32.2 ± 5.2 Ab 51.1 ± 8.6 Abc 70.0 ± 5.5 Ab 27.8 <0.01
Glass 17.8 ± 2.2 Ca 73.3 ± 2.9 Ba 91.1 ± 2.6 ABa 97.8 ± 1.5 Aa 142.8 <0.01
Metal 0.0 ± 0.0 Dc 32.2 ± 2.2 Cab 58.9 ± 5.6 Bab 77.8 ± 4.7 Aab 798.1 <0.01
Wood 0.0 ± 0.0 Cc 12.2 ± 3.2 Bc 36.7 ± 4.7 Ac 53.3 ± 5.8 Ac 62.3 <0.01

Ceramic 1.1 ± 1.1 Cbc 28.9 ± 4.2 Bb 52.2 ± 4.3 Abc 74.4 ± 4.1 Aab 128.0 <0.01
F 25.4 12.7 8.9 10.5
p <0.01 <0.01 <0.01 <0.01

Min/No food
Plastic 8.9 ± 3.5 Bb 58.9 ± 5.6 Aab 77.8 ± 3.2 Aab 93.3 ± 2.4 Aa 31.4 <0.01
Glass 18.9 ± 2.0 Ba 84.4 ± 3.4 Aa 95.6 ± 1.8 Aa 98.9 ± 1.1 Aa 177.4 <0.01
Metal 0.0 ± 0.0 Cc 45.6 ± 5.0 Bab 73.3 ± 4.7 Aab 84.4 ± 4.8 Aa 784.8 <0.01
Wood 2.2 ± 1.5 Cbc 17.8 ± 3.2 Bc 37.8 ± 4.0 ABc 63.3 ± 4.4 Ab 36.1 <0.01

Ceramic 2.2 ± 1.5 Cbc 37.8 ± 4.7 Bb 67.8 ± 3.6 ABb 83.3 ± 4.1 Aa 83.3 <0.01
F 13.5 12.7 20.3 13.0
p <0.01 <0.01 <0.01 <0.01

Max/Food
Plastic 14.4 ± 2.9 Ba 63.3 ± 5.3 Aa 85.6 ± 4.4 Aa 97.8 ± 1.5 Aa 31.5 <0.01
Glass 20.0 ± 3.7 Ca 75.6 ± 2.4 Ba 92.2 ± 2.2 Aa 100.0 ± 0.0 Aa 211.1 <0.01
Metal 1.1 ± 1.1 Bb 55.6 ± 5.8 Aa 74.4 ± 4.8 Aa 84.4 ± 4.4 Ab 173.7 <0.01
Wood 1.1 ± 1.1 Db 18.9 ± 2.6 Cb 43.3 ± 3.3 Bb 80.0 ± 2.9 Ab 133.5 <0.01

Ceramic 3.3 ± 1.7 Bb 53.3 ± 3.7 Aa 74.4 ± 2.9 Aa 87.8 ± 3.2 Aab 72.6 <0.01
F 17.8 32.9 27.2 8.0
p <0.01 <0.01 <0.01 <0.01

Max/No food
Plastic 15.6 ± 1.8 Cab 77.8 ± 4.3 Ba 96.7 ± 1.7A Bab 100.0 ± 0.0 Aa 195.1 <0.01
Glass 23.3 ± 2.4 Ba 84.4 ± 3.8 Aa 98.9 ± 1.1 Aa 100.0 ± 0.0 Aa 133.4 <0.01
Metal 7.8 ± 2.8 Bbc 77.8 ± 3.6 Aa 92.2 ± 1.5 Aab 97.8 ± 1.5 Aab 40.2 <0.01
Wood 5.6 ± 1.8 Cc 25.6 ± 4.1 Bb 63.3 ± 4.4 Ac 87.8 ± 2.2 Ac 36.3 <0.01

Ceramic 5.6 ± 1.8 Bc 63.3 ± 2.9 Aa 84.4 ± 3.8 Ab 92.2 ± 2.2 Abc 51.5 <0.01
F 6.3 31.3 22.1 11.6
p <0.01 <0.01 <0.01 <0.01

3.3. Delayed Mortality of Tenebrio molitor

All remaining T. molitor individuals died after their exposure to the minimum dose of
d-tetramethrin plus acetamiprid treated on plastic in the presence of food (Table 4). The
same dose treated on wood killed 80.6% and 100.0% of the remaining adults in the presence
or absence of food, respectively. Concerning the maximum dose of the insecticide, all
remaining individuals died on both plastic and wood surfaces when food was present.

