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Simple Summary: Trunk-boring insects have emerged as one of the most threatening forest pests
globally, causing significant damage to forests. Certain groups of larvae reside within tree trunks
without any observable external signs indicating their presence. This poses a significant challenge
for pest detection. To tackle this issue, acoustic techniques are frequently utilized, which involve
embedding a vibration probe into the tree trunk to capture the vibrations produced by larvae
and using a model to distinguish whether the tree is infested. However, this approach requires
the acquisition of the purest possible vibrations signal. Thus, to ensure accurate analysis, a noise
suppression process is crucial, since the signals collected in real-world environments are often
subjected to varying degrees of environmental noise interference. In this study, we employed artificial
intelligence techniques to develop a boring vibration enhancement model. The training data utilized
in this study comprise boring vibrations captured from trunk sections and typical environmental
noise present in the trees” habitat. The experimental results demonstrate that the enhancement
method proposed by our model significantly boosts the performance of an established classification
model. Overall, this study promotes the development of sustainable and efficient forestry protection
approaches by improving the accuracy of pest detection.

Abstract: Recording vibration signals induced by larvae activity in the trunk has proven to be
an efficient method for detecting trunk-boring insects. However, the accuracy of the detection
is often limited because the signals collected in real-world environments are heavily disrupted
by environmental noises. To deal with this problem, we propose a deep-learning-based model
that enhances trunk-boring vibration signals, incorporating an attention mechanism to optimize
its performance. The training data utilized in this research consist of the boring vibrations of
Agrilus planipennis larvae recorded within trunk sections, as well as various environmental noises
that are typical of the natural habitats of trees. We mixed them at different signal-to-noise ratios
(SNRs) to simulate the realistically collected sounds. The SNR of the enhanced boring vibrations can
reach up to 17.84 dB after being enhanced by our model, and this model can restore the details of the
vibration signals remarkably. Consequently, our model’s enhancement procedure led to a significant
increase in accuracy for VGG16, a commonly used classification model. All results demonstrate the
effectiveness of our approach for enhancing the detection of larvae using boring vibration signals.

Keywords: boring vibration; pest management; deep learning; neural network; attention mechanism

1. Introduction

The world’s forests exert influence on climate through physical, chemical, and bi-
ological processes that impact planetary energy dynamics, the hydrological cycle, and
atmospheric composition [1]. They also play a vital role in supporting human livelihoods
by providing resources such as timber, food, and medicine. However, the sustainability
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of forests is being threatened by a variety of factors, including biotic factors such as insect
pests and diseases and abiotic factors such as climate change and natural disasters, as well
as anthropogenic factors such as deforestation, land-use change, and pollution [2]. Among
all biotic factors, tree pests and pathogens are a major and increasing threat to the integrity
of forest ecosystems [3]. They are the most pervasive and important agents of disturbance
in North American forests, affecting an area almost 50 times larger than fires and with
an economic impact nearly five times as great [4]. Moreover, with the development of
globalization, the intensification of species invasion is becoming more and more severe,
and this phenomenon will continue to worsen. The trunk-boring beetle is one of the most
difficult to manage among forest pests. They tunnel and feed in the cambium layer of
trees, which transports nutrients and water to the leaves [5]. This will lead to a gradual
death of the tree due to insufficient nutrient uptake, and it is difficult to detect at an early
stage. Therefore, early, accurate, and efficient detection of such pests is crucial for biological
control and environmental protection.

