Insecticide Susceptibility and Detoxification Enzyme Activity of Frankliniella occidentalis under Three Habitat Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Investigation of the Population Counts of F. occidentalis in the Field
2.2. Collection and Rearing of F. occidentalis Populations
2.3. Toxicity Effect of Insecticides on F. occidentalis
2.4. Extraction of Enzymes from F. occidentalis
2.5. The Enzymatic Activity of F. occidentalis
2.6. Statistical Analysis
3. Results
3.1. Population Counts of F. occidentalis under Different Habitat Conditions
3.2. Toxicity Effect of Six Insecticides on Susceptible Strain of F. occidentalis
3.3. Susceptibility of F. occidentalis to Six Insecticides
3.4. Correlation between Different Habitat Conditions and Resistance Ratio of F. occidentalis
3.5. Activity of Detoxifying Enzymes in F. occidentalis
3.6. Correlation between Resistance Ratio and Detoxifying Enzymes in F. occidentalis under Different Habitat Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reitz, S.R.; Gao, Y.L.; Kirk, W.D.J.; Hoddle, M.S.; Leiss, K.A.; Funderburk, J.E. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 2020, 65, 17–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.Y.; Tang, L.D.; Zhang, X.R.; Xing, Z.L.; Lei, Z.R.; Gao, Y.L. A decade of a thrips invasion in China: Lessons learned. Ecotoxicology 2018, 27, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, C.; Yang, H.; Li, J.; Li, S.; Wang, Y.W.; Gao, Y.L. Laboratory and field investigation on the orientation of Frankliniella occidentalis (Thysanoptera: Thripidae) to more suitable host plants driven by volatiles and component analysis of volatiles. Pest Manag. Sci. 2019, 75, 598–606. [Google Scholar] [CrossRef]
- Reitz, S.R. Biology and ecology of the western flower Thrips (Thysanoptera: Thripidae): The making of a pest. Fla. Entomol. 2009, 92, 7–13. [Google Scholar] [CrossRef]
- Xie, Y.H.; Li, Z.Y.; Dong, K.; Zhang, H.R. Changes in the species composition of thrips on Trifolium repens (Fabales). Acta Phytopathol. 2012, 47, 61–67. [Google Scholar]
- Schneweis, D.J.; Whitfield, A.E.; Rotenberg, D. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Virology 2017, 500, 226–237. [Google Scholar] [CrossRef]
- Demirozer, O.; Tyler-Julian, K.; Funderburk, J.; Leppla, N.; Reitz, S. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida: Western flower thrips management in vegetables. Pest Manag. Sci. 2012, 68, 1537–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouden, S.; Sarmiento, K.F.; Klinkhamer, P.G.L.; Leiss, K.A. Integrated pest management in western flower thrips: Past, present and future. Pest Manag. Sci. 2017, 73, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herron, G.A.; James, T.M. Monitoring insecticide resistance in Australian Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) detects fipronil and spinosad resistance. Aust. J. Entomol. 2005, 44, 299–303. [Google Scholar] [CrossRef]
- Bielza, P. Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Manag. Sci. 2008, 64, 1131–1138. [Google Scholar] [CrossRef]
- Immaraju, J.A.; Paine, T.D.; Bethke, J.A.; Robb, K.L.; Newman, J.P. Western flower thrips (Thysanoptera: Thripidae) resistance to insecticides in coastal California greenhouses. J. Econ. Entomol. 1992, 85, 9–14. [Google Scholar] [CrossRef]
- Loughner, R.L.; Warnock, D.F.; Cloyd, R.A. Resistance of greenhouse, laboratory, and native populations of western flower thrips to spinosad. Hortscience 2005, 40, 146–149. [Google Scholar] [CrossRef] [Green Version]