3.4. Delayed Mortality of Alphitobius diaperinus

All the remaining A. diaperinus adults died after their exposure to plastic and glass
surfaces treated with the minimum dose of d-tetramethrin plus acetamiprid for both
food and no-food scenarios (Table 5). Concerning metal, wood, and ceramic surfaces, the
mortality of remaining adults reached 91.7, 84.3, and 84.4% in the presence of food, and
81.9, 91.3, and 89.3% in the absence of food, respectively. Regarding the maximum dose of
the insecticide, all remaining A. diaperinus died on plastic and metal surfaces in the presence
of food, as well as on wood surfaces in the absence of food. The scenarios metal/no food,
wood/food, and ceramic/food caused the death of 75.0, 92.9, and 92.9% of the remaining
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adults. The lowest delayed mortality was noted in the case of ceramic surfaces, when food
was absent, not exceeding 58.3% at the end of the assays.

Table 4. Mean delayed mortality (% ± SE) of Tenebrio molitor adults exposed for 7 days on untreated
dishes, with or without food, after 7 days of exposure on dishes treated with d-tetramethrin plus
acetamiprid. Within each row, asterisks indicate significant differences (two-tailed t-test at p = 0.05).
Within each column, means that are followed by the same lower-case letter are not significantly
different (two-tailed t-test at p = 0.05). Where no letters or no asterisks exist, no significant differences
were recorded. Where dashes exist, no analysis was performed. Numbers in parentheses denote the
number of remaining individuals.

Min Max
Surfaces Food No Food DF t p Food No Food DF t p

Plastic 100.0 ± 0.0 (0) - - - - 100.0 ± 0.0 (0) - - - -

Wood 80.6 ± 12.5 (11) 100.0 ±
0.0 (0) 11 1.5 0.16 100.0 ± 0.0 (0) - - - -

DF 8 - 5 -
t −1.0 - - -
p 0.33 - - -

Table 5. Mean delayed mortality (% ± SE) of Alphitobius diaperinus adults exposed for 7 days on
untreated dishes, with or without food, after 7 days of exposure on dishes treated with d-tetramethrin
plus acetamiprid. Within each row, asterisks indicate significant differences (two-tailed t-test at
p = 0.05). Within each column, means that are followed by the same lower-case letter are not
significantly different (Tukey–Kramer HSD test at p = 0.05). Where no letters or no asterisks exist, no
significant differences were recorded. Where dashes exist, no analysis was performed. Numbers in
parentheses denote the number of remaining individuals.

Min Max
Surfaces Food No Food DF t p Food No Food DF t p

Plastic 100.0 ± 0.0 (0) 100.0 ± 0.0 (0) 12 - - 100.0 ± 0.0 (0) - - - -
Glass 100.0 ± 0.0 (0) 100.0 ± 0.0 (0) 2 - - - - - - -
Metal 91.7 ± 4.2 (3) 81.9 ± 8.7 (3) 14 −1.2 0.24 100.0 ± 0.0 * (0) 50.0 ± 50.0 (1) 7 2.3 0.05
Wood 84.3 ± 6.6 (5) 91.3 ± 4.5 (3) 17 1.0 0.35 92.9 ± 7.1 (3) 100.0 ± 0.0 (0) 14 1.1 0.30

Ceramic 84.4 ± 7.8 (4) 89.3 ± 7.4 (2) 15 0.5 0.65 92.9 ± 7.1 (1) 58.3 ± 20.1 (3) 12 -1.8 0.10
DF 36 27 22 15
F 1.5 0.9 0.4 2.4
p 0.24 0.47 0.75 0.13

4. Discussion

The findings of the current study revealed that there are significant differences in the
impact of d-tetramethrin plus acetamiprid depending on the type of surfaces they were
applied to. In general, the insecticide applied on glass resulted in the most elevated mortality
rates, while when it was applied on wood, it killed the fewest adult individuals, regardless
of food/no food scenario and insect species, on both immediate and delayed bioassays.
There was no general trend among the other three types of surfaces, i.e., metal, plastic, and
ceramic. However, treatments on metal and ceramic caused higher mortality levels than
plastic surfaces. This was evident for both immediate and delayed mortalities for T. molitor
adults, given that there was no delayed mortality in the case of metal and ceramic. The
variable structural properties of the tested surfaces, i.e., the existence of pores, may cause the
observed differential insecticidal efficacy. Glass, metal, and ceramic are non-porous surfaces,
while plastic, followed by wood, are more porous surfaces [70–72]. Arthur [73] understood
the significance of porous and non-porous surfaces, and how they affected the efficacy of the
insecticides applied to them. The author noticed that when concrete was sealed, the applied
insecticides had better residual efficacy than non-sealed concrete, i.e., concrete with pores [73].



