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Simple Summary: The mosquito Aedes aegypti has developed insecticide resistance in Thailand and
around the world. We investigated the effective forms between wet and dry spent coffee grounds
(wSCGs and dSCGs) and novaluron on larval mortality and adult emergence inhibition of Ae. aegypti.
The main chemical compound concentration in wSCGs was higher than that in dSCGs. Then, the
effective SCGs were selected to combine with novaluron and determined the synergistic effects of its
combination. At sublethal concentrations wSCGs and novaluron had low efficacies when present
individually; however, when combined at low concentrations, they showed greater efficacy. Therefore,
wSCGs combined with novaluron could be utilized as an alternative control for this mosquito vector.

Abstract: Aedes aegypti (Diptera: Culicidae) is a vector for mosquito-borne diseases worldwide.
Insecticide resistance is a major concern in controlling this mosquito. We investigated the chemical
compounds in wet and dry spent coffee grounds (wSCGs and dSCGs) and evaluated the efficacy
of dSCGs, wSCGs, and novaluron on the mortality and adult emergence inhibition of Ae. aegypti.
We found higher concentrations of chemical compounds in wSCGs than in dSCGs. The wSCGs
and dSCGs both contained total phenolic compounds, total flavonoid compounds, caffeic acid,
coumaric acid, protocatechuic acid, and vanillic acid. Complete mortality was observed after 48 h of
exposure to 50 g/L wSCGs, while similar mortality was found after 120 h of exposure to 10 µg/L
of novaluron. The sublethal dose was a concentration of wSCGs (5 g/L) and novaluron (0.01, 0.1,
and 1 µg/L) combined that resulted in a larval mortality lower than twenty percent (at 72 h) to
determine their synergistic effects. The death rate of larvae exposed in sublethal combination of
wSCGs and novaluron was significantly higher than that of its stand-alone. The findings indicate
that the combination of wSCGs and novaluron at sublethal concentrations had synergistic effects on
the mortality of Ae. aegypti larvae and could be applied as an alternative control measure.

Keywords: coffee grounds; health; insect growth regulator; larvicide; mosquito control; synergistic
effect

1. Introduction

Vector-borne diseases (VBDs) are infectious diseases transmitted by vectors. Dengue
is one of the prominent VBDs that affects public health, causing more than 700,000 deaths
annually [1]. Aedes aegypti is the primary vector of dengue while Ae. albopictus plays the role
as secondary vector [2,3]. The best way to prevent and control dengue fever is controlling
Ae. aegypti mosquitoes. Increasing chemical resistance and environmental residues are
major concerns affecting the chemical control of mosquitoes. Resistance of Ae. aegypti to
synthetic insecticides has been reported in many countries worldwide. Temephos is an
example of larvicide to which larval resistance is found in countries such as Thailand [4–6],
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Colombia [7], Peru [8], and Ecuador [9]. The use of herbal or natural substances for
alternative mosquito control is a popular strategy that has gained attention worldwide.

Coffee is one of the most popular beverages worldwide, with more than 1.4 billion
cups consumed daily. Consequently, more than 15 million tons of spent coffee grounds
(SCGs) are left to waste each year [10]. SCGs have been reused for various applications,
such as food ingredients [11], renewable energy [12], soil improvement [13], and mosquito
control [14,15]. Mortality of Ae. aegypti larvae exposed to 300 mg/mL SCGs has been
reported at 100% [14]. Furthermore, 50 and 100 mg/mL of SCG concentrations inhibited
larval development of Ae. aegypti, causing complete death of the larvae in the L3 and L2
stages, respectively [15]. Furthermore, arabica coffee grounds have been found to be lethal
to third-instar larvae of Ae. aegypti with an LC50 of 33.66 g/L [16].