- Bielza, P.; Quinto, V.; Contreras, J.; Torné, M.; Martín, A.; Espinosa, P.J. Resistance to spinosad in the western flower thrips, Frankliniella occidentals (Pergande), in greenhouses of south-eastern Spain. Pest Manag. Sci. 2007, 63, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Gong, Y.J.; Jin, G.H.; Li, B.Y.; Chen, J.C.; Kang, Z.J.; Zhu, L.; Gao, Y.L.; Reitz, S.; Wei, S.J. Field-evolved resistance to insecticides in the invasive western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in China. Pest Manag. Sci. 2016, 72, 1440–1444. [Google Scholar] [CrossRef]
- Fu, B.L.; Liu, J.F.; Qiu, H.Y.; Tang, L.D.; Lin, J.; Zeng, D.Q.; Xie, Y.X.; Liu, K. Monitoring insecticide resistance in field populations of Thrips hawaiiensis (Morgan) in Hainan. Chin. J. Appl. Entomol. 2016, 53, 403–410. [Google Scholar] [CrossRef]
- Sparks, T.C.; Dripps, J.E.; Watson, G.B.; Paroonagian, D. Resistance and crossresistance to the spinosyns—A review and analysis. Pestic. Biochem. Physiol. 2012, 102, 1–10. [Google Scholar] [CrossRef]
- Bilbo, T.R.; Owens, D.R.; Golec, J.R.; Walgenbach, J.F. Impact of insecticide programs on pests, the predatory mite Phytoseiulus persimilis, and staked tomato profitability. Pest Manag. Sci. 2022, 78, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- Bilbo, T.R.; Kennedy, G.G.; Walgenbach, J.F. Western flower thrips (Frankliniella occidentalis) field resistance to spinetoram in North Carolina. Crop Prot. 2023, 165, 106168. [Google Scholar] [CrossRef]
- Gao, Y.L.; Lei, Z.R.; Reitz, S.R. Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies. Pest Manag. Sci. 2012, 68, 1111–1121. [Google Scholar] [CrossRef]
- Gao, Y.L.; Reitz, S.R. merging themes in the understanding of species displacements. Annu. Rev. Entomol. 2017, 62, 165–183. [Google Scholar] [CrossRef]
- Cho, K.J.; Walgenbach, J.F.; Kennedy, G.G. Daily and temporal occurrence of Frankliniella spp. (Thysanoptera: Thripidae) on tomato. Appl. Entomol. Zool. 2000, 35, 207–214. [Google Scholar] [CrossRef]
- Kahn, N.D.; Walgenbach, J.F.; Kennedy, G.G. Summer weeds ashosts for Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) and as reservoirs for tomato spotted wilt Tospovirus in North Carolina. J. Econ. Entomol. 2005, 98, 1810–1815. [Google Scholar] [CrossRef] [PubMed]
- Groves, R.L.; Walgenbach, J.F.; Moyer, J.W.; Kennedy, G.G. The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of tomato spotted wilt virus. Plant Dis. 2002, 86, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reay-Jones, F.P.F.; Greene, J.K.; Herbert, D.A.; Jacobson, A.L.; Kennedy, G.G.; Reisig, D.D.; Roberts, P.M. Within-plant distribution and dynamics of thrips species (Thysanoptera: Thripidae) in Cotton. J Econ. Entomol. 2017, 110, 1563–1575. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Qian, L.; Ke, R.; Chen, X.Y.; Li, Z.Y.; Gui, F.R. Effects of elevated carbon dioxide on the activities of physiological enzymes in thrips Frankliniella occidentalis and F. intonsa fed on different host plants. J. Plant. Protect. 2017, 44, 45–53. [Google Scholar] [CrossRef]
- Cao, Y.; Zhi, J.R.; Zhang, R.Z.; Can, L.; Gao, Y.L. Different population performances of Frankliniella occidentalis and Thrips hawaiiensis on flowers of two horticultural plants. J. Pest. Sci. 2017, 91, 1–13. [Google Scholar] [CrossRef]
- Atakan, E.; Uygur, S. Winter and spring abundance of Frankliniella spp. and Thrips tabaci Lindeman (Thysan., Thripidae) on weed host plants in Turkey. J. Appl. Entomol. 2005, 129, 17–26. [Google Scholar] [CrossRef]