To address the issue of pest infestations and prevent tree mortality, many studies
have been conducted to develop techniques for early detection and treatment [6]. Various
monitoring methods have been devised, including visual inspection, suction traps, and
passive methods, such as baited traps using species-specific pheromones or blends and
host volatiles to attract multiple species [7]. These manual monitoring methods require
skilled operators to physically visit each observation location regularly, leading to con-
sistently high labor costs and potentially resulting in low efficiency, slow response times,
and inadequate sample sizes in some cases [8]. Therefore, the current research is primarily
focused on developing techniques for monitoring using nonartificial methods. Acoustic
technology has a long history of supporting insect pest managers with decision tools and
providing information difficult to obtain about insect behavior, physiology, abundance,
and distribution [9]. Al-Manie et al. [10] used an acoustic instrument for early discovery
of the presence of a destructive insect pest, commonly known as the Red Date Palm Wee-
vil (RDPW). Fiaboe et al. [11] demonstrated successful identification of insect larvae by
recording and analyzing the sounds they produce while moving and feeding within trunk
sections or fronds in a laboratory setting. Neethirajan et al. [12] investigated the benefits
of utilizing acoustic technology for detecting insects in stored grains compared with the
expensive and complex X-ray and NIR spectroscopy methods. Banga et al. [13] highlights
that among various methods for detecting pests, including some novel technologies, the
acoustic method is the key focus, which has good commercial potential. Mankin et al. [14]
developed a portable insect detection system based on acoustic technology that assess the
likelihood of insect infestations in bags of grain, flour, and other commodities that are
stored in small holdings in developing countries, enabling rapid targeting of treatments.
These studies have demonstrated the significance of acoustic technology in the field of
insect pest detection. However, the process of signal acquisition is heavily influenced by
environmental factors in the background. In practical applications, the acoustic monitor-
ing of trunk borers is often conducted in an environment with unavoidable interference,
especially environmental noise. The environmental noises may include natural sounds
such as wind, rain, and animal vocalizations, as well as human-generated sounds such
as nearby traffic, machinery, and human voices. The presence of these sounds poses chal-
lenges to accurate detection, as they can significantly degrade the quality of the collected
boring vibration signals. It is crucial to note that the quality of the collected signals is
closely related to the detection accuracy of models. Zhou et al. [15] proposed improved
antinoise power-normalized cepstral coefficients (PNCCs) based on the wavelet package
for detecting trunk borer vibrations. The detection accuracy was as high as 97% at 0 dB but
decreased to 83% at —5 dB and further to 70% at —10 dB. A novel Fusion Fisher Vector (FFV)
features are proposed in Ref. [16] for Acoustic Event Classification (AEC) in the meeting
room environments. Its detection accuracy decreased by 3% and 7.7% compared with the
detection accuracy in noisy conditions at 10 dB and 0 dB, respectively. Environmental noise
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remains a persistent challenge that hinders the accuracy of detection results and requires
further attention for effective resolution.

The constant and rapid advancements in artificial intelligence technology and signal
analysis have effectively bridged the gap between theoretical foundations and practical
applications. It is now opportune to apply these cutting-edge technologies to mitigate
the detrimental impacts of environmental noise on accurately identifying the vibrations
of targeted insect species. In the existing research, the denoising methods of acoustic
signals could be roughly categorized into two prominent families of approaches: traditional
denoising methods and deep-learning-based denoising methods. Traditional methods such
as spectral subtraction [17] and Wiener filtering [18] are based on the assumed statistical
properties of noise signals and are limited in their effectiveness, because real-world noise is
highly unpredictable and unstable. Deep learning, as an artificial intelligence technology,
allows computational models that are composed of multiple processing layers to learn
representations of data with multiple levels of abstraction [19]. These methods have dra-
matically improved the state-of-the-art in speech recognition, speech enhancement, object
detection, and many other domains such as drug discovery and genomics. Liu et al. [20]
proposed a deep-learning-based model to enhance the mixture of Semanotus bifasciatus
larval feeding vibrations and various environmental noises. Shi et al. [5] introduced a
waveform mapping-based approach for enhancement of trunk borers’ vibration signals
also using a deep learning model. In their work, they proposed a structure called SRU++,
which has demonstrated effectiveness in enhancing vibration signals. They synthesized
noisy signals by mixing clean boring vibration signals with noise to simulate the signals
collected in forested environments. Subsequently, the synthesized signals were input
into the network for enhancement, and the enhanced signals were compared with the
clean signals to demonstrate the effectiveness of the enhancement model. Nevertheless,
the enhanced signals failed to achieve the desired SNR and exhibited notable distortion
when compared with the clean signals. Building upon previous work, this study further
investigates this direction and proposes a more effective model to address these issues.
As demonstrated in the Results section, our model surpasses previous research in terms
of both SNR and the fidelity of vibration signals. These latest studies took advantage of
deep-learning-based speech enhancement. Speech enhancement aims to remove noise or
interference from noisy speech in order to reconstruct the clean speech [21]. Since one
probe is capable of detecting feeding sounds within a spherical region of a trunk [22], the
resulting signals will be single-channel, and monaural speech enhancement is the proper
technique for this situation.