Novaluron, (±)-1-[3-chloro-4-(1,1,2-trifluoro-2-trifluoro-methoxyethoxy) phenyl]-3-
(2,6-difluorobenzoyl)urea, is an insect growth regulator (IGR) insecticide. It acts as a chitin
synthesis inhibitor with the active agent being the benzoylphenyl urea (BPU) group [17].
The BPU group inhibits N-acetylglucosamine production in chitin synthesis in vivo [18,19]
and is active during the egg and larval stages, causing larval death or the development of
incomplete adults [19]. Novaluron acts on insects via ingestion or direct contact, and thus
is commonly used in agriculture [20]. The World Health Organization Pesticide Evaluation
Scheme (WHOPES) has suggested that novaluron can be used as a mosquito larvicide,
with a recommended dosage of 10–50 µg/L [21]. Novaluron has very low toxicity for rats,
birds, earthworms and honey bees [20]. Furthermore, novaluron is non-genotoxic and
non-carcinogenic to humans, is non-toxic to developing systems, and is non-mutagenic [20].

Chemical resistance can be reduced in mosquito control by several ways, such as the
rotation of chemicals use, the use of natural substances, or a combination of chemicals
and natural substances. We hypothesized that wSCGs are more toxic to Aedes larvae than
dSCGs and also effective when combined with novaluron. Therefore, this study aimed to
investigate the chemical compounds in wet and dry forms of SCGs (wSCGs and dSCGs)
and evaluate the efficacy of wSCGs, dSCGs, and novaluron on larval mortality and adult
emergence inhibition of Ae. aegypti. Thus, sublethal concentrations of better efficacy forms
of SCGs and novaluron were combined to determine their synergistic effects.

2. Materials and Methods
2.1. Mosquitoes

Eggs of Ae. aegypti (THAI NIH, Laboratory strain) were provided by the Insect
Taxonomy and Reference Museum Section and Entomological Support Section, Medical
Entomology Group, National Institute of Health, Department of Medical Sciences, Ministry
of Public Health, Thailand. Mosquitoes were maintained in the Department of Parasitology
and Entomology Laboratory, Faculty of Public Health, Mahidol University, at a temperature
of 25 ± 3 ◦C, relative humidity of 70 ± 20%, and photoperiod of 12L:12D. Before starting
the bioassay, the eggs of Ae. aegypti will be reared until they developed into the third-instar
larvae, which were used for the bioassay. The protocol for this study was approved by the
Mahidol University Center of Ethical Reinforcement for Research (MUCERR) (reference no.
MU-IACUC 2023/013). Biosafety in laboratories was approved by the Mahidol University-
Institutional Biosafety Committee (MU-IBC), Faculty of Public Health, Mahidol University
(reference no. FPH-BS 005-2022).

2.2. Spent Coffee Grounds

Roasted arabica coffee beans originating from Mae Sot District, Tak Province, Thailand
were purchased from Doi Muser coffee shop (Tambon Dan Mae Lamoh, Mae Sot District).
To prepare the SCGs, 10 g of crushed coffee beans was dripped using a drip coffee bag and
150 mL of hot water (92–96 ◦C) was added. wSCGs were then used immediately. dSCGs
were dried in a hot air oven at 60 ◦C for 16 h. Five concentrations (0 (control), 5, 10, 25, and
50 g/L) of dry weight equilibrium of wSCGs and dSCGs were prepared for bioassay.
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The concentrations of chemical compounds in the wSCGs and dSCGs were analyzed
by triple readings in each sample of three replicates as follows. Total phenolic compounds
were determined using a microplate reader (Biotek PowerWave XS; Agilent Technologies,
Santa Clara, CA, USA) according to the Folin–Ciocalteu procedure [22]. The total flavonoid
compounds were determined by aluminum chloride assay using a spectrophotometer
(Shimadzu UV-2550; SHIMADZU, Tokyo, Japan) [23]. High-performance liquid chro-
matography was used to evaluate compounds, such as caffeic acid, coumaric acid, ferulic
acid, gallic acid, protocatechuic acid, sinapic acid, vanillic acid, and caffeine as described
previously [24]. The concentrations were calculated based on dry weight.