- Fritsche, M.E.; Tamo, M. Influence of thrips prey species on the life-history and behavior of Orius albidipennis. Entomol. Exp. Appl. 2000, 96, 111–118. [Google Scholar] [CrossRef]
- Pearsall, I.A.; Myers, J.H. Population dynamics of western flower thrips (Thysanoptera: Thripidae) in nectarine orchards in British Columbia. J. Econ. Entomol. 2000, 93, 264–275. [Google Scholar] [CrossRef]
- Hansen, E.A.; Funderburk, J.E.; Reitz, S.R.; Ramachandran, S.; Eger, J.E.; McAuslane, H. Within-plant distribution of Frankliniella species (Thysanoptera: Thripidae) and Orius insidiosus (Heteropera: Anthocoridae) in field pepper. Environ. Entomol. 2003, 32, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.X.; Li, Y.R.; Chen, G.H.; Duan, P.; Wu, D.H.; Liu, Q.; Yin, H.H.; Xu, T.Y.; Zhang, X.M. Population dynamics of Frankliniella occidentalis Pergrande and its predator Orius similis Zheng on common crops and surrounding plants. J. Asia Pac. Entomol. 2021, 24, 555–563. [Google Scholar] [CrossRef]
- Zhang, X.M.; Li, R.; Hu, C.X.; Chen, G.H.; Xu, H.Y.; Chen, Z.X.; Li, Z.Y. Population numbers and physiological response of an invasive and native thrip species following repeated exposure to imidacloprid. Front. Physiol. 2020, 11, 216. [Google Scholar] [CrossRef]
- Zhang, X.M.; Hu, C.X.; Zhao, H.X.; Zhang, H.R.; Gui, F.R.; Li, Z.Y. Effects of imidacloprid stress on development and sex ratio of Frankliniella occidentalis populations. J. Environ. Entomol. 2017, 39, 870–878. [Google Scholar]
- Yang, G.M.; Zhi, J.R.; Li, S.X.; Liu, L. Sublethal effects of spinetoram and azadirachtin on development and reproduction of Frankliniella occidentalis (Pergande). Chin. J. Appl. Ecol. 2016, 27, 3698–3704. [Google Scholar] [CrossRef]
- Kordestani, M.; Mahdian, K.; Baniameri, V.; Garjan, A.S. Lethal and sublethal effects of proteus, matrine, and pyridalyl on Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 2021, 50, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Jeffs, C.T.; Leather, S.R. Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, Sitobion avenae. Entomol. Exp. Appl. 2014, 150, 240–249. [Google Scholar] [CrossRef]
- Fan, Z.F.; Qian, L.; Chen, Y.P.; Fan, R.; He, S.Q.; Gao, Y.L.; Gui, F.R. Effects of elevated CO2 on activities of protective and detoxifying enzymes in Frankliniella occidentalis and F. intonsa under spinetoram stress. Pest Manag. Sci. 2022, 78, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, L.L.; Sa, X.Y.E.T.; Wang, Z.Y. Three kinds of pesticides affecting the activities of protective and detoxifying enzymes in Ambrostoma quadriimpressum Motsch in vitro. Chin. Agr. Sci. Bull. 2016, 32, 60–64. [Google Scholar]
- Brown, T.M.; Bryson, P.K. Selective inhibitors of methyl parathion resistant acetylcholinesterase from Heliothis virescens. Pestic. Biochem. Physiol. 1992, 44, 155–164. [Google Scholar] [CrossRef]
- Li, D.Y.; Zhi, J.R.; Zhang, T.; Zeng, G. Effects of spinetoram and ethiprole on detoxification enzyme and acetylcholin esterase activity in Frankliniella occidentalis (Pergande). Chin. J. Appl. Entomol. 2020, 57, 1385–1393. [Google Scholar]