In theory, deep-learning-based single-channel (monaural) speech enhancement meth-
ods can be divided into two categories according to the domain in which they perform. One
is the time—frequency (T-F) domain, and the other is the time domain [23]. The time-domain
approaches [24,25] predict a clean speech waveform directly from the corresponding noisy
speech waveform, while T-F domain approaches [26] generally take the noisy spectral
feature or the mask (e.g., Ideal Binary Mask [27], Ideal Ratio Mask [28], and complex
Ideal Ratio Mask [29]). In T-F domain methods, the input speech signal is commonly
transformed into time—frequency representations using the Short-Time Fourier Transform
(STFT). Methods based on time domain and frequency domain have achieved excellent
results in speech enhancement. Transformer [30] is a neural network architecture based
on the attention mechanism. It is capable of processing input data in parallel, effectively
solving the problem of long-term dependency and significantly reducing both training
and inference time. Transformer is widely used in natural language processing [31] and
automatic speech recognition [32] tasks due to its strong modeling and representation
capabilities for sequence modeling. However, the use of contextual feature information
in speech enhancement is different from that in natural language processing and other
natural language processing tasks. In the context of speech enhancement tasks, contextual
features refer to the contextual information related to the target speech signal, whereas in
natural language processing tasks, contextual features typically refer to the information
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of surrounding words or sentences. Therefore, traditional Transformer neural networks
do not perform well in speech enhancement. Convolution-augmented Transformer [33]
is an improvement over the Transformer, which adopts local a self-attention mechanism
to better capture the local dependencies within a sequence, thus making it more effective
for long-sequence tasks, especially speech sequences. Recently, both Transformer and
Conformer have been widely applied in the field of speech enhancement, and this study
was also inspired by them.

The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae),
is an invasive pest that originated from Asia [34]. Its larvae burrow into the trees and create
tunnels, which prevent the tree from receiving sufficient nutrients and water, ultimately
resulting in the death of the ash trees. This study recorded the boring vibration of EAB
and the corresponding environmental noise to construct our dataset. Inspired by the stated
problems and previous works, we designed a time-domain model with Conformer called
the Time-domain Conformer-based Enhancement Network for Vibration (T-CENV) to
enhance EAB larval boring vibration. the T-CENV achieved excellent performance in noisy
environments with different SNRs, providing a denoising scheme for acoustic detection
and reducing the parameter size to a mere 6 million. This facilitates the direct deployment
of the proposed denoising model to embedded devices.

This paper is organized as follows. In Section 2, we describe the composition of our
dataset in detail. Section 3 presents the proposed framework, which is followed by the
experimental process and result analysis in Section 4. Finally, some conclusions are drawn
in Section 5.

2. Dataset Materials
2.1. Data Collection and Treatment

We used the same raw data as in a previous study [5], we selected and cut down a
portion of the tree trunks from an ash forest, including those that were dying, alive, and
already dead, located in Tongzhou District, Beijing, which had been infested with EAB
larvae. To obtain the boring vibration signal conveniently, we cut the tree trunk into equal-
length segments and removed all branches. After selecting, we acquired 6 trunk sections
from alive trees, 4 from dying trees, and 2 from dead trees. Subsequently, we drilled
the probe of a piezoelectric vibration sensor into the trunk sections to capture locomotion
and feeding sounds generated by the EAB larvae. This sensor was jointly developed by
Beijing Forestry University and Beihang University. We relocated all of the equipment and
trunk segments to a relatively quiet idle lab to avoid interference from other noises. All
vibration signals were gathered by the sensor and saved in WAV format on the computer
using Audacity. The recording time for each trunk was one and a half hours per day. The
audio was composed of many audio clips that were clipped and spliced together, because
the vibration signals were intermittent. There was only one audio clip for each trunk
that was either dying and dead because they barely have larvae activity, and most of the
recordings contain only noise floor as instrumentation. To ensure that all vibrations were
solely attributed to EAB larvae, we meticulously peeled the bark from all trunk segments
after collection and accurately counted the number of EAB larvae under the supervision of
forestry specialists.

After acquiring the raw signals, we conducted initial processing on the data. In order
to enhance the robustness of our model, we applied distinct preprocessing methods to
the dataset. We trimmed each clip’s beginning and end to eliminate noise from recording
operations. After that, we meticulously examined the spectrogram to remove any sections of
the clips that contained anomalous noises during the recording process, such as footsteps,
raindrops, door closing sounds, sudden bursts emitted by instruments, etc. We also
discarded the entire clip if it did not contain enough larval activity.
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2.2. Environmental Noise Collection

In order to train the model, we employed a methodology similar to that used in
the field of speech enhancement, where environmental noises and clean vibrations were
combined to generate noisy boring vibrations. This approach created a dataset that closely
simulates real-world scenarios. Therefore, we carefully selected five locations that were
similar to the growth environment of the ash trees to collect noise. Four are located at Beijing
Forestry University, and the other is in Olympic Forest Park. In addition, to ensure the
data’s validity and sake of consistency, we employed identical equipment and techniques
as those for collecting boring vibrations. We inserted the same probe into an ash trunk and
used the same computer to store the signals. The collected environmental noise primarily
comprised the rustling of leaves, birdsong, cicada chirping, footsteps, sough of the wind,
and tire noise. Additionally, we discarded all the segments that did not contain noise to
ensure high training efficiency.

