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Simple Summary: When an insect pest outbreak occurs, it is crucial to quickly assess the damage to
manage the outbreak effectively. This study investigated a serious outbreak of the beet armyworm,
Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), that occurred in soybean fields in South Korea.
We conducted an aerial survey of 31 soybean blocks within the outbreak region using drones. The
aerial images were analyzed to quantify soybean defoliation and to investigate the spatial patterns
of the soybean damage by S. exigua. The results of this study showed that the aerial survey was an
effective and rapid method for estimating the defoliation of soybeans caused by S. exigua. Moreover,
it was found that the aerial survey followed by image analysis was more economical and required
less time than a conventional ground survey, especially when the number of target soybean blocks
subject to the survey was more than 15 blocks. Overall, the study demonstrated the effectiveness
of using an autonomous drone and image analysis to conduct a low-cost aerial survey of soybean
damage caused by S. exigua during its outbreak.

Abstract: Rapid assessment of crop damage is essential for successful management of insect pest
outbreaks. In this study, we investigated the use of an unmanned aircraft system (UAS) and image
analyses to assess an outbreak of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera:
Noctuidae), that occurred in soybean fields in South Korea. A rotary-wing UAS was deployed to
obtain a series of aerial images over 31 soybean blocks. The images were stitched together to generate
composite imagery, followed by image analyses to quantify soybean defoliation. An economic
analysis was conducted to compare the cost of the aerial survey with that of a conventional ground
survey. The results showed that the aerial survey precisely estimated the defoliation compared to the
ground survey, with an estimated defoliation of 78.3% and a range of 22.4–99.8% in the 31 blocks.
Moreover, the aerial survey followed by image analyses was found to be more economical than the
conventional ground survey when the number of target soybean blocks subject to the survey was
more than 15 blocks. Our study clearly demonstrated the effectiveness of using an autonomous
UAS and image analysis to conduct a low-cost aerial survey of soybean damage caused by S. exigua
outbreaks, which can inform decision-making for S. exigua management.

Keywords: drone; pest detection; site-specific pest management; UAS; remote sensing; SADIE;
NDVI; satellite

1. Introduction

Rapid surveys and assessments of insect pest outbreaks are critical for timely man-
agement of decision-making and response to the outbreaks. Ground surveys and aerial
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sketch mapping by experts on small airplanes have traditionally been used for large-scale
surveys of pest outbreaks in field crops and forests, respectively. When the damage is
extensive, satellite images may be used to assess the outbreak. However, aerial sketch map-
ping can be prone to subjectivity error, and remote sensing using satellites has low spatial
resolution, making it difficult to directly detect and assess pest outbreaks when damage
is scattered across a large geographic area. For example, the United States Department of
Agriculture (USDA) Forest Service uses a combination of field surveys and digital aerial
sketch mapping, but this method can be influenced by factors such as the experience of the
sketch mapper, types of signs and symptoms, aircraft type, and flight speed [1]. Remote
sensing using satellites has been used for surveying insect pest outbreaks but has limited
applicability in operational pest-management programs [2] due to low image resolution.
As a result, there is a need for alternative methods such as unmanned aerial systems and
image analysis to conduct low-cost and rapid surveys of pest outbreaks, which can inform
timely and effective management decisions.

Unmanned aircraft systems (UAS), commonly known as drones, have become an
attractive tool for aerial surveys of crop stress and damage caused by pests [3,4]. UAS
flights over agricultural lands or forests require fewer logistics and field crew members
compared to manned airplanes [5]. Recent advances in image processing and analysis tools,
coupled with high-resolution imagery obtained by UAS, provide a unique opportunity for
field image processing capability [6]. UAS have several advantages compared to manned
airplanes and satellite imagery for monitoring crop stress and damage, including safety,
cost, flexibility, and modularity. Unlike satellite imagery, UAS imagery can be acquired in
real-time and tailored to meet site-specific survey and management strategies by locating
specific areas that require additional monitoring [6]. The modularity of onboard payloads,
combined with an onboard control system, allows for easy retrofitting with a wide range of
high-resolution imaging payloads. Recent significant advances in miniaturized flight con-
trol technology and expanded capabilities of UAS for autonomous flight offer the possibility
of conducting aerial surveys repeatedly and even without human intervention [7].

The beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), is a key
pest of vegetables, field crops, and floricultural crops, with over 90 species of plants in
18 families being reported as host plants globally [8–11]. The damage by S. exigua is
predominantly caused by larvae that feed on leaves resulting in feeding signs of defoliation.
Outbreaks of S. exigua could be associated with weather patterns [9,12], its short life cycle
(16–42 days from egg to adult), high fecundity (700–1300 eggs per female), number of
generations per year [13–15], its spatial distribution pattern [16], and large-scale migration
of adults [12,17]. In soybean fields, we observed heavy damage by S. exigua causing nearly
100% defoliation.

Current recommendations for S. exigua control include counting the number of lar-
vae and applying insecticides as needed; the economic threshold for chemical control is
6.3 larvae/plant for cabbage [18]. Chemical control is the most common practice to control
S. exigua in South Korea, but the strong insecticide resistance of S. exigua has made the
control of the moth extremely difficult [19,20]. Specifically, while first and second instars are
relatively susceptible to insecticides, third to fifth instars are tolerant to the insecticides, and
they generally hide within plants and thus lower the chance of exposure to foliar-applied
insecticides. Biological control agents including the entomopathogenic fungus Nomuraea
rileyi [21] and a nuclear polyhedrosis virus (NPV) have been identified [22] but are currently
not commercially available. Therefore, early detection of damage by S. exigua is considered
an ideal preventative control measure. Although early detection of S. exigua might be
possible by using doppler weather radar when the swarm of S. exigua adults migrates
during a major outbreak [23,24], the technology is not readily available to growers and pest
control service providers.

In July and August of 2018, an outbreak of S. exigua occurred in soybean fields (Glycine
max [L.]) in Jeollabuk-do, the western region of South Korea, covering an area of 1701 ha
near the cities of Kimje, Gunsan, and Iksan. An emergency ground survey was conducted
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by the government agencies of South Korea to estimate the soybean damage caused by
S. exigua and to make management decisions such as applying pesticides or reseeding
soybean or alternative crops. Taking advantage of the outbreak, we conducted an aerial
survey with UAS simultaneously with the ground survey. Our hypothesis was that the
aerial survey of S. exigua damage using UAS and image analysis could be more efficient
than typical ground-based visual surveys. The objectives of this study were (1) to develop
a protocol for a rapid assessment of S. exigua outbreaks in soybean fields using rotary-wing
UAS and image analysis, (2) to compare the efficiency of aerial surveys with conventional
ground surveys, (3) to determine the spatial pattern of S. exigua damage using spatial
statistics, and (4) to check the applicability of satellite imagery for detecting soybean
damage caused by S. exigua at a regional scale.

2. Materials and Methods
2.1. S. exigua Outbreak and Survey Site

This study was conducted in Juksan Township (N 35.759012, W 126.789840) close to
the city of Kimje where the most serious outbreak of S. exigua was reported during the
2018 outbreak in South Korea. An initial field visit by the entomologists at the National
Institute of Agricultural Sciences of South Korea confirmed that the larvae feeding on
soybean foliage were exclusively S. exigua (Figure 1).
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damaged), high (50–75%), medium (25–50%), low damage (1–25%), and no damage (0%). 

Figure 1. Damage of soybean caused by S. exigua from the ground (A,B) and aerial (C,D) views. (A), a
larva feeding on soybean; (B), a typical sign of soybean damage caused by S. exigua; (C,D), aerial
views of soybean damage at 5 and 50 m above the ground, respectively.

2.2. Ground Survey and Damage Assessment

A team of 19 field-survey experts from interagency organizations, including the Na-
tional Institute of Agricultural Sciences, Province Agricultural Research and Extension
Station, and Agricultural Extension and Technology Center, conducted a conventional
ground survey to estimate the damage caused by S. exigua in the study site for a rapid re-
sponse to the outbreak. The survey involved selecting 30–50 soybean plants in each soybean
block and rating the damage using five categories: severe (75–100% of soybean damaged),
high (50–75%), medium (25–50%), low damage (1–25%), and no damage (0%). The location
of soybean blocks surveyed, time taken by 19 surveyors, and damage estimation were
recorded.