2.3. Novaluron

Novaluron (Novaluron, Dr. Ehrenstorfer™, Purity 98.77% (g/g), Product Code DRE-
C15653000, Lot no. G1101723) was used in the experiment. The stock solution was prepared
by dissolving 50 mg novaluron in 1000 µL acetone. A 10-fold serial dilution was then made
for working concentrations. The bioassay was evaluated using five concentrations (0
(control), 0.01, 0.1, 1, and 10 µg/L) of novaluron in dechlorinated water.

2.4. Bioassay

Larval mortality was investigated using the third-instar larvae of Ae. aegypti (30 lar-
vae/cup) exposed in 300 mL of different concentrations of novaluron and SCGs with four
replicates, as previously described [16]. In brief, the larvae were exposed to wSCGs, dSCGs,
and novaluron individually and in combinations in the given concentrations, and the
mortality was observed at 6, 12, 24, 48, 72, 96, and 120 h of exposure. To prevent the pooled
infusions of larvae and SCGs, which resulted in difficulty for larva counting, the mixtures
were sieved with fine mesh mosquito net. The suspended SCGs were separated to the
bottom of the test cup by a net, and the larvae were exposed to the upper half of the test
cup. During the experiment, the larvae were fed with fish food pellets. After the adults
emerged, they were fed with 10% sucrose solution in cotton balls.

2.5. Combination of wSCGs and Novaluron

After the bioassay for the efficacy of wSCGs and novaluron on larval mortality at 72 h,
sublethal concentrations of wSCGs and novaluron that caused mortality lower than twenty
percent were selected and combined to investigate their synergistic effects. We selected
5 g/L wSCGs to combine with three concentrations of novaluron (0.01, 0.1, and 1 µg/L) for
the bioassay.

2.6. Statistical Analysis

The percentage of larval mortality and adult emergence inhibition was presented as
the mean ± standard deviation. The experiments were stopped and repeated when the
mortality in the control group exceeded 20%. The mortality was corrected using Abbott’s
formula when the mortality in the control group was >5% [25]. The larval mortality and
adult emergence inhibition rates between the groups of stand-alone and combination
treatments were analyzed using the Mann–Whitney U test. In addition, the Kruskal–Wallis
test was employed to compare the larval mortality and adult emergence inhibition rates
across all stand-alone and combination treatments. A significance level of p < 0.05 was
considered statistically significant. The synergistic effect was determined by measuring the
larval mortality in the sublethal combination treatment, which was higher than that of its
stand-alone treatment.

3. Results
3.1. Characteristics and Quantification of wSCGs and dSCGs

The wSCGs and dSCGs were dark brown and brown in color, respectively. The
weight ratio of dSCGs to wSCGs was 1.0:3.2 g. The chemical analysis identified total
phenolics, four phenolic compounds, total flavonoids, and caffeine (an alkaloid) in the
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wSCGs and dSCGs (Table 1). The predominant phenolic compounds in wSCGs included
vanillic acid (5597.0 ± 213.8 µg/g) and caffeic acid (329.7 ± 0.4 µg/g), whereas vanillic
acid (770.3 ± 22.5 µg/g) and protocatechuic acid (9.1 ± 3.0 µg/g) were the predominant
compounds in dSCGs. The concentrations of ferulic acid, gallic acid, or sinapic acid were
undetectable in either wSCGs or dSCGs (Table 1).

Table 1. Chemical analysis of the dry weight of wet spent coffee grounds (wSCGs) and dry spent
coffee grounds (dSCGs).