2.3. Dataset Construction

In this study, all vibration signals were sampled at a high rate of 32 kHz. To facili-
tate model processing, we partitioned all recordings and environmental noises intoa 3 s
duration with a step length of 2 s. Adjacent signal segments overlapped by 1 s. After
segmentation, we obtained 29,948 clean boring vibration signals and 426 environmental
noise signals. In our dataset, 90% of the boring vibration and noise segments were divided
into the training set, and the other 10% were designated as the test set. To intuitively
observe the effect of each training epoch, we allocated 95% of the segments in the training
set for training and 5% for validation.

To generate the training set, 26,953 clean boring vibrations were selected, and 383 en-
vironmental noise signals were, respectively, mixed with these clean signals according to
5 different SNRs (0 dB, —2.5 dB, —5 dB, —7.5 dB, and —10 dB), resulting in a total of noisy
boring vibrations under 1915 different noisy environments. To generate the test set, the
remaining 2995 clean boring vibrations were mixed with all 426 environmental noise signals
at the same 5 SNRs (0 dB, —2.5 dB, —5 dB, —7.5 dB, and —10 dB) to create a total of noisy
boring vibrations in 2130 different noisy environments. Consequently, our dataset includes
26,953 training examples, totaling about 22.5 h in duration, and 2995 testing examples,
totaling about 2.5 h in duration. Compared with previous studies, our approach of mixing
signals with different SNRs can better simulate real-world noise environments, as noise
in natural environments is complex and diverse. Figure 1 demonstrates the clean boring
vibration segment, the environmental noise segment, and the noisy segments after mixing
boring vibration and noise at different SNR levels.
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Figure 1. Spectrograms of boring vibration segments and environmental noise: (a) clean boring vibra-
tion spectrogram and (b) environmental noise spectrogram noisy segments at (c) 0 dB, (d) —2.5 dB,
(e) —5dB, (f) —7.5dB, and (g) —10 dB.

3. Methods
3.1. Problem Formulation

Enhancement of vibration signals is similar to that of speech signals, in which the aim
is to estimate the source signals mixed on a single channel. Therefore, the noisy vibration
signal can be represented as follows:

y(t) = s(t) +4d(t), ©)

In Equation (1), y(t) represents the noisy boring vibration signals, s() represents the
clean boring vibration signals, and d(t) represents the environmental noises. The task
of this study is to estimate the clean boring vibration signals 3(¢) from y(¢) such that the
difference between §(t) and s(t) is minimized, which can be expressed as

min(dis(3(t), s(¢))), @
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In Equation (2), dis measures the difference between §(t) and s(t).

3.2. Model Architecture

The Convolutional Encoder—Decoder (CED) network proposed in [35] consists of
symmetric encoding layers and decoding layers. This encoder architecture is composed of
several repetitions of a convolutional layer, batch normalization layer [36], max pooling
layer, and LeakyReLU activation function [37]. This combination of layers has been shown
to effectively extract features from input data and improve the performance of neural net-
works in various image and signal processing tasks. The convolutional layer is responsible
for convolving the input data with learnable filters to extract important features. The batch
normalization layer is used to normalize the feature maps generated by the convolutional
layer, which helps to improve the convergence of the network during training. The max
pooling layer is used to downsample the feature maps and reduce the spatial dimensions of
the data, while the LeakyReLU activation function introduces nonlinearity to the network
and helps to prevent the problem of vanishing gradients. Similar to the structure of the
encoder, the decoder consists of repetitions of a convolution, batch normalization, and
an upsampling layer. Typically, CED compresses the features along the encoder and then
reconstructs the features along the decoder. However, the traditional CED architecture is
mainly proposed for images, and speech is a kind of temporal information where the max
pooling layer can destroy the information, leading to suboptimal performance. Therefore,
in this study, we removed the max pooling layer in the encoder. In addition, we utilized
dilated convolutions [38] as the primary convolution operation in the encoder, instead of
traditional convolutions, and employed transposed convolutions [39] for upsampling in
the decoder. Dilated convolution can increase the receptive field of a convolutional layer
without increasing the number of parameters. In traditional convolution, the receptive
field of the convolution kernel is fixed, while in dilated convolution, the receptive field
of the convolution kernel can be expanded by increasing the dilation rate of the kernel,
allowing for a larger range of information perception without increasing the number of
model parameters. This method can enhance the model’s ability to capture temporal
features over longer sequences [40]. Figure 2 illustrates the structure of convolution and
dilated convolution. Transposed convolution, also known as deconvolution, is a powerful
tool that can transform low-dimensional feature maps into high-dimensional feature maps.
Compared with traditional interpolation methods, transposed convolution can preserve
more contextual information, thereby improving the accuracy of the model.

