Precision and Accuracy of Field Versus Laboratory Bioassay Insecticide Efficacy for the Control of Immature Bemisia tabaci
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trials
2.2. Laboratory Bioassays
2.3. Data Collection and Analysis
3. Results
4. Discussion
4.1. Insecticide Efficacy and Immature Control
4.2. Precision and Accuracy
4.3. Predictability Power
4.4. Viability of Pre-Treatment Bioassay Sampling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, S.J. The Toxicology and Biochemistry of Insecticides, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 380. [Google Scholar]
- De Marchi, B.R.; Smith, H.; Turechek, W.; Riley, D. A maximum dose bioassay to assess efficacy of key insecticides against Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae). J. Econ. Entomol. 2021, 114, 914–921. [Google Scholar] [CrossRef]
- Peeters, E.T.H.M.; Dewitte, A.; Koelmans, A.A.; Van Der Velden, J.A.; Den Besten, P.J. Evaluation of bioassays versus contaminant concentrations in explaining the macroinvertebrate community structure in the Rhine-Meuse delta, The Netherlands. Environ. Toxicol. Chem. 2001, 20, 2883–2891. [Google Scholar] [CrossRef] [PubMed]
- DelValls, T.; Conradi, M. Advances in marine ecotoxicology: Laboratory tests versus field assessment data on sediment quality studies. Cienc. Mar. 2000, 26, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Perier, J.D.; Cremonez, P.S.G.; Champagne, D.E.; Simmons, A.M.; Riley, D.G. Whiteflies at the intersection of polyphagy and insecticide resistance. Ann. Entomol. Soc. Am. 2022, 115, 401–416. [Google Scholar] [CrossRef]
- Abubakar, M.; Koul, B.; Chandrashekar, K.; Raut, A.; Yadav, D. Whitefly (Bemisia tabaci) Management (WFM) Strategies for Sustainable Agriculture: A Review. Agriculture 2022, 12, 1317. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Bondari, K. Interactions in entomology: Multiple comparisons and statistical interactions in entomological experimentation. J. Entomol. Sci. 1999, 34, 57–71. [Google Scholar] [CrossRef]
- Hibbert, D. Systematic errors in analytical measurement results. J. Chromatogr. 2007, 1158, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Ives, A.R. Random errors are neither: On the interpretation of correlated data. Methods Ecol. Evol. 2022, 13, 2092–2105. [Google Scholar] [CrossRef]
- Cremonez, P.S.G.; Perier, J.D.; Simmons, A.M.; Riley, D.G. Determining Field Insecticide Efficacy on Whiteflies with Maximum Dose Bioassays. Insects 2023, 14, 510. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Gorman, K.; Ross, G.; Denholm, I. Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Arch. Insect Biochem. Physiol. 2003, 54, 177–186. [Google Scholar] [CrossRef]
- Ishaaya, I.; De Cock, A.; Degheele, D. Pyriproxyfen, a potent suppressor of egg hatch and adult formation of the greenhouse-whitefly (Homoptera, Aleyrodidae). J. Econ. Entomol. 1994, 87, 1185–1189. [Google Scholar] [CrossRef]
- Ramaseshadri, P.; Farkas, R.; Palli, S.; Dhadialla, T. Recent Progress in Juvenile Hormone Analogs (JHA) Research. Adv. Insect Physiol. 2012, 43, 353–436. [Google Scholar] [CrossRef]
- Srinivasan, R.; Riley, D.G.; Diffie, S.; Sparks, A.N.; Adkins, S. Whitefly population dynamics and evaluation of whitefly-transmitted Tomato Yellow Leaf Curl Virus (TYLCV)-resistant tomato genotypes as whitefly and TYLCV reservoirs. J. Econ. Entomol. 2012, 105, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Sparks, T.C.; Riley, D.G.; Simmons, A.M.; Guo, L. Comparison of toxicological bioassays for whiteflies. Insects 2020, 11, 789. [Google Scholar] [CrossRef]