Phytochemicals Chemicals Units wSCGs dSCGs

Alkaloid compound Caffeine %w/w ** 0.2 0.4

Flavonoid compounds Total flavonoid compounds mg/g 7.3 ± 0.1 1.1 ± 0.1

Phenolic compounds

Total phenolic compounds mg/g 50.7 ± 0.9 5.2 ± 0.1
Caffeic acid µg/g 329.7 ± 0.4 8.6 ± 2.3

Coumaric acid µg/g 120.8 ± 3.1 5.8 ± 0.3
Protocatechuic acid µg/g 41.1 ± 30.9 9.1 ± 3.0

Vanillic acid µg/g 5597.0 ± 213.8 770.3 ± 22.5
Ferulic acid µg/g ND * ND *
Gallic acid µg/g ND * ND *

Sinapic acid µg/g ND * ND *

* ND: Not detected; ** %w/w (%weight per weight): weight of a caffeine as a percentage of a total SCGs in
dry weight.

3.2. Comparison of Larval Mortality and Adult Emergence Inhibition with wSCGs and dSCGs

The death of larvae exposed to wSCGs began after 6 h, but there were no larval deaths
in the dSCGs exposure groups. All larvae exposed to wSCG at 50 g/L died completely after
48 h. At 72 h, the 0 (control), 5 (wSCG 5), 10 (wSCG 10), 25 (wSCG 25), and 50 (wSCG 50) g/L
wSCG treatment groups had mortalities of 0.8 ± 1.7%, 16.7 ± 2.7%, 24.2 ± 3.2%, 54.2 ± 3.2%,
and 100.0%, respectively. However, dSCGs at the same exposure concentrations had
mortalities of 0.8 ± 1.7%, 8.3 ± 1.9%, 10.8 ± 3.2%, 14.2 ± 4.2%, and 14.2 ± 5.0%, respectively.
Therefore, wSCGs were found to be more effective at causing mortality than that of the
dSCGs. The larval mortality rates were recorded at 72 h for different concentrations of
wSCGs and dSCGs were statistically significant (p < 0.05), as shown in Table 2.

Table 2. The comparison of larval mortality rates at 72 h between different concentrations of wSCGs
and dSCGs (30 larvae/test).

Times (h) Treatments
Larval Mortality Rates

(
¯
x ± SD)

Treatments
Larval Mortality Rates

(
¯
x ± SD)

U p

72

control 0.8 ± 1.7 control 0.8 ± 1.7 8.0 1.000
wSCG 5 16.7 ± 2.7 dSCG 5 8.3 ± 1.9 0.0 0.019

wSCG 10 24.2 ± 3.2 dSCG 10 10.8 ± 3.2 0.0 0.019
wSCG 25 54.2 ± 3.2 dSCG 25 14.2 ± 4.2 0.0 0.019
wSCG 50 100 dSCG 50 14.2 ± 5.0 0.0 0.013

The adult emergence inhibition of the Ae. aegypti larvae with the wSCGs was more
effective than that with the dSCGs. At 120 h, the control, wSCG 5, wSCG 10, wSCG 25,
and wSCG 50 had adult emergence inhibition rates of 0.8 ± 1.7%, 31.7 ± 6.4%, 40.8 ± 5.7%,
72.5 ± 5.0%, and 100.0%, respectively. The control, dSCG 5, dSCG 10, dSCG 25, and dSCG
50 had adult emergence inhibition rates of 0.8 ± 1.7%, 14.2 ± 3.2%, 16.7 ± 6.7%, 24.2 ± 1.7%,
and 25.0 ± 7.9%, respectively. The adult emergence inhibition rates were recorded at 120 h
for different concentrations of wSCGs and dSCGs were statistically significant (p < 0.05), as
shown in Table 3.
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Table 3. The comparison of adult emergence inhibition rates at 120 h between different concentrations
of wSCGs and dSCGs (30 larvae/test).