2.3. Aerial Survey and Damage Assessment

A three-step protocol for assessing damage in soybean fields caused by S. exigua was
developed with the goal of efficiently completing an aerial survey (Figure 2). The first step
involved deploying a rotary-wing UAS (DJI Phantom 3 Advanced; SZ DJI Technology Co.,
Ltd., Shenzhen, China) to capture aerial imagery. The second step involved downloading
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the aerial images and stitching them together to generate a geo-referenced composite image
of the study site. In the third step, image analyses were conducted to estimate the amount
of damage caused by S. exigua.
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Figure 2. UAS operation and image analysis protocol used in this study. Each step above was
automated by autopilot for UAS flight and macro or batch processing for image analysis.

The UAS was equipped with an RGB camera capable of both photography and videog-
raphy at a resolution of 1800 p. During the UAS flight, a series of aerial photographs
were taken with 80% image overlap between two consecutive images taken. Two different
aerial survey methods were employed: (1) a high-altitude survey in autonomous flight
mode conducted at 50 m above the ground, and (2) a low-altitude spatially targeted survey
conducted at 5–10 m above the ground to confirm S. exigua damage on individual soybean
plants in each block (Figure 3).
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(A), UAS flight path for an autopilot operation at 50 m above the ground; (B), a low-altitude flight
path to confirm soybean defoliation by S. exigua at 5–10 m above the ground.

2.4. Image Processing and Analysis

Following the completion of the flight missions, the aerial images were downloaded
from the UAS. For the high-altitude survey, the images were aligned according to the
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pre-planned flight path (Figure 3A) and processed using Pix4DMapper software (Pix4D,
Prilly, Switzerland) to generate a geo-referenced composite image. The composite image
was then ortho-mosaicked with ArcInfo® 10 software (ESRI, Redland, CA, USA) to confer
spatial attributes to the map coordinate system. Before conducting the image analysis to
estimate the damage caused by S. exigua, a validation survey using a low-altitude flight
was performed to confirm that the damage was indeed caused by defoliation.

To assess the extent of defoliation caused by S. exigua in each soybean block, ArcInfo
and Photoshop CS4 (Adobe Inc., San Diego, CA, USA) were used to analyze the composite
image. The green pixels in the image were counted to estimate the amount of soybean
foliage that remained after S. exigua feeding. This method was calibrated by comparing the
number of pixels counted in an undamaged area and by calculating the percent reduction
due to defoliation based on the number of green pixels present in the damaged area.

2.5. Determining the Efficiency of the Aerial Survey with UAS

To determine the efficiency of the aerial survey with UAS, a cost analysis was con-
ducted. Based on flight information recorded in the UAS, we extracted the time of UAS
operation for both high- and low-altitude aerial surveys (TUAS). Additionally, time for
image processing and analysis (Tanalysis), the number of soybean blocks surveyed by UAS
flights (Nblock), the expert labor fee per hour for the UAS pilot and image analyst (Fexpert),
and the technology fee per hour (Ftechnology) were recorded. We set USD 50 per hour for an
expert fee and USD 100 for Ftechnology based on average commercial rental rates (i.e., USD
50 for UAS rental and USD 50 for software rental). The total cost for an aerial survey with
UAS (Caerial) per soybean block was calculated as:

Caerial = [(TUAS + Tanalysis) × (Fexpert + Ftechnology)]/Nblock

To compare the aerial survey with the conventional ground survey, we calculated
three variables associated with the ground survey: the number of soybean blocks to survey
(Nblock), the time required for the ground survey (Tground), and the hourly labor fee (Flabor)
of USD 10 per field surveyor. The total cost per block by a conventional ground survey
(Conventional) per block was calculated as:

Cconventional = (Flabor × Tground)/Nblock

Regression analyses were conducted to determine the relationships between the cost
and time for different numbers of soybean blocks to survey and those for each of the aerial
and ground surveys. All the statistical analyses were conducted with SAS [25] at an error
rate of 0.05.