Recurrent neural networks (RNNs) are a powerful model for sequential data [41],
and the most prominent example of RNNs is the long short-term memory (LSTM) net-
work. However, the training process of LSTM can become challenging due to the problem
of vanishing or exploding gradients during the backpropagation process. Additionally,
LSTM requires a large number of parameters to model, leading to high model complexity.
Therefore, in this study, we proposed a time-domain Conformer (T-Conformer) structure.
Figure 3 illustrates the structure of the T-Conformer, which comprises a convolutional mod-
ule, an attention module, and two feed-forward modules, with skip connections between
different modules. The convolution module contains a pointwise convolution with an
expansion factor of 2 that projects the number of channels with a GLU activation layer,
followed by a depthwise convolution. The depthwise convolution is followed by a batch
normalization and then a swish activation layer. Compared with LSTM, the T-Conformer
is capable of processing input sequences in parallel using self-attention, which signifi-
cantly reduces both training and inference times. Additionally, pointwise convolution and
depthwise convolution further enhance its processing efficiency.
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The T-CENV is composed of an encoder, a decoder, and two layers of T-Conformers.
The encoder in the T-CENV model comprises eight downsampling layers, each composed
of a dilated convolution layer, a batch normalization layer, and a LeakyReLU activation
function. These layers are applied sequentially to the time-domain signal (raw wave-
form) of the boring vibration to obtain the corresponding latent representations. As the
convolutional layers in the encoder can only extract local high-level features [42], these
latent representations are then fed into the T-Conformer blocks, which capture local and
global dependencies to model the sequence information. To correspond to the encoder, the
decoder also has eight upsampling layers. Each upsampling layer includes a 1D transposed
convolution layer followed by a batch normalization layer and a LeakyReLU activation
function layer. The decoder reconstructs the time-domain boring vibration signal from a
latent representation estimated through the T-Conformers. A skip connection connects
the output of each encoder layer to the input of the corresponding decoder layer. Figure 4
illustrates the overall structure of the T-CENV. All convolutions have a kernel size of 15,
a stride of 2, and a padding of 7. All transposed convolutions have a kernel size of 5, a
stride of 2, and a padding of 2. All leakyReLU activation function layers have a 0.1 negative
slope. The output channels of the encoder layers are 16, 32, 64, 64, 128, 128, 256, and 256,
respectively. To maintain the shape of the output the same as the input, the number of
input channels of the transposed convolution is twice the number of output channels of the
corresponding encoding layer, and the number of output channels is the same as that of
the previous encoding layer.
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Figure 4. The structure of the T-CENV.
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3.3. Loss Functions

We selected three loss functions, Mean Squared Error (MSE) loss, negative SNR loss,
and L1 loss, based on previous studies that have shown good performance in enhancing
boring vibrations. They are mathematically expressed as follows:

1 N-1 )
MSE = L, (4= 9i) @
N i=0
N-1
,Z yiz
negative-SNR = _1010&0# @
T (vi—9)°
i=0
1 N-1
Ll:N 1;) |}/z‘—3/i| (5)

In Equations (3)—(5), i refers to the i-th sampling point, and y and i represent the clean
signal and enhanced signal, respectively. Our experimental results presented in the next
section demonstrate that using Negative-SNR as the loss function achieves the best model
performance among the tested loss functions.

3.4. Evaluation Metrics

In this study, we assessed our model’s performance using three widely adopted objec-
tive metrics: the signal-to-noise ratio (SNR), the segmental signal-to-noise ratio (SegSNR),
and the log-likelihood ratio (LLR). We refrained from utilizing popular speech enhance-
ment evaluation metrics, such as Perceptual Evaluation of Speech Quality (PESQ) [43],
Short-Time Objective Intelligibility (STOI) [44], etc., owing to their speech-specific design.
Deploying them to boring vibration signals would be inappropriate. Hence, we employed
the same evaluation metrics as in prior boring vibration signals research. SNR represents
the ratio of energy in clean boring vibration sound to that of noise. SegSNR is an average
SNR value computed per frame, and LLR represents the ratio of the energies of the pre-
diction residuals of the enhanced and clean signals. The equations for them are provided
as follows:

N-1
L Vi
SNR = 10logyg———— (6)
X (vi —9;)°
i=0
Litl-1
F-1 L Vi
10 i=Ly
SegSNR = — Y logy, P 5 @)
"= EL (i — 1)
1=Lpn

In Equations (6) and (7), y denotes the clean vibration signal, and § denotes the
enhanced signal. N represents the number of samples. F is the number of frames in a
segment of signal, and L is the frame length.