- Qian, L.; He, S.; Liu, X.; Huang, Z.; Chen, F.; Gui, F. Effect of elevated CO2 on the interaction between invasive thrips, Frankliniella occidentalis, and its host kidney bean, Phaseolus vulgaris. Pest Manag. Sci. 2018, 74, 2773–2782. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Gao, H.; Chen, H. Expression Levels of detoxification enzyme genes from Dendroctonus armandi (Coleoptera: Curculionidae) fed on a solid diet containing pine phloem and terpenoids. Insects 2021, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Tang, M.; Chen, H. Activation of the ROS/CncC signaling pathway regulates Cytochrome P450 CYP4BQ1 responsible for (+)-α-Pinene tolerance in Dendroctonus armandi. Int. J. Mol. Sci. 2022, 23, 11578. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.H.; Sun, Z.X.; Li, Y.H.; Hao, R.S.; Chen, Y.P.; Chen, B.; Qin, X.P.; Tao, X.; Gui, F.R. Effects of elevated CO2 concentration on host adaptability and chlorantraniliprole susceptibility in Spodoptera frugiperda. Insects 2022, 13, 1029. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yang, H.; Gao, Y.L.; Wang, L.J.; Li, J.; Wang, C.; Li, C. Effect of elevated CO2 on the population development of the invasive species Frankliniella occidentalis and native species Thrips hawaiiensis and activities of their detoxifying enzymes. J. Pest. Sci. 2021, 94, 29–42. [Google Scholar] [CrossRef]
- Zhang, K.L.; Li, Z.Q.; Ding, J.; Du, R.S.; Zhao, X.Y.; Xia, X.M. Sensitivity detection of cyantraniliprole to Laodelphax striatellus in Shandong and effect of sublettai cyantraniliprole on detoxification enzyme activities. J. Environ. Entomol. 2020, 42, 212–220. [Google Scholar]
- Payton, M.E.; Greenstone, M.H.; Schenker, N. Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? J. Insect Sci. 2003, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Malathi, V.M.; Jalali, S.K.; Gowda, D.K.; Mohan, M.; Venkateesan, T. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper (Nilaparvata lugens) in South India. Insect Sci. 2017, 24, 35–46. [Google Scholar] [CrossRef]
- Healey, M.A.; Senior, L.J.; Brown, P.H.; Duff, J. Relative abundance and temporal distribution of adult Frankliniella occidentalis (Pergande) and Frankliniella schultzei (Trybom) on French bean, lettuce, tomato and zucchini crops in relation to crop age. J. Asia-Pac. Entomol. 2017, 20, 859–865. [Google Scholar] [CrossRef]
- López-Lima, D.; Desgarennes, D.; Herrera, M.; Alarcón, D.; Carrión, G. Diversity of thrips (Thysanoptera) associated with avocado orchards in Central Veracruz México. J. Entomol. Sci. 2020, 55, 141–145. [Google Scholar] [CrossRef]
- Bielza, P.; Quinto, V.; Fernandez, E.; Gravalos, C.; Contreras, J. Genetics of spinosad resistance in Frankliniella occidentalis. J. Econ. Entomology 2007, 100, 916–920. [Google Scholar] [CrossRef]
- Espinosa, P.J.; Bielza, P.; Contreras, J.; Lacasa, A. Insecticide resistance in field populations of Frankliniella occidentalis (Pergande) in Murcia (south-east Spain). Pest Manag. Sci. 2002, 58, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Thalavaisundaram, S.; Herron, G.; Clift, A.; Rose, H. Pyrethroid resistance in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and implications for its management in Australia. Aust. J. Entomol. 2008, 47, 64–69. [Google Scholar] [CrossRef]
- Weiss, A.; Dripps, J.; Funderburk, J. Assessment of implementation and sustainability of integrated pest management programs. Fla. Entomol. 2009, 92, 24–28. [Google Scholar] [CrossRef]
- Herron, G.A.; Gunning, R.V.; Cottage, E.L.; Borzatta, V.; Gobbi, C. Spinosad resistance, esterase isoenzymes and temporal synergism in Frankliniella occidentalis (Pergande) in Australia. Pestic. Biochem. Phys. 2014, 114, 32–37. [Google Scholar] [CrossRef]
- Langfield, K.L.; Nguyen, D.; Annetts, R.; Herron, G.A. Spinetoram resistance detected in Australian western flower thrips Frankliniella occidentalis (Pergande) from Queensland and Victoria. Gen. App. Entomol. 2019, 47, 13–16. Available online: https://www.researchgate.net/publication/337830388 (accessed on 18 March 2023).