2.6. Spatial Patterns of Soybean Damage by S. exigua

We conducted spatial analyses with geostatistics and spatial analysis by distance
indices (SADIE) to characterize the spatial pattern and to test the significance of spatial
aggregation of soybean damage. UAS images taken at 50 m above the ground were used
for the analyses. Soybean blocks with >95% defoliation were excluded from the analyses, as
they showed near complete defoliation. The images of soybean defoliation were reclassified
into two classes (defoliated or healthy pixels) using ArcGIS Pro 10. Each soybean block
was divided into 54-m-by-54-m grids, and the number of pixels representing soybean
defoliation in each grid was counted to measure the amount of damage in the grid. The
data were analyzed using geostatistics (i.e., semivariogram modeling) to quantify the
degree of the spatial dependence and to characterize the spatial structure [26] of soybean
damage. Geostatistical analyses were conducted using GS+ 10 (Gamma Design Software,
Plainwell, MI, USA). The best theoretical semivariogram models were selected based on
minimum residual sums of squares (RSS) and maximum r2 values. Three semivariogram
parameters were used to describe the spatial structure of soybean damage by S. exigua:
range, sill, and nugget [27]. Range is the distance at which the semivariance reaches a
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maximum and represents the lag distance beyond which samples are spatially independent.
The sill is the value of the semivariance at any distance greater than or equal to the range.
The nugget is the value of the semivariance when lag distance equals zero. By using the
these parameters, the degree of spatial dependence (DD) was calculated with the following
formula:

DD =

(
C

C0 + C

)
× 100

where C is sill and C0 is nugget. Spatial dependency is considered weak, moderate, and
strong when DD is ≤25%, 26–75%, and ≥76%, respectively [28].

Although semivariograms can quantify spatial dependency, they do not determine
spatial clustering or aggregation. Therefore, SADIE was used to test the statistical sig-
nificance of spatial aggregation or clustering of soybean damage by S. exigua under the
null hypothesis of complete randomness [29]. The spatial pattern was determined by
calculating the index of aggregation (Ia), and the statistical significance of aggregation was
determined with associated probability (Pa). A value of Ia = 1 indicates a random spatial
distribution, Ia > 1 reveals an aggregated pattern, and Ia < 1 is indicative of a regular or
uniform spatial distribution. The aggregation was considered significant when Pa < 0.05.

Overall spatial clustering was tested by calculating mean clustering indices (
−
vi and

−
vj) and

their associated probabilities, P
−
vi and P

−
vj. A value of P

−
vi < 0.05 confirmed the presence of

significant spatial clustering into patches and P
−
vj < 0.05 indicated a high level of spatial

clustering into gaps [30]. These analyses were conducted by using SADIEShell version 2.0
(Rothamsted Experimental Station, Harpenden Herts, United Kingdom).

2.7. Regional-Scale Soybean Damage by S. exigua

To identify soybean fields damaged by S. exigua in the outbreak region of South Korea,
we analyzed time series satellite data for change detection. We utilized the normalized
difference vegetation index (NDVI) before, during, and after the S. exigua outbreak. The
NDVI is a measure that detects and quantifies the presence of live green vegetation by
analyzing reflected light in the visible and near-infrared (NIR) bands. Consequently, NDVI
values can serve as indicators of the health or condition of vegetation within each pixel of a
satellite image.

We used Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS)
Level 2 imagery with a spatial resolution of 30 m to calculate NDVI values before, during,
and after the S. exigua outbreak within the study site region. Specifically, we downloaded
Landsat 8 OLI/TIRS Level 2 imagery with 11 spectral bands from the U.S. Geological
Survey Earth Explorer for Path 115, Row 035. The NDVI values were calculated using
the equation: NDVI = (NIR − Red)/(NIR + Red), where Red represents band 4 and NIR
represents band 5.

To identify regions affected by S. exigua damage, we subtracted the NDVI values
during the damage from those before the damage using a raster calculator. Similarly, we
subtracted the NDVI values during the damage from those after the damage to locate
regions where regrowth or replanted crops occurred within the damaged area.

3. Results
3.1. Ground Survey and Damage Assessment

A ground survey by experts within the outbreak area showed 53.3%, 31.1%, 13.3%, and
2.2% severe, high, medium, and low damage to soybean plants, respectively. The ground
survey also found that S. exigua larvae feeding on the soybean plants were mostly second
and third instars with fewer fourth instars, indicating the damage was in progress, and thus
urgent control of S. exigua larvae was needed. The surveyors also observed and reported
that soybean blocks planted late experienced higher damage, and S. exigua larvae had
completely defoliated soybean plants, including stems, in some soybean blocks, causing
nearly 100% crop loss (Figure 4).
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Figure 4. Example aerial survey images at two different altitudes: a low-altitude flight at 5–10 m
above the ground for validation aerial survey to confirm the presence of defoliation (A) and a high-
altitude flight for aerial mapping of soybean defoliation by S. exigua at 50 m above the ground (B).