TR,
LLR(ay, 73) = log “2-*0%

®)

alRyay

In Equation (8), uz are the LPC coefficients of the clean signal, d% are the coefficients of
the enhanced signal, and Ry is the autocorrelation matrix of the clean signal [5].
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3.5. Implementation Details

In order to evaluate the effectiveness of our proposed T-CENV model and demonstrate
the superiority of using the Negative-SNR loss function, we conducted comparative experi-
ments using both the T-CENV-MSE and T-CENV-L1. Additionally, we conducted ablation
experiments to demonstrate the effectiveness of our proposed T-Conformer module. All
models were developed using PyTorch [45], a Python-based scientific computing library
designed to offer efficient multidimensional tensor operations and automatic differentiation
capabilities. The sampling rate used is 32 kHz. For the convenience of training, we split all
the noisy boring vibrations into equally sized 3 s frames, and the step size was set to 2 s.
We adopted the Adam optimizer [46] with an initial learning rate of 0.001, which is halved
if the loss value does not decrease in the validation set in three consecutive epochs. The
early stopping strategy is also employed in our model training. If the loss value does not
decrease in 6 consecutive epochs on the validation split, the training stage is stopped. In
addition, to speed up the training process, we also employed the method of multi-GPU
parallel training. The hardware platform for our experiments consisted of a workstation
equipped with an Intel Xeon Gold 5120 processor (192 GB memory) and two NVIDIA T4
Tensor Core GPUs (16 GB*2 graphic memory), as well as another workstation with an AMD
R7-5800H processor (16 GB memory) and an NVIDIA GeForce RTX 3060 laptop GPU (6 GB
graphic memory).

4. Results

The Average SNR, SegSNR, and LLR of the T-CENV using different loss functions are
shown in Table 1. In this experiment, we used the same two-layer T-Conformer T-CENYV,
with the only difference being the loss function used. To comprehensively evaluate the
performance of the loss functions, we also recorded the number of epochs during training.

Table 1. Comparison of the enhancement performance of our model with different loss functions.

. Average SNR Average
Loss Functions (dB) SegSNR (dB) Average LLR Epochs
L1 12.23 11.50 0.5356 10
MSE 12.32 11.77 0.2257 52
Negative-SNR 14.37 13.17 0.1638 35

By comparing the data in the table, it can be observed that training with L1 as the
loss function is the fastest, and it achieves performance similar to MSE in Average SNR
and Average SegSNR. However, the LLR metric is not as good. The Negative-SNR loss
function achieved the best performance in terms of Average SNR, Average SegSNR, and
Average LLR. Moreover, it requires 17 fewer training epochs compared with using MSE as
the loss function. Therefore, there is no reason for us not to choose Negative-SNR as the
loss function for training our model.

After determining the optimal loss function, we further examined the impact of the
proposed T-Conformer and compared its performance with LSTM, as presented in Table 2.

After comparing the SNR, SegSNR, and LLR of the noisy vibration signals and the
enhanced vibration signals generated by our proposed models, we found that the proposed
models based on the T-ENV architecture showed enhancement effects to varying degrees.
This result demonstrates that the use of an encoder—decoder structure for vibration signal
enhancement is reasonable and effective. Then, we used the T-ENV model with only the
encoder—decoder structure as the baseline. In addition to LSTM, we also introduced the
Bidirectional Long Short-Term Memory Network (BiLSTM) [47] for comparative experi-
ment. Unlike LSTM, the BiLSTM considers both past and future context information at each
time step. It consists of two independent LSTM layers, one processing the input sequence
in the forward direction and the other in the backward direction. The T-BiLSTM-ENV
is composed of two layers of BiLSTM, while the remaining components are the same as
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T-LSTM-ENV. Comparing the results of T-LSTM-ENV and T-BiLSTM-ENYV reveals that
BiLSTM exhibits improved performance compared with LSTM. Specifically, the SegSNR
metric shows an improvement of 11.11%. However, both LSTM and BiLSTM do not per-
form satisfactorily in terms of the LLR metric. By comparing the metrics of T-LSTM-ENV,
T-BiLSTM-CENYV, T-CENV, and T-ENV, we can observe that our proposed T-Conformer
structure achieves the best performance. Theoretically, within a certain range, the more
T-Conformer layers, the better the performance. Therefore, we conducted experiments
on the number of T-Conformer layers and found that the best performance was achieved
when the number of layers was two. When the number of layers reached 3, the enhance-
ment effect began to decrease, and the number of parameters increased to 9.6 M. When
the number of layers reached 4, the number of parameters increased to 11.4 M, and the
enhancement effect further decreased.