Times (h) Treatments
Adult Emergence
Inhibition Rates

(
¯
x ± SD)

Treatments
Adult Emergence
Inhibition Rates

(
¯
x ± SD)

U p

120

control 0.8 ± 1.7 control 0.8 ± 1.7 8.0 1.000
wSCG 5 31.7 ± 6.4 dSCG 5 14.2 ± 3.2 0.0 0.019

wSCG 10 40.8 ± 5.7 dSCG 10 16.7 ± 6.7 0.0 0.018
wSCG 25 72.5 ± 5.0 dSCG 25 24.2 ± 1.7 0.0 0.015
wSCG 50 100 dSCG 50 25.0 ± 7.9 0.0 0.013

3.3. Bioassay of Individual and Combination of wSCGs and Novaluron
3.3.1. Individual Efficacies of wSCGs and Novaluron

After 6 h, larvae exposed to wSCGs at 50 g/L resulted in 22.5 ± 7.4% mortality. At
other concentrations, the larvae all remained alive. The wSCGs caused 100% mortality
within 48 h of exposure. The wSCGs at 50 g/L also had the highest larval mortality rate at
72 h (Figure 1a), and adult emergence inhibition at 120 h (Figure 2a).
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Figure 1. Larval mortality at 72 h for Aedes larvae exposed to different concentrations of the specified
treatments (n = 30). (a) Wet spent coffee grounds (wSCGs); (b) novaluron. The different letters above
the bars indicate significant differences among the concentrations as determined by Mann–Whitney
U test (p < 0.05). wSCGs, wet spent coffee grounds at 0, 5, 10, 25, and 50 g/L. NV, novaluron at 0, 0.01,
0.1, 1, and 10 µg/L. The Kruskal–Wallis test revealed significant differences for the wSCGs treatment
(df = 4, x2 = 18.4 and p = 0.001) and the novaluron treatment (df = 4, x2 = 15.6 and p = 0.004).

At 6 and 12 h of exposure, all larvae remained alive in all concentrations of novaluron.
At 24 h, the death of larvae began at 0.8 ± 1.7% in 10 µg novaluron/L, whereas the larvae
were alive in other concentrations. Novaluron at 10 µg/L (NV 10) had the highest larval
mortality in concentration-dependent order in novaluron at 1 (NV 1), 0.1 (NV 0.1), and 0.01
(NV 0.01) µg/L, respectively, at 72 h (Figure 1b), which was similar to the results at 120 h
(Figure 2b). Novaluron caused 100% adult emergence inhibition after 120 h of exposure.

The differences in the larval mortality rates of the single specified concentrations of
the wSCGs and novaluron were statistically significant (Figure 1a,b). The differences in
adult emergence inhibition between the single specified concentrations for the wSCGs and
novaluron were also statistically significant (Figure 2a,b).
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x2 = 18.1 and p = 0.001) and the novaluron treatment (df = 4, x2 = 18.6 and p = 0.001).

3.3.2. Synergistic Effects of Sublethal Concentration

The concentrations that cause less than twenty percent larval mortality at 72 h for
the stand-alone treatments of wSCGs (5 g/L) and novaluron (0.01, 0.1, and 1 µg/L) were
selected to investigate their synergistic effects. At 72 h, 5 g wSCG/L combined with 0.01
(wSCG 5_NV0.01), 0.1 (wSCG 5_NV0.1), and 1 (wSCG 5_NV1) µg novaluron/L resulted in
mortality of 40.8 ± 3.2%, 42.5 ± 3.2%, and 46.7 ± 2.7%, respectively.

At 120 h, the wSCG 5_NV0.01, wSCG 5_NV0.1, and wSCG 5_NV1 resulted in adult
emergence inhibition of 53.3 ± 3.8%, 56.7± 2.7%, and 60.8 ± 5.0%, respectively.