3.2. Aerial Survey and Image Analysis

A total of 150 aerial images were taken during the high-altitude UAS flight (Figure 3A).
A low-altitude flight confirmed soybean defoliations in all 31 soybean blocks (Figure 4A).
The composite image (Figure 5) showed various levels of soybean damage by S. exigua.
Specifically, soybean blocks 10, 11, and 12 were completely defoliated by S. exigua
(Figures 5 and 6, Table S1).
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Figure 6. Example aerial photos of soybean fields taken by UAS. Typical soybean fields (A–C) with
varying defoliation levels: (A), low defoliation; (B), high defoliation; (C), near 100% defoliation.
Aerial views of healthy (D) and damaged (F) soybean fields and the two soybean blocks side by side
with various levels of soybean defoliation by S. exigua (E).

The analysis of the aerial images showed that each pixel in the composite image
corresponded to an area of 0.02 m2, roughly equivalent to one soybean plant. This allowed
for estimation of plant-level defoliation. The results indicated that S. exigua feeding had
removed 78.3% of soybean foliage in the study site; the total area of soybean fields planted
was 10.11 ha, of which 7.92 ha were defoliated. The level of defoliation varied across
soybean blocks, with the least and most severely affected blocks showing defoliation rates
of 22.4% and 99.9%, respectively (Table S1 and Figure 7).
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3.3. Economic Analysis to Determine the Efficiency of Aerial Survey

The ground survey of 45 soybean blocks was completed by 19 surveyors in 1.1 h per
surveyor (i.e., Fexpert was set as 1.1). A pre-flight check, UAS inspection, and test flight were
conducted before any UAS flight mission to ensure safe operation, taking 30 min. Both the
high- and low-altitude aerial surveys took 57 min covering 20 ha. Therefore, the total time
for UAS operation (TUAS) was 0.5 h for pre-flight check and 0.05 h per block. It took 2 h to
finish image analysis for the 31 soybean blocks, and thus Tanalysis was set as 0.0645 h per
block. Using these parameter values, the economic analysis revealed that the aerial survey
with UAS was more time efficient than the ground survey when more than one soybean
block was surveyed (Figure 8A). In addition, the cost for the survey was a more economical
aerial survey with UAS than that by ground surveys when more than 15 soybean blocks
are surveyed (Figure 8B).

Insects 2022, 13, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 8. Comparison of estimated survey hour (A) and estimated cost (B) between aerial survey 
and ground survey. * indicates a technology fee including rental for the UAS and an image analysis 
tool. 

3.4. Spatial Patterns of Soybean Damage by S.exigua 
The geostatistical analyses revealed that non-linear models, such as exponential, 

spherical, and Gaussian models, provided the best fit for the data, indicating spatial 
correlation of soybean damage caused by S. exigua. The degree of spatial dependence (DD) 
was greater than 75% in 10 of the 13 soybean blocks and 50–75% in 3 of the blocks (Table 
1), indicating an overall strong spatial dependence of S. exigua damage. The range values 
of the semivariograms, which represent the maximum distance at which values are 
spatially correlated, ranged from 89 m to 872 m for the soybean blocks we surveyed. 

Table 1. Geostatistical description of soybean damage by S. exigua. Note that soybean blocks not 
shown in this table had >95% damage, so their pattern was not analyzed. 

Block Model Nugget Sill DD (%) Range (m) r2 RSS 
Block 1 Exp. 14,400 212,600 93.2 89 0.92 7.53 × 108 
Block 7 Exp. 101,000 416,400 75.7 281 0.98 8.00 × 108 
Block 8 Sph. 91,000 494,100 98.1 606 0.98 3.22 × 109 
Block 9 Sph. 100 149,700 99.9 129 0.86 3.20 × 108 
Block 13 Sph. 15,930 38,320 58.4 272 0.95 1.08 × 107 
Block 18 Exp. 48,100 344,300 86.0 257 0.98 1.49 × 109 
Block 19 Gauss. 99,200 223,000 55.5 111 0.94 5.73 × 108 
Block 20 Exp. 41,000 401,000 89.8 166 0.93 4.59 × 109 
Block 25 Sph. 15,200 118,900 87.2 257 0.94 2.57 × 108 
Block 26 Exp. 194,000 560,400 65.4 872 0.97 1.09 × 109 
Block 28 Sph. 100 150,600 99.9 163 0.84 7.82 × 108 
Block 29 Sph. 100 149,700 99.9 129 0.86 3.20 × 108 
Block 30 Exp. 8100 53,550 84.9 137 0.98 2.39 × 107 
Block 31 Sph. 9910 25,110 60.5 752 0.87 1.72 × 107 

DD, degree of spatial dependence; RSS, residual sums of squares; Exp., exponential model; Sph., 
spherical model; Gauss., Gaussian model. 