Insects 2023, 14, 452 8 of 13

Similarly to our results, Arthur [74] reported that deltamethrin treated on ceramic tile had
higher efficacy than when it was treated on wood surfaces. In a previous study, Vojoudi
et al. [72] applied abamectin, chlorpyrifos, and deltamethrin on paper, plastic, ceramic, and
glass surfaces. The authors found that higher doses of insecticide were needed to kill 90% of
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) on paper < plastic < ceramic < glass.
In a more recent study, Arthur et al. [75] tested deltamethrin and cyfluthrin against young/old
larvae of Trogoderma granarium Everts (Coleoptera: Dermestidae). The authors applied the
insecticides on metal, vinyl flooring tile, wood, painted wood, and concrete surfaces. Treated
metal provided the highest mortalities for a period of three months [75]. Combining the
findings of this study with the previous studies, the type of surface should be taken into
consideration when insecticidal treatments will be followed for the management of T. molitor
and A. diaperinus adults. Furthermore, whether more porous surfaces, other than concrete,
should be sealed before treatment [73] merits investigation.

In all tested scenarios, T. molitor adults were more susceptible than A. diaperinus
adults. This was documented before in several studies, since there is no general trend in
tenebrionids concerning their developmental stage susceptibility to insecticides [54,76].
For example, T. molitor’s susceptible developmental stage is the adult stage, while larvae
are more tolerant [53]. However, this does not apply to A. diaperinus, since larvae are
its susceptible developmental stage, and adults are more tolerant than larvae [56,57].
Susceptibility differences among species and their developmental stages occur because
of the variability of their cuticle’s lipid composition and/or variety, their setae, their
morphology, and their behavior [77–94]. In a more recent study, Kavallieratos et al. [55]
treated concrete surfaces with d-tetramethrin plus acetamiprid against A. diaperinus small
and large larvae. The formulation killed more small than large larvae, while the presence
of food caused a significant reduction in the efficacy of the insecticide [55]. Total mortality
was observed only in the case of small larvae [55]. These are rather important findings since
d-tetramethrin plus acetamiprid applied on porous surfaces is not able to suppress the
susceptible developmental stage of A. diaperinus, i.e., larvae [55], while the same insecticide
treated on non-porous surfaces (glass) killed all the tolerant individuals, i.e., adults. These
results prove the significance of the comprehensive organization of pest management
strategies to choose the best surface for insecticidal application, depending on the target
pest and/or developmental stage.

One other important factor concerning the efficacy of d-tetramethrin plus acetamiprid
was the presence/absence of food on treated surfaces, in terms of immediate and delayed
mortality. Generally, food presence resulted in lower observed mortality rates at both doses,
regardless of the insect species. Similarly, Kavallieratos et al. [55–57] noticed that food on
treated concrete reduced mortality levels caused by chlorfenapyr, deltamethrin, etofenprox,
and d-tetramethrin plus acetamiprid, against small/large larvae and adults of A. diaperinus.
Food is considered an obstacle since it can prevent the contact of the insect with the
treated surface, but also because it can absorb or even degrade the insecticide [95–103].
As a result, intensive cleaning is suggested to eliminate the possibility of the insecticidal
efficacy reduction caused by food prior to the application, as well as during the storage
period [99,104,105].

Concerning d-tetramethrin plus acetamiprid, this is a mixture of a.i.s that has been
scarcely examined. After an extensive search into the international bibliography, only
Kavallieratos et al. [55] and Kavallieratos and Boukouvala [106] have examined this mix-
ture on A. diaperinus and T. granarium, respectively. The authors revealed the elevated
efficacy on both adults and larvae of T. granarium, reaching 100.0% and 84.4% mortality,
respectively [106]. This was an important finding since T. granarium larvae are very tolerant.
Taking into account our findings and those of the aforementioned studies, we can conclude
that this mixture of a.i.s has the potential concerning stored-product pest management in
storages. It can also be assumed that piperonyl butoxide, as an insecticide synergist that
enhances the insecticidal properties of d-tetramethrin and acetamiprid [59,107], plays a
significant role in the elevated efficacy of this mixture in this study, compared with the
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insecticidal properties of these a.i.s in former studies [108–115]. Previous research has
revealed that the incorporation of piperonyl butoxide into pyrethroid insecticides did not
alter the susceptibility of the susceptible strain of A. diaperinus [113]. It should be noted
that former studies revealed the antifeedant and repellent effects of tetramethrin [109,110].
This can partially explain the lower delayed mortalities observed in no-food scenarios.

5. Conclusions

To conclude, A. diaperinus adults were more tolerant than T. molitor adults, regardless
of insecticidal dose, surface, and food/no food scenarios. When both doses were applied
on wood resulted in the lowest mortality levels against both species, while treated glass
provided the most elevated mortality, in all tested food/no food scenarios. No trend was
revealed during this study concerning the suitability of treated plastic, metal, and ceramic
surfaces against these tenebrionids in the absence or presence of food. Food absence
resulted in elevated efficacy, contrary to the presence of food. Overall, d-tetramethrin plus
acetamiprid is effective against both tested species when they are treated on several types of
surfaces. Whether there are ways to enhance the efficacy of insecticides on porous surfaces
merits further investigation.
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