The wSCGs at 5 g/L combined with novaluron at concentrations of 0.01, 0.1, and
1 µg/L exhibited higher larval mortality and adult emergence inhibition rates compared
to its stand-alone concentrations. The larval mortality rates in this combination are signif-
icantly higher than those in the stand-alone treatments (p < 0.05), suggesting a potential
synergistic effect (Figure 3a,b).
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Figure 3. Aedes larvae exposed to 5 g wSCG/L combined with different concentrations of novaluron
(0.01, 0.1, and 1 µg/L) and compared with those exposed to 5 g wSCG/L or novaluron 0.01, 0.1,
and 1 µg/L alone at different time points (n = 30). (a) Larval mortality at 72 h. (b) Adult emer-
gence inhibition at 120 h. Different letters above the bars indicate significant differences among
concentrations as determined by Mann–Whitney U test (p < 0.05). The Kruskal–Wallis test showed
significant differences for the larval mortality rates at 72 h (df = 6, x2 = 24.8 and p < 0.001) and the
adult emergence inhibition rates at 120 h (df = 6, x2 = 24.6 and p < 0.001).
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Overall, the larval mortality and adult emergence inhibition caused by the combination
treatment were higher than those of its stand-alone concentrations. At 72 h of exposure, the
differences in the larval mortality rates between the combination groups and the sublethal
concentrations of wSCGs and novaluron were statistically significant (Figure 3a). At 120 h
of exposure, the difference between the adult emergence inhibition of the combination
groups and the sublethal concentrations of wSCGs and novaluron were also statistically
significant (Figure 3b).

4. Discussion

In this study, the effects of wSCGs were compared with those of dSCGs for larval
mortality and the adult emergence inhibition of the third-instar larvae of Ae. aegypti. The
results showed that all larvae died after 72 h of exposure to 50 g/L wSCGs, whereas dSCGs
at the same concentration exhibited only 14.2% mortality, indicating wSCGs were more
effective than dSCGs. A previous study found that wSCGs left over from coffee capsules
brewed strong and light (European coffee) could result in the death of Ae. aegypti and
Ae. albopictus larvae [26]. Furthermore, when the experiment began in the egg stage, wSCGs
at concentrations of 50 and 100 mg/mL inhibited the development of Ae. aegypti larvae
and causing complete death of larvae at the L3 and L2 stages, respectively [15]. Another
study using wSCGs to determine the mortality of Ochlerotatus notoscriptus larvae found
that a concentration of 0.50 g/mL resulted in the highest larval mortality rates (97%) [27].
Several studies using dSCGs have also shown that they can cause mortality and inhibit
mosquito larvae emergence into adults. The shade-dried decaffeinated coffee grounds at
concentrations of 150 and 200 mg/mL caused 100% mortality of Ae. aegypti larvae after
exposure for approximately 4–5 days [28]. In addition, three types of dried, roasted arabica
coffee grounds (light, medium, and dark) were compared with temephos for their ability to
control Ae. aegypti larvae. The results showed that using light-roasted dSCGs at 125 mg/mL
had the highest efficacy, causing almost 100% mortality after 24 h of exposure. Although
not as effective as temephos, light-roasted coffee grounds were also found to be effective in
the death of mosquito larvae [29].