- Shen, X.J.; Chen, J.C.; Cao, L.J.; Ma, Z.Z.; Sun, L.N.; Gao, Y.F.; Ma, L.J.; Wang, J.X.; Ren, Y.J.; Cao, H.Q.; et al. Interspecific and intraspecific variation in susceptibility of two co-occurring pest thrips, Frankliniella occidentalis and Thrips palmi, to nine insecticides. Pest Manag. Sci. 2023. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liao, X.; Mao, K.K.; Yang, P.; Li, D.Y.; Alia, E.; Wan, H.; Li, J.H. The role of detoxifying enzymes in field-evolved resistance to nitenpyram in the brown planthopper Nilaparvata lugens in China. Crop. Prot. 2017, 94, 106–114. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, Y.H.; Cai, T.W.; Deng, C.Y.; Liu, C.Y.; Li, J.M.; He, S.; Li, J.H.; Wan, H. Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing dexification metabolism in the brown planthopper, Nilaparvata lugens. J. Pest Sci. 2021, 94, 757–767. [Google Scholar] [CrossRef]
- Xu, Y.L.; Wang, Z.Y.; He, K.L.; Bai, S.X. Effects of transgenic Bt corn expressing Cry1Ab toxin on activities of some enzymes in larvae of the Asian corn borer. Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae). Acta. Entomol. Sin. 2006, 49, 562–567. [Google Scholar] [CrossRef]
- Lajmanovich, R.C.; Attademo, A.M.; Peltzer, P.M.; Junges, C.M.; Cabagna, M.C. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Arch. Environ. Contam. Toxicol. 2011, 60, 681–689. [Google Scholar] [CrossRef]
- Lee, C.Y. 2000. Sublethal effects of insecticide on longevity, fecundity, and behaviour of insect pests: A review. Annu. Rev. Entomol. 2000, 11, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Chaton, P.F.; Ravanel, P.; Meyran, J.C.; Tissut, M. The toxicological effects and bioaccumulation of fipronil in larvae of the mosquito Aedes aegypti in aqueous medium. Pestic. Biochem. Physiol. 2001, 69, 183–188. [Google Scholar] [CrossRef]
- Ferrari, J.A.; Morse, J.G.; Georghiou, G.P.; Sun, Y.Q. Elevated esterase activity and acetylcholinesterase insensivity in citrus thrips (Thysanoptera: Thripidae) populations from the San Joaquin Valley of California. J. Econ. Entomol. 1993, 86, 1645–1658. [Google Scholar] [CrossRef]
- Small, G.J.; Hemingway, J. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 2000, 9, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.H.; Shi, X.Y.; Desneux, N.; Gao, X.W. Effects of spirotetramat treatments on fecundity and carboxylesterase expression of Aphis gossypii Glover. Ecotoxicology 2016, 25, 655–663. [Google Scholar] [CrossRef] [PubMed]
Code of Field Population | Location of Collecting Sites | Longitude (E) and Latitude (N) | Host Plant | Average Daily Temperature (°C) | Average Daily Precipitation (mm) | Application Frequency of Insecticide per Month | Common Use Insecticide |