SADIE results revealed that soybean damage by S. exigua was spatially aggregated 
or clustered; Ia was > 1 in all 13 blocks (Table 2). The aggregated distribution of soybean 
damage was statistically significant in 12 blocks (Pa < 0.05). Strong clustering into gaps and 
patches (𝑣పഥ  > 1.5 and 𝑣ఫഥ < −1.5) verified significant spatial aggregation of soybean damage 
in the 12 soybean blocks (P𝑣పഥ  < 0.05 and P𝑣ఫഥ  < 0.05). 

Figure 8. Comparison of estimated survey hour (A) and estimated cost (B) between aerial survey and
ground survey. * indicates a technology fee including rental for the UAS and an image analysis tool.

3.4. Spatial Patterns of Soybean Damage by S. exigua

The geostatistical analyses revealed that non-linear models, such as exponential,
spherical, and Gaussian models, provided the best fit for the data, indicating spatial
correlation of soybean damage caused by S. exigua. The degree of spatial dependence (DD)
was greater than 75% in 10 of the 13 soybean blocks and 50–75% in 3 of the blocks (Table 1),
indicating an overall strong spatial dependence of S. exigua damage. The range values of
the semivariograms, which represent the maximum distance at which values are spatially
correlated, ranged from 89 m to 872 m for the soybean blocks we surveyed.

Table 1. Geostatistical description of soybean damage by S. exigua. Note that soybean blocks not
shown in this table had >95% damage, so their pattern was not analyzed.

Block Model Nugget Sill DD (%) Range (m) r2 RSS

Block 1 Exp. 14,400 212,600 93.2 89 0.92 7.53 × 108

Block 7 Exp. 101,000 416,400 75.7 281 0.98 8.00 × 108

Block 8 Sph. 91,000 494,100 98.1 606 0.98 3.22 × 109

Block 9 Sph. 100 149,700 99.9 129 0.86 3.20 × 108

Block 13 Sph. 15,930 38,320 58.4 272 0.95 1.08 × 107

Block 18 Exp. 48,100 344,300 86.0 257 0.98 1.49 × 109

Block 19 Gauss. 99,200 223,000 55.5 111 0.94 5.73 × 108

Block 20 Exp. 41,000 401,000 89.8 166 0.93 4.59 × 109

Block 25 Sph. 15,200 118,900 87.2 257 0.94 2.57 × 108

Block 26 Exp. 194,000 560,400 65.4 872 0.97 1.09 × 109

Block 28 Sph. 100 150,600 99.9 163 0.84 7.82 × 108
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Table 1. Cont.

Block Model Nugget Sill DD (%) Range (m) r2 RSS

Block 29 Sph. 100 149,700 99.9 129 0.86 3.20 × 108

Block 30 Exp. 8100 53,550 84.9 137 0.98 2.39 × 107

Block 31 Sph. 9910 25,110 60.5 752 0.87 1.72 × 107

DD, degree of spatial dependence; RSS, residual sums of squares; Exp., exponential model; Sph., spherical model;
Gauss., Gaussian model.

SADIE results revealed that soybean damage by S. exigua was spatially aggregated
or clustered; Ia was > 1 in all 13 blocks (Table 2). The aggregated distribution of soybean
damage was statistically significant in 12 blocks (Pa < 0.05). Strong clustering into gaps and

patches (
−
vi > 1.5 and

−
vj < −1.5) verified significant spatial aggregation of soybean damage

in the 12 soybean blocks (P
−
vi < 0.05 and P

−
vj < 0.05).

Table 2. SADIE parameters for the distribution soybean damage caused by S. exigua in each soybean
block surveyed by UAS. Note that soybean blocks not shown in this table had >95% damage, so their
pattern was not analyzed.