We found total phenolic compounds, caffeic acid, coumaric acid, protocatechuic acid,
vanillic acid, and total flavonoid compounds in SCGs, but the levels were higher in the
wSCGs compared with those of dSCGs. These chemical compounds were found to affect
insect survival and inhibit their development into adults. Therefore, wSCGs, which had
more phenolic and flavonoid compounds, could cause higher larval mortality and adult
emergence inhibition in Ae. aegypti larvae. The SCGs contain phenolic compounds (chloro-
genic acids, caffeic acid, tannic acid, coumaric acid, protocatechuic acid, etc.), alkaloid
compounds (caffeine and trigonelline), and diterpenes (cafestol and kahweol) [30–32]. Al-
kaloids, flavonoids, and tannins can block parasympathetic nerves in the insect nervous
systems. These substances can inhibit the absorption of food and decrease the action of
digestive enzymes when consumed by the larvae, leading to a slow death. Additionally, the
bitter flavor of SCGs may irritate the larvae when consumed [33]. Phenolic and flavonoid
compounds are plant secondary metabolites known as antioxidants that can affect insect
mortality, development, and physiology [34]. Phenolic compounds affect the midguts of
insects, where they act as pro-oxidants and induce oxidative stress and reactive oxygen
species [35]. For example, ingestion of caffeic acid by Spodoptera littoralis larvae can re-
duce α-amylase activity, protease activity, and the number of immunoreactive cells in the
midgut. After feeding caffeic acid to S. littoralis for 10 days, the survival rate was found to
be decreased by 80–95% [36]. In addition, caffeic acid is involved in inhibiting digestive
proteases and affecting growth, thereby reducing the survival rate by 50–80% in Helicoverpa
armigera [37]. Other studies on H. armigera have shown that ingesting chlorogenic acid,
caffeic acid, and protocatechuic acid at 1000 ppm correlated to 42.50%, 37.20%, and 34.50%
mortality rates, respectively. Moreover, these phenolics caused H. armigera to have low
larval weights by decreasing protease and trypsin activities in the midgut [38]. Vanillic
acid, 4-hydroxy benzoic acid, and cinnamic acid extract from Rosmarinus officinalis leaves
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cause an average mortality rate of 81.67% in Tribolium castaneum adults [39]. Coumaric acid
and resveratrol can reduce larval weights, delaying the pupation of Spodoptera litura and
Amsacta albistriga larvae. In contrast, these compounds increase the antioxidant enzymes of
these insects [40]. Caffeine can affect the physiology of insects by altering their metabolism
and gas transport patterns, which also decreases their survival ability [41]. A study on
Ae. aegypti revealed that larvae exposed to caffeine at 2 mg/mL had 100% larval mortality
in 6 days after exposure (LT50, 3 days after exposure) [28]. Caffeine at 1.5% and 2.0% was
mixed with wheat kernels, which lead to high mortality rates in Sitophilus oryzae adults
(54.43% and 55.21%, respectively) after 5 days of exposure, and at the end of the experiment
(2 weeks), no adults had survived [42].

Novaluron is an IGR, which is normally used in agriculture to control pests. The
WHOPES suggested that 10–50 µg novaluron/L could be applied to the temporary habitats
of mosquitoes as a larvicide [21]. The results of this study support the recommended dose
of WHOPES, as there was 100% larval mortality for Ae. aegypti when exposed to 10 µg/L
for 120 h. Novaluron has been found to induce larval mortality and inhibit adult emergence
in several mosquito species, such as Ae. aegypti [43–45], Ae. albopictus, Anopheles albimanus,
Anopheles pseudopunctipennis, Culex quinquefasciatus [44], and Culex pipiens [46]. Field-based
studies in Thailand have shown that using 0.05–1.00 mg novaluron/L in clay jars can inhibit
the emergence of Ae. aegypti larvae by 86–96% for 190 days [43]. Furthermore, novaluron at
10 mg a.i./m2 was found to reduce 90–100% of the immature Cx. quinquefasciatus mosquitoes
for 3–7 weeks in polluted water [47]; the same concentration was also found to reduce
the prevalence by 50% within 24 h, as it inhibited the development of Cx. quinquefasciatus
larvae into adults, and the effect lasted for 4 weeks [48]. However, negative effects on
fishes, aquatic plants, and terrestrial plants from the application of novaluron were not
reported [47,48].