---|---|---|---|---|---|---|---|
Facility agriculture area (FA) | Chenggong District of Kunming | 102°46′56″ E, 24°54′15″ N | Rose | 18.13 ± 1.17 | 3.4 ± 1.13 | 7.50 ± 0.60 a | 60 g/L Spinetoram SC 70% Imidacloprid WP 10% Chlorfenapyr SC 1.8% Abamectin EC 20% Methomyl AS |
Open field crop area (OF) | Zhaoyang District of Zhaotong | 103°39′57″ E, 27°14′8″ N | Tobacco, Weed, Rape flowers | 16.74 ± 1.75 | 5.85 ± 1.85 | 5.50 ± 0.60 b | |
Agroforestry intersection area (AI) | Panlong District of Kunming | 102°44′32″ E, 25°07′45″ N | Shamrock | 18.13 ± 1.17 | 3.4 ± 1.13 | 1.25 ± 0.16 c |
Active Ingredient Common Name | Formulation | IRAC Class | Supplier |
---|---|---|---|
Spinetoram | 60 g/L SC | 5, Spinosyn | Dow AgroSciences Company, Beijing, China |
Spinosad | 8% WE | 5, Spinosyn | Shenzhen Noposion Agrochenicals Co. Ltd., Shenzhen, China |
Emamectin benzoate | 77.46% | 6, Avermectins | Qingdao Ruifengcote Chemical Co. Ltd., Qingdao, China |
Chlorfenapyr | 98% | 13, Pyrroles | Qingdao Ruifengcote Chemical Co. Ltd., Qingdao, China |
Acetamiprid | 97% | 4A, Neonicotinoid | Qingdao Ruifengcote Chemical Co. Ltd., Qingdao, China |
Imidacloprid | 70% WG | 4A, Neonicotinoid | Jiangxi Zhengbang Crop Protection Co. Ltd., Nanchang, China |
Insecticide | Developmental Stage | Concentration–Response Regression Equation | LC50 (mg·L−1) 95% CI | Correlation Coefficient | χ2 |
---|---|---|---|---|---|
Spinetoram | Female | y = 3.553x + 11.325 | 0.017 (0.014~0.020) | 0.9993 | 0.0688 |
Male | y = 3.072x + 10.733 | 0.014 (0.011~0.016) | 0.9809 | 1.6571 | |
Second instar nymph | y = 3.174x + 11.237 | 0.011 (0.009~0.013) | 0.9748 | 2.0188 | |
Spinosad | Female | y = 2.502x + 5.883 | 0.444 (0.354~0.568) | 0.9973 | 0.1538 |
Male | y = 2.758x − 6.480 | 0.291 (0.238~0.376) | 0.9985 | 0.0935 | |
Second instar nymph | y = 2.695x + 6.540 | 0.268 (0.215~0.337) | 1.0000 | 0.0007 | |
Emamectin benzoate | Female | y = 2.187x − 5.732 | 2.161 (1.687~2.847) | 0.9965 | 0.2189 |
Male | y = 2.976x − 5.460 | 1.428 (1.152~1.737) | 0.9993 | 0.0518 | |
Second instar nymph | y = 2.145x − 5.181 | 1.215 (0.938~1.776) | 0.9978 | 0.0844 | |
Chlorfenapyr | Female | y = 3.224x − 8.658 | 13.629 (11.614~17.076) | 0.9729 | 1.0216 |
Male | y = 4.836x − 8.614 | 5.588 (4.771~6.413) | 0.9569 | 1.7674 | |
Second instar nymph | y = 1.945x − 6.225 | 4.263 (3.136~5.918) | 0.9994 | 0.0295 | |
Acetamiprid | Female | y = 3.230x − 11.305 | 89.564 (75.237~107.417) | 0.9980 | 0.1895 |
Male | y = 2.452x − 9.036 | 44.311 (33.715~55.667) | 0.9987 | 0.0702 | |
Second instar nymph | y = 3.031x − 9.738 | 36.542 (29.466~44.275) | 0.9762 | 1.9262 | |