Table 2. Comparison of the enhancement performance between LSTM and models with different
numbers of T-Conformer layers.

Models Param. (M) Aver(adg;)SNR SegA;IsIrIzg(fiB) Average LLR
Noisy - —5.14 —5.96 —6.6067
T-ENV 4.23 10.57 9.89 0.1978
T-LSTM-ENV 528 10.99 9.99 0.4534
T-BiLSTM-ENV 6.99 12.17 11.10 0.5216
T-CENV x 1 6.02 14.03 12.83 0.3245
T-CENV x 2 7.81 14.37 13.17 0.1638
T-CENV x 3 9.60 13.66 12.47 0.3398
T-CENV x 4 11.04 11.01 10.06 0.6883

The noise in real forest environments is diverse and highly unstable. To validate the
robustness of our proposed model, we conducted experiments on test data with different
SNRs, and selected T-LSTM-ENV and T-BiLSTM-ENYV as the baseline models. To better
showcase the comparative results, we selected SNR as the evaluation metric for this ex-
periment. The experimental results are presented in Table 3. Through the observation
of the results in Table 3, it can be concluded that the proposed T-CENV model outper-
forms T-LSTM-ENV and T-BiLSTM-ENV across various SNR conditions. The enhancement
performance of T-CENV is 44.10% higher than that of T-LSTM-ENV in 0 dB.

Table 3. The enhancement performance comparison of T-CENV and T-LSTM-ENV under different
SNR conditions.

Models 0dB —2.5dB —5dB —7.5dB —10 dB
T-LSTM-ENV 12.38 11.88 11.18 10.27 9.24
T-BiLSTM-ENV 13.30 12.88 12.80 11.64 10.21
T-CENV 17.84 16.12 14.27 12.58 11.05

In summary, the T-CENV with a two-layer T-Conformer achieved the best enhance-
ment performance, and the number of parameters was also relatively low. From the
perspective of the enhanced vibration signal’s frequency spectra and waveforms, our
model exhibits a very high level of detail recovery, which is crucial for the development of
pest detection and prevention technologies using collected insect vibration signals. Figure 5
shows the partial waveform and spectrogram before and after enhancement using the
T-CENV.
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Figure 5. Comparison of the waveforms and spectrograms before and after enhancement using the
T-CENV: The top row (a—c) displays the original signals, while the bottom row (d—f) shows the signals
after T-CENV processing. The subfigures in the top row correspond to their counterparts in the
bottom row, where (a) corresponds to (d), (b) to (e), and (c) to (£).

As with previous studies, we also evaluated the detection accuracy of the well-known
classification model VGG16 [48] on both noisy boring vibrations and vibrations enhanced
by our model. The dataset used for training was also composed of the noisy and clean
segments described in Section 2. The dataset was composed of two distinct categories:
infested and uninfested. The infested class comprised 3428 noisy boring vibration segments
and 3428 clean boring vibration segments. For the uninfested class, a total of 3195 noise
segments and 2831 segments from dead trees were utilized. They were tested on a set of
1290 noisy boring vibration segments consisting of different signal-to-noise ratios (—10 dB,
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—7.5dB, =5 dB, —2.5 dB, and 0 dB). The classification results for different kinds of data
are shown in Figure 6. It was observed that as the SNR decreased, the classification
accuracy of noisy boring vibrations decreased significantly, and the classification accuracy
of enhanced signals obtained by different methods improved to different degrees. The
segments enhanced by the T-CENV achieved the best classification results, suggesting that
the T-CENV is more effective in removing distracting noise and enhancing the features of
feeding sounds.
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Figure 6. Comparison of classification accuracy on noisy segments, segments enhanced by T-ENV,
T-CENV, T-LSTM-ENV, and T-BiLSTM-ENV.