The combination of insecticides and plant extracts has been examined in previous
studies. The larvicidal and synergistic effects of organophosphates with extracts of plants,
such as Vinca rosea, Leucas aspera, and Clerodendrum inerme, were revealed against Cx. quin-
quefasciatus, Anopheles stephensi, and Ae. aegypti [49]. Permethrin combined with essential
oils (from Cyperus rotundus and Alpinia galanga) against Ae. aegypti adults were found to
have a synergistic effect (synergism ratio of 6.28 and 4.00, respectively) [50]. In this study,
it was found that the sublethal concentration combination of both wSCGs and novaluron
increased larval mortality and inhibited adult emergence more effectively compared to the
sublethal concentration of stand-alone treatments with either wSCGs or novaluron, at every
observation point. This suggests that there is a synergistic effect at sublethal concentrations
when wSCGs and novaluron are combined. Exposure to sublethal-dose wSCGs causes
a decrease in digestive enzymes and damages the midgut, resulting in the weakness of
larvae but not death, which is found with exposure to high concentrations. Novaluron is
a chitin synthesis inhibitor, with a role in larval stage development. However, the death
of larvae occurred at long-term exposures and may be caused by the accumulation of the
low concentrations of wSCGs and novaluron. These combinations could thus be used to
effectively control mosquito larvae in the future.

The popularity of drinking coffee worldwide has led to environmental concerns about
its waste (SCGs), which includes caffeine and phenolic compounds, of which caffeine is the
most predominant. Caffeine pollution in the environment, however, is not only from SCGs
but also from numerous beverages and the pharmaceutical industry. It is also excreted by
humans in their urine after consumption and released from households into wastewater
treatment plants (WWTP) [51,52]. Caffeine contamination has been reported in the rivers,
WWTP and seawater of many countries, such as Brazil [53,54], China [55], Japan [56],
Greece [57], Taiwan [58], Spain [59], and the USA [60]. Several studies have also reported
the detection of caffeine in the tissues of aquatic animals [61,62], but the toxicity thresholds
differ depending on the species [63]. Caffeinated waters are generally detected at low levels
(varying from ng/L to µg/L). Caffeine degradation gradually occurs by photolysis [64]
and biodegradation [65], with a half-life of around 1.50 days in water [64]. Therefore,
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long-term studies of the toxicity of caffeine in the environment are also required [63],
along with the optimization of the wastewater treatment system for more efficient caffeine
removal [66]. Novaluron has low solubility in water (3 µg/L) and slow hydrolysis and
photolysis rates with a half-life of 101 days at 25 ◦C, which indicates that novaluron is
unlikely to be degraded in the environment. Novaluron has low vapor pressure, which
results in negligible volatilization from soil or plant surfaces [20]. Sensitivity to novaluron
has been reported in Daphnia and mayfly, but it has a low toxicity to mammals (rats:
LD50 ≥ 5000 mg/kg bw), birds (bobwhite quail: LD50 > 2000 mg/kg), fish (rainbow trout:
LC50 ≥ 1.00 mg/L), honey bees (LD50 > 100 µg/bee), earthworms (LC50 = 1000 ppm),
soil microflora, and aquatic plants [20]. However, a study has found that exposure to
novaluron can result in pathological changes to the gill and liver of the fish Labeo rohita [67].
In addition, studies have shown that novaluron reduces the weight of the cuticle, the
percentage of chitin in the cuticle, and the thickness of the old and new cuticles in the
shrimp Palaemon adspersus, thus affecting their growth [68,69]. It is thus recommended that
wSCGs in combination with novaluron could be used to control mosquitoes in breeding
sites in waterlogged areas that are not habitats for aquatic animals in the house, such as
flower vases, cabinet stands, and plant pot trays. The suggested minimal effective dose of
the combination is wSCGs 5 g/L combined with novaluron 0.01 µg/L.

5. Conclusions

The results of this study have shown that wSCGs have higher efficacy on larval mor-
tality and adult emergence inhibition of Ae. aegypti than those of dSCGs. A concentration of
50 g/L of wSCGs and 10 µg/L of novaluron proved to be effective for larval mortality and
inhibition of adult emergence in Ae. aegypti. The combination of sublethal concentrations
of wSCGs and novaluron revealed synergistic effects. The results indicate that the combi-
nation of wSCGs and novaluron could be utilized as an alternative method for mosquito
control. The effectiveness of this combined treatment should be further evaluated in other
mosquito species, as well as in field-based studies.
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