Imidacloprid | Female | y = 2.918x − 13.820 | 1053.786 (809.074~1276.846) | 0.9847 | 1.1732 |
Male | y = 2.334x − 11.971 | 969.102 (760.427~302.762) | 0.9899 | 0.4908 | |
Second instar nymph | y = 3.278x − 14.553 | 821.241 (677.642~988.754) | 0.9987 | 0.1130 |
Month | Population | Spinetoram | Spinosad | Emamectin Benzoate | Chlorfenapyr | Acetamiprid | Imidacloprid | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LC50 | RR | LC50 | RR | LC50 | RR | LC50 | RR | LC50 | RR | LC50 | RR | ||
Apr. | FA | 0.13 | 6.63 | 0.92 | 2.47 | 7.60 | 3.98 | 29.10 | 2.69 | 201.17 | 2.20 | 4109.09 | 3.84 |
OF | 0.04 | 2.21 | 0.75 | 2.02 | 2.67 | 1.40 | 38.24 | 3.53 | 118.84 | 1.30 | 2391.67 | 2.24 | |
AI | 0.04 | 2.26 | 0.52 | 1.42 | 2.23 | 1.17 | 24.82 | 2.29 | 100.19 | 1.10 | 1223.56 | 1.14 | |
SS | 0.02 | 1.00 | 0.37 | 1.00 | 1.91 | 1.00 | 10.82 | 1.00 | 91.31 | 1.00 | 1069.08 | 1.00 | |
May. | FA | 0.13 | 7.11 | 0.87 | 2.45 | 9.10 | 4.90 | 30.34 | 2.69 | 259.26 | 3.15 | 4294.34 | 4.20 |
OF | 0.06 | 3.06 | 0.75 | 2.12 | 3.40 | 1.83 | 31.72 | 2.82 | 146.81 | 1.78 | 2503.65 | 2.45 | |
AI | 0.05 | 2.83 | 0.54 | 1.53 | 3.14 | 1.69 | 25.17 | 2.23 | 103.42 | 1.26 | 1263.69 | 1.24 | |
SS | 0.02 | 1.00 | 0.36 | 1.00 | 1.86 | 1.00 | 11.26 | 1.00 | 82.33 | 1.00 | 1022.45 | 1.00 | |
Jun. | FA | 0.13 | 7.88 | 0.75 | 2.47 | 10.91 | 5.01 | 43.12 | 4.75 | 213.63 | 2.71 | 3874.02 | 3.79 |
OF | 0.06 | 3.76 | 0.60 | 1.99 | 3.61 | 1.66 | 26.88 | 2.96 | 109.47 | 1.39 | 1472.74 | 1.44 | |
AI | 0.06 | 3.41 | 0.57 | 1.87 | 3.38 | 1.55 | 26.00 | 2.87 | 107.17 | 1.36 | 1399.95 | 1.37 | |
SS | 0.02 | 1.00 | 0.30 | 1.00 | 2.18 | 1.00 | 9.07 | 1.00 | 78.78 | 1.00 | 1021.19 | 1.00 | |
Jul. | FA | 0.14 | 8.18 | 1.16 | 3.04 | 7.78 | 4.48 | 30.07 | 2.55 | 304.53 | 4.21 | 4177.69 | 4.11 |
OF | 0.06 | 3.47 | 0.64 | 1.68 | 4.60 | 2.65 | 42.73 | 3.63 | 105.55 | 1.46 | 1943.87 | 1.91 | |
AI | 0.06 | 3.29 | 0.58 | 1.53 | 3.22 | 1.85 | 24.64 | 2.09 | 108.64 | 1.50 | 1329.73 | 1.31 | |
SS | 0.02 | 1.00 | 0.38 | 1.00 | 1.74 | 1.00 | 11.78 | 1.00 | 72.34 | 1.00 | 1017.65 | 1.00 | |
Aug. | FA | 0.14 | 8.47 | 1.20 | 2.93 | 9.61 | 5.47 | 29.07 | 2.56 | 309.74 | 4.00 | 4475.98 | 3.96 |
OF | 0.09 | 5.18 | 0.83 | 2.04 | 4.94 | 2.81 | 41.96 | 3.70 | 142.62 | 1.84 | 1984.93 | 1.75 | |
AI | 0.06 | 3.47 | 0.59 | 1.45 | 3.60 | 2.05 | 24.24 | 2.14 | 105.00 | 1.35 | 1271.22 | 1.12 | |
SS | 0.02 | 1.00 | 0.41 | 1.00 | 1.76 | 1.00 | 11.35 | 1.00 | 77.50 | 1.00 | 1131.33 | 1.00 | |
Sept. | FA | 0.16 | 9.18 | 1.34 | 3.81 | 9.73 | 5.38 | 27.69 | 2.49 | 323.03 | 4.08 | 4718.61 | 4.19 |
OF | 0.09 | 5.24 | 0.94 | 2.67 | 4.90 | 2.71 | 42.12 | 3.79 | 132.13 | 1.67 | 2181.23 | 1.94 | |