Block Ia Pa
−
vj

−
vi P

−
vj P

−
vi

Block 1 1.604 0.0095 −1.495 1.445 0.0118 0.0213
Block 7 1.846 0.0015 −1.883 1.788 0.0021 0.0036
Block 8 3.272 0.0003 −2.190 2.190 0.0000 0.0003
Block 9 2.132 0.0015 −1.582 1.548 0.0074 0.0131
Block 13 2.030 0.0008 −1.911 1.815 0.0010 0.0038
Block 18 5.742 0.0003 −1.878 2.135 0.0003 0.0000
Block 19 1.482 0.0633 −1.444 1.336 0.0679 0.1074
Block 20 1.518 0.0051 −1.659 1.563 0.0015 0.0038
Block 25 1.534 0.0279 −1.533 1.377 0.0318 0.0667
Block 26 2.736 0.0003 −1.910 1.883 0.0003 0.0003
Block 28 1.417 0.0287 −1.413 1.257 0.0287 0.0918
Block 29 2.132 0.0015 −1.582 1.548 0.0074 0.0131
Block 30 2.774 0.0003 −2.816 2.510 0.0000 0.0000
Block 31 1.702 0.0074 −1.610 1.503 0.0144 0.0290

Ia and Pa, index of aggregation and associated p value; vj and vi, and Pvj and Pvi, indices of clustering and
associated p values.

3.5. Regional-Scale Soybean Damage by S. exigua

The NDVI values before (Figure 9A), during (Figure 9B), and after (Figure 9C) the
S. exigua outbreak exhibited significant changes. The differences in NDVI values between
before and during the S. exigua outbreak ranged from 0.058 to 0.683 (Figure 9D), indicating
vegetation losses resulting from defoliation. Similarly, the NDVI values between during
and after the S. exigua outbreak ranged from 0.066 to 0.582, corresponding to fields where
soybeans had been replanted or had regrown following the S. exigua outbreak (Figure 9E,F).
Within our study sites (outlined with a black polygon in Figure 9), 20 out of 30 soybean
blocks were identified as damaged or exhibiting regrowth/replanting based on the NDVI
values, while the defoliation in the other 10 blocks was not detected through the changes in
NDVI values before, during, and after the S. exigua outbreak (Table S2).
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Figure 9. NDVI values (darker green indicates healthier vegetation, and darker red indicates un-
healthier vegetation) before (A), during (B), and after (C) the S. exigua outbreak. Areas with red
color in (D) indicate soybean fields with S. exigua damage calculated from the difference in NDVI
values between (A,B). Areas with green color (E) indicate soybean fields with recovery, regrown,
or replanted after the S. exigua outbreak, which was calculated from the difference in NDVI values
between (B,C). Areas with blue color (F) show the overlapping areas of (D,E), indicating the areas
were damaged by S. exigua but also recovered or replated after the damage. An area with a black
outline is the site for this study.

4. Discussion and Conclusions

UAS have been increasingly utilized for various agricultural applications, such as crop
and soil monitoring [31–35], pest detection [3,36], aerial releases of natural enemies [7,37],
and pesticide application [38]. With the availability of small rotary-wing UAS equipped
with high-resolution cameras, it is now possible to detect insects directly from aerial
images [34]. Such high image resolution was also observed in our study (see Figure 1B
for visible feeding signs on a soybean leaf). This level of resolution could be utilized to
detect soybean damage caused by S. exigua at later crop stages, such as the flowering
stage, even with lower levels of defoliation. However, remote sensing with UAS and
precision agriculture are data-intensive procedures that often require skilled personnel [39].
In addition, automated detection of insect damage through image analysis is needed to
make this technology more accessible to general agricultural practitioners. Our study
demonstrated large-scale detection and rapid assessment of S. exigua damage using UAS.