- Raposo, F.; Ibelli-Bianco, C. Performance parameters for analytical method validation: Controversies and discrepancies among numerous guidelines. TrAC Trends Anal. Chem. 2020, 129, 115913. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Ellsworth, P.C. Fifty years of the integrated control concept: Moving the model and implementation forward in Arizona. Pest Manag. Sci. 2009, 65, 1267–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavalappara, S.R.; Milner, H.; Konakalla, N.C.; Morgan, K.; Sparks, A.N.; McGregor, C.; Culbreath, A.K.; Wintermantel, W.M.; Bag, S. High throughput sequencing-aided survey reveals widespread mixed infections of whitefly-transmitted viruses in cucurbits in Georgia, USA. Viruses 2021, 13, 988. [Google Scholar] [CrossRef]
- Walker, K.J.; Williams, C.T.; Oladepo, F.O.; Lucas, J.; Malone, D.; Paine, M.J.I.; Ismail, H.M. A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets. Sci. Rep. 2022, 12, 9715. [Google Scholar] [CrossRef] [PubMed]
- Ahire, K.; Arora, M.; Mukherjee, S. Development and application of a method for analysis of lufenuron in wheat flour by gas chromatography-mass spectrometry and confirmation of bio-efficacy against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 861, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.L.E.; Tindall, K.; Leonard, B.R. Bioassays for monitoring insecticide resistance. J. Vis. Exp. 2010, 46, e2129. [Google Scholar] [CrossRef] [Green Version]
- Paramasivam, M.; Selvi, C. Laboratory bioassay methods to assess the insecticide toxicity against insect pests-A review. J. Entomol. Zool. Stud. 2017, 5, 1441–1445. [Google Scholar]
- Gao, Y.; Lei, Z.; Reitz, S.R. Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies. Pest Manag. Sci. 2012, 68, 1111–1121. [Google Scholar] [CrossRef]
- Wolfenbarger, D.; Riley, D.; Staetz, C.; Leibee, G.; Herzog, G.; Gage, E. Response of silverleaf whitefly (Homoptera: Aleyrodidae) to bifenthrin and endosulfan by vial bioassay in Florida, Georgia and Texas. J. Entomol. Sci. 1998, 33, 412–420. [Google Scholar] [CrossRef]
- Gonring, A.; Silva, F.; Picelli, E.; Plata-Rueda, R.; Gorri, J.; Fernandes, F. Comparative bioassay methods to determine diamide susceptibility for two coffee pests. Crop Protect. 2019, 121, 34–38. [Google Scholar] [CrossRef]
- Hardke, J.; Temple, J.; Leonard, B.; Jackson, R. Laboratory toxicity and field efficacy of selected insecticides against fall armyworm (Lepidoptera: Noctuidae). Fla. Entomol. 2011, 94, 272–278. [Google Scholar] [CrossRef]
IRAC 1 Group | Common Name | Commercial™ Name | Per Hectare Rate 2 |
---|---|---|---|
- | Water check | - | - |
4A | Imidacloprid | Admire Pro 4.6F | 160.8 mL |
4A | Dinotefuran | Venom 70SG | 280.2 g |
4A | Acetamiprid | Assail 30SG | 280.2 g |
4A | Clothianidin | Belay 50WDG | 292.3 mL |
4C | Sulfoxaflor | Transform WG | 157.6 g |
4D | Flupyradifurone | Sivanto Prime 1.67SL | 876.9 mL |
7C | Pyriproxyfen | Knack 0.86EC | 730.8 mL |
9C | Flonicamid | Beleaf 50SG | 299.8 g |
23 | Spiromesifen | Oberon 2SC | 621.1 mL |
28 | Cyantraniliprole | Exirel 0.83SC | 986.5 mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cremonez, P.S.G.; Perier, J.D.; Nagaoka, M.M.; Simmons, A.M.; Riley, D.G. Precision and Accuracy of Field Versus Laboratory Bioassay Insecticide Efficacy for the Control of Immature Bemisia tabaci. Insects 2023, 14, 645. https://doi.org/10.3390/insects14070645
Cremonez PSG, Perier JD, Nagaoka MM, Simmons AM, Riley DG. Precision and Accuracy of Field Versus Laboratory Bioassay Insecticide Efficacy for the Control of Immature Bemisia tabaci. Insects. 2023; 14(7):645. https://doi.org/10.3390/insects14070645
Chicago/Turabian StyleCremonez, Paulo S. G., Jermaine D. Perier, Mirela M. Nagaoka, Alvin M. Simmons, and David G. Riley. 2023. "Precision and Accuracy of Field Versus Laboratory Bioassay Insecticide Efficacy for the Control of Immature Bemisia tabaci" Insects 14, no. 7: 645. https://doi.org/10.3390/insects14070645
APA StyleCremonez, P. S. G., Perier, J. D., Nagaoka, M. M., Simmons, A. M., & Riley, D. G. (2023). Precision and Accuracy of Field Versus Laboratory Bioassay Insecticide Efficacy for the Control of Immature Bemisia tabaci. Insects, 14(7), 645. https://doi.org/10.3390/insects14070645