AI | 0.06 | 3.53 | 0.60 | 1.71 | 3.84 | 2.12 | 25.39 | 2.29 | 105.96 | 1.34 | 1377.96 | 1.22 | |
SS | 0.02 | 1.00 | 0.35 | 1.00 | 1.81 | 1.00 | 11.10 | 1.00 | 79.15 | 1.00 | 1125.54 | 1.00 | |
Oct. | FA | 0.14 | 7.11 | 0.80 | 2.09 | 7.07 | 4.03 | 68.90 | 6.39 | 494.51 | 6.80 | 12481.26 | 11.67 |
OF | 0.08 | 4.26 | 0.57 | 1.48 | 4.65 | 2.64 | 33.99 | 3.15 | 109.32 | 1.50 | 1916.72 | 1.79 | |
AI | 0.06 | 3.11 | 0.58 | 1.50 | 2.35 | 1.34 | 24.95 | 2.31 | 101.28 | 1.39 | 1241.94 | 1.16 | |
SS | 0.02 | 1.00 | 0.38 | 1.00 | 1.76 | 1.00 | 10.78 | 1.00 | 72.74 | 1.00 | 1069.68 | 1.00 | |
Nov. | FA | 0.13 | 7.47 | 0.61 | 1.61 | 7.88 | 4.05 | 73.81 | 6.67 | 576.22 | 7.49 | 11020.07 | 10.19 |
OF | 0.07 | 4.12 | 0.54 | 1.42 | 4.98 | 2.56 | 29.67 | 2.68 | 108.84 | 1.41 | 1830.64 | 1.69 | |
AI | 0.06 | 3.29 | 0.54 | 1.41 | 2.79 | 1.44 | 23.84 | 2.15 | 102.74 | 1.34 | 1248.09 | 1.15 | |
SS | 0.02 | 1.00 | 0.38 | 1.00 | 1.94 | 1.00 | 11.07 | 1.00 | 76.94 | 1.00 | 1081.00 | 1.00 |
Population | Conditions | Resistance Ratio (RR) | |||||
---|---|---|---|---|---|---|---|
Spinetoram | Spinosad | Emamectin Benzoate | Chlorfenapyr | Acetamiprid | Imidacloprid | ||
FA | AF | 0.51 | 0.57 | 0.69 | −0.50 | −0.61 | −0.71 |
T | 0.34 | 0.69 | 0.68 | −0.81 * | −0.82 * | −0.84 ** | |
P | 0.3 | 0.16 | 0.41 | −0.036 | −0.41 | −0.41 | |
OF | AF | 0.34 | 0.46 | 0.25 | 0.54 | 0.63 | −0.03 |
T | 0.22 | 0.61 | 0.058 | 0.61 | 0.45 | 0.0001 | |
P | 0.24 | 0.11 | 0.39 | 0.63 | 0.12 | −0.26 | |
AI | AF | 0.34 | −0.24 | 0.55 | −0.46 | 0.52 | −0.00025 |
T | 0.045 | 0.46 | 0.52 | 0.23 | 0.041 | 0.48 | |
P | 0.42 | 0.76 * | 0.16 | 0.76* | 0.35 | 0.73 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, R.; Fan, Z.; Sun, Z.; Chen, Y.; Gui, F. Insecticide Susceptibility and Detoxification Enzyme Activity of Frankliniella occidentalis under Three Habitat Conditions. Insects 2023, 14, 643. https://doi.org/10.3390/insects14070643
Fan R, Fan Z, Sun Z, Chen Y, Gui F. Insecticide Susceptibility and Detoxification Enzyme Activity of Frankliniella occidentalis under Three Habitat Conditions. Insects. 2023; 14(7):643. https://doi.org/10.3390/insects14070643
Chicago/Turabian StyleFan, Rui, Zongfang Fan, Zhongxiang Sun, Yaping Chen, and Furong Gui. 2023. "Insecticide Susceptibility and Detoxification Enzyme Activity of Frankliniella occidentalis under Three Habitat Conditions" Insects 14, no. 7: 643. https://doi.org/10.3390/insects14070643
APA StyleFan, R., Fan, Z., Sun, Z., Chen, Y., & Gui, F. (2023). Insecticide Susceptibility and Detoxification Enzyme Activity of Frankliniella occidentalis under Three Habitat Conditions. Insects, 14(7), 643. https://doi.org/10.3390/insects14070643