5. Discussion

In this study, we proposed a novel T-CENV model for enhancing boring vibration
signals. This model is based on the encoder-decoder structure and uses the T-Conformer
as the basic unit. The T-Conformer is a novel structure that combines the advantages of
Transformer and a CNN. It can effectively capture the local and global dependencies of
the input sequence. We compared various loss functions, and the experimental results
indicate that employing Negative-SNR as the loss function in this study is appropriate.
The utilization of Negative-SNR as the loss function effectively guides the training process
of the model towards minimizing noise components in the signals. This promotes the
improvement of signal clarity and quality. Although training with L1 as the loss function
achieved the fastest training speed, it produced unsatisfactory performance. Furthermore,
we performed a comprehensive performance comparison between the T-Conformer, LSTM,
and BiLSTM models, revealing that the T-Conformer consistently outperforms both LSTM
and BiLSTM in terms of performance. Additionally, we conducted a detailed analysis
of models with different numbers of T-Conformer layers and identified the model that
exhibited superior performance. In addition, the T-CENV model also achieved the best
classification results on noisy boring vibration segments. All results demonstrate that the
proposed T-CENV can effectively enhance boring vibration signals and has great potential
for application in pest detection systems.

To evaluate the enhancement performance of T-CENV under real conditions, we
conducted tests using noisy vibration signals that directly recorded in habitats of the larval
host plant. These signals were collected from an infested ash forest in Shunyi District,
Beijing. The data segmentation method described in Section 2 was applied to ensure
consistency in the evaluation process. Additionally, all vibration signals were sampled at a
frequency of 32 kHz too. However, obtaining corresponding clean vibration signals in real-
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world environments is unattainable; so, it is infeasible to calculate objective metrics such as
SNR, SegSNR, and LLR. Therefore, we selected a part of the representative enhanced results,
as shown in Figure 7. The spectrograms clearly demonstrate the favorable enhancement
effect of our model on real-world data. But there are still some challenges that need to be
addressed. Firstly, the parameter count of the model still does not meet the requirements
for embedded devices, necessitating further compression. In future research, we aim to
explore model compression techniques to optimize the model. Secondly, the current dataset
is still limited in terms of its diversity. Future research efforts will encompass the collection
of vibration signals from a broader range of diverse environments to reinforce the training
of the model. This endeavor will facilitate the model in attaining superior enhancement
performance in real-world applications. Furthermore, continued research and development
efforts are necessary to develop early warning system prototypes for trunk-boring beetles in
both forested areas and urban environments. These innovative systems hold the potential
to substantially reduce manual labor costs associated with pest control and management.
This is also an area we aim to focus on and improve in our future research endeavors.
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Figure 7. Comparison of the spectrograms before and after enhancement using the T-CENV: The
top row (a—c,g—i) displays the signals that were directly recorded in habitats of the larval host plant,
while the bottom row (d—£,j—1) shows the signals after T-CENV processing. The subfigures in the top
row correspond to their counterparts in the bottom row, where (a) corresponds to (d), (b) to (e), (c) to
), (8) to (), (h) to (k), and () to (1.

6. Conclusions

In modern forest management and pest control systems, it is a widely used and highly
effective method to embed piezoelectric vibration sensors in tree trunks to collect activity
information of pest larvae. However, in actual forest environments, signals collected are
often susceptible to interference from other environmental sounds, which are typically
uncontrollable. These sounds are recorded together with the desired pest activity sounds,
which poses great challenges for the subsequent pest detection programs. Therefore,
an enhancement method specifically for boring vibration signals is urgently needed. In
this study, we conducted recordings of both the activity sounds of EAB larvae in tree
segments and the environmental sounds present in actual forests. We carefully screened
and segmented the recordings and subsequently mixed them at varying SNRs to simulate
the signals typically collected in real-world environments. We designed the T-CENV using
modern artificial intelligence techniques for enhancing trunk-boring vibration signals. In
the T-CENV, the high-dimensional features of the input temporal vibration signals are first
extracted using the encoder. Then, the decoder is employed to reconstruct the extracted
features to obtain the enhanced vibration signals. To achieve the optimal performance
of our model, we designed a T-Conformer architecture to enhance the model’s ability to
extract both local and global information. The results demonstrate that the T-CENV had a
strong ability to model the temporal features of boring vibrations and achieved excellent
performance on the test set. Compared with networks using LSTM, the T-CENV achieved
an improvement of approximately 44% in enhancing the signals. All the results indicate
that our proposed T-CENYV can effectively enhance the collected signals, and the SNR of
the T-CENV-enhanced signals can reach up to 17.84 dB in complex noisy environments.
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Compared with previous studies, the T-CENV also can restore the details of the signal to
a high degree, as evidenced by the enhanced spectrogram of the signal. This will lower
the difficulty of developing pest detection systems and has significant value for forest
pest detection.
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