Another technology that can be used for the detection of the S. exigua outbreak is
satellites. Given the extensive damage to soybeans caused by the S. exigua outbreak, time
series data containing spectral change information obtained from satellite imagery can be
utilized to map insect damage at the regional level [40]. Our post-hoc analysis showed that
the differences in NDVI values between before and during the S. exigua outbreak indicated
vegetation losses due to defoliation. Similarly, the NDVI values between during and after
the S. exigua outbreak coincided with fields where soybeans had been replanted or regrown
after the S. exigua outbreak (Figure 9E). These results suggest that satellite data can be used
to identify the hotspots of soybean defoliation in a large area with high levels of damage.
However, it is still difficult to precisely locate individual soybean blocks with defoliation
by S. exigua by using satellite and the changes in NDVI values before, during, and after the
outbreak. In addition, the quality of Landsat 8 images is dependent on weather conditions,
and the resolution is moderate when calculating NDVI using a moderate resolution imaging
spectroradiometer (MODIS) sensor on satellites. As a result, obtaining suitable images
for calculating NDVI values during a short pest outbreak period can be challenging. Our
study is the first to detect the outbreak of S. exigua using NDVI, although a few previous
studies have successfully demonstrated the potential of satellite-based NDVI in detecting
outbreaks of the fall armyworm S. frugiperda in cornfields [40,41].
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The results of this study indicate that aerial surveys using small rotary-wing UAS
offer several advantages for detecting and managing insect outbreaks. One of the major
advantages is that aerial surveys with UAS are often more cost-effective compared to
conventional ground-based surveys. In the case of the S. exigua outbreak in South Korea,
our study demonstrated that using UAS was more economical than conducting a ground
survey when the number of target soybean blocks exceeded 15. This is because the UAS
can cover a larger area in a shorter amount of time and with fewer personnel, thereby
reducing survey costs. Another advantage of aerial surveys is that it can provide valuable
information in the form of maps that show the distribution of insect damage. These maps
can be used to guide where to conduct intensive surveys and management in the outbreak
area, as well as to inventory the areas of damage. A digital inventory of insect outbreaks
can be a useful resource for predicting and preventing future outbreaks, especially in the
case of pests such as S. exigua, which have a history of occurring and damaging a wide
variety of high-value crops periodically in South Korea since the first outbreak was reported
in 1926 [42].

Site-specific management of S. exigua is another benefit of using UAS for outbreak
surveys. By identifying the locations of damage, management measures can be applied
only where needed [43], reducing pesticide inputs and increasing control efficiency [43,44].
Our study revealed that soybean damage caused by S. exigua exhibited spatial aggregation,
and a previous study [16] also demonstrated the spatial aggregation of the larval stage of
S. exigua. Therefore, UAS can collect detailed spatial data through aerial images, enabling
the identification of hotspots and the spatial distribution of pest damage. This information
can contribute to precise pest management practices and a reduction in sampling costs.

Additionally, our study found that the amount of defoliation by S. exigua varied
considerably between adjacent soybean blocks (Figure 6C–E), suggesting that changing
soybean variety or planting time could help avoid or reduce damage. This study showed
that a major cost of using a small UAS for insect outbreak surveys was fees for the use
of technology, including UAS and image analysis. As the price of such technology has
decreased with technological advances [7] the use of UAS and image analysis could be
cheaper in the future.

Finally, advances in technology have made UAS and image analysis more affordable,
as well as the use of learning-based methods [45]. More recently developed convolutional
neural networks [46,47] could further improve automated image processing and outbreak
detection capabilities in the future. Artificial intelligence and machine learning would
allow for more accurate and efficient monitoring and management of insect outbreaks.
Specifically, deep learning in artificial intelligence (e.g., Mask2former model) is one of
the potential tools for visual recognition of target pests [6], which could be used for early
detection of insect pest outbreaks.

In conclusion, our study provided clear evidence of the effectiveness of utilizing an
autonomous drone and image analysis for conducting a cost-effective aerial survey of
soybean damage caused by S. exigua during an outbreak. The integration of UAS and
image analysis proved to be an efficient and economical approach for assessing the extent
of soybean damage caused by S. exigua. By swiftly assessing the magnitude of outbreaks
and identifying areas requiring urgent management, rapid responses to further damage
can be achieved.

Furthermore, our study involving UAS and satellite data demonstrated that precise
assessments of pest outbreaks can facilitate the development of targeted pest management
strategies, such as site-specific pest management [43]. The utilization of remote sensing
through UAS and sensor technologies has become an essential method for site-specific pest
management, as evidenced in our study. We discovered significant spatial aggregation of
soybean damage caused by S. exigua and observed spatial autocorrelation across a wide area,
highlighting the importance of employing this approach for effective pest management
interventions.
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Supplementary Materials: The following Supporting Information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects14060555/s1, Table S1: Damage of soybean by S. exigua in
31 blocks surveyed by UAS; Table S2: Comparison of change detection for NDVI values identified
blocks and field damage.
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