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Simple Summary: Leafhoppers depend on plant sap as their food source, which is inherently
unbalanced in terms of nutrition. To compensate for this deficiency, leafhoppers rely on obligate
symbiotic bacterial associations to acquire the amino acids that are lacking in their diet. In this study,
we focused on Maiestas dorsalis to understand the distribution of two obligate symbiotic bacteria,
Sulcia muelleri and Nasuia deltocephalinicola, within the insect and their vertical transmission pathways.
Our findings revealed their spatial arrangement within specialized tissues and provide insights into
their genomic characteristics. We discovered that these bacteria undergo significant genome reduction
but still retain the ability to synthesize essential amino acids for the leafhopper. This study enhances
our understanding of the coevolutionary processes and nutritional interactions in Auchenorrhyncha
insects, contributing to our knowledge of the intricate symbiotic relationships in nature.

Abstract: Many insects rely on ancient symbiotic bacterial associations for essential nutrition. Auchen-
orrhyncha commonly harbor two obligate symbionts: Sulcia (Bacteroidetes) and a proteobacterial
partner that supplies essential amino acids lacking in their plant-sap diets. In this study focusing on
Maiestas dorsalis, we investigated the distribution and vertical transmission of two obligate symbiotic
bacteria, Sulcia and Nasuia, within the leafhopper. Sulcia primarily inhabits the external region of the
bacteriome, while Nasuia is restricted to the internal region. Both symbionts progressively infiltrate the
ovary through the epithelial plug, ultimately reaching the developing primary oocyte. Furthermore,
co-phylogenetic analysis suggests a close correlation between the evolution of Auchenorrhyncha
insects and the presence of their obligate symbiotic bacteria. Genomic analysis further unveiled the
extreme genome reduction of the obligate symbiotic bacteria, with Sulcia retaining genes involved
in basic cellular processes and limited energy synthesis, while Nasuia exhibited further gene loss in
replication, transcription, translation, and energy synthesis. However, both symbionts retained the
genes for synthesizing the essential amino acids required by the host insect. Our study highlights the
coevolutionary dynamics between Sulcia, proteobacterial partners, and their insect hosts, shedding
light on the intricate nutritional interactions and evolutionary adaptations in Auchenorrhyncha
insects.

Keywords: leafhopper; obligate symbionts; Sulcia muelleri; Nasuia deltocephalinicola; Maiestas dorsalis

1. Introduction

Microbial symbionts are ubiquitous in insects and play crucial roles in various aspects
of insect biology including growth, development, reproduction, stress resistance, and adapt-
ability [1–4]. Over long periods of evolution, some insects have developed stable symbiotic
relationships with specific microbes known as obligate symbiotic microorganisms. These
symbiotic partnerships help insects address nutrient deficiencies in their diets [1,2,5,6].
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Among them, herbivorous insects obtain essential amino acids that are lacking in their
normal diet through these symbiotic partners [1,2,7,8].

In the order Hemiptera, which includes insects with piercing-sucking mouthparts,
plant sap serves as their main food source. However, plant sap is nutritionally imbalanced,
being rich in sugars, inorganic compounds, and minerals, but deficient in amino acids [5,9].
Hemipteran insects often face inadequacies in essential amino acids, as plant sap predom-
inantly contains non-essential amino acids such as glutamine, asparagine, and aspartic
acid [7,9,10]. To overcome this dietary challenge, hemipteran insects commonly harbor
one or more obligate symbiotic bacteria such as Buchnera aphidicola in aphids, Carsonella
ruddii in psyllids, and Portiera aleyrodidarum in whiteflies [11–13]. These obligate symbiotic
bacteria synthesize essential amino acids for the host insect’s survival by utilizing sugars
and non-essential amino acids as substrates [5,9,14,15].

The suborder Auchenorrhyncha includes important agricultural pests such as leafhop-
pers, cicadas, spittlebugs, planthoppers, and treehoppers. Auchenorrhyncha usually harbor
two types of obligate symbiotic bacteria: “Candidatus Sulcia muelleri” (referred to as Sulcia)
and another symbiont from the phylum Proteobacteria such as “Candidatus Baumannia
cicadellinicola” (Baumannia), “Candidatus Zinderia insecticola” (Zinderia), “Candidatus Nasuia
deltocephalinicola” (Nasuia), or “Candidatus Hodgkinia cicadicola” (Hodgkinia) [16–19]. The
association of Auchenorrhyncha with Sulcia and betaproteobacterial symbionts dates back
more than 260 million years [17,20]. However, during the evolution of certain lineages of
these insects, the beta-proteobacterium have been replaced by other bacteria. For instance,
in some Cicadellinae species, the gammaproteobacterium Baumannia has taken over as the
symbiont, while in certain species of Cicadoidea, the alphaproteobacteria Hodgkinia has
taken over as the new symbiont [21–25]. In Auchenorrhyncha, Sulcia and its proteobacterial
partners collaborate to provide the host with ten essential amino acids that are absent
from their diet and cannot be synthesized by the insects themselves. Generally, Sulcia,
as the primary symbiont, is responsible for synthesizing eight amino acids, while the
secondary symbiont is responsible for synthesizing the remaining two essential amino
acids [9,14,16,17].

Maiestas dorsalis (Hemiptera, Auchenorrhyncha, Cicadellidea) is an important rice
pest and is found extensively in rice-producing regions across Asia. It poses a threat to
rice plants by causing direct damage through feeding and serves as a vector insect for
transmitting several rice virus pathogens such as rice gall dwarf virus, rice stripe mosaic
virus, and rice tungro virus [26,27]. In our previous study, we analyzed the bacterial
community structure and dynamics of M. dorsalis at different developmental stages using
high-throughput sequencing [28]. We discovered that Sulcia-Md and Nasuia-Md serve
as obligate symbiotic bacteria in M. dorsalis and are transmitted from the mother to the
offspring via the ovary. In this study, we investigated the distribution and transovarial
transmission of Sulcia-Md and Nasuia-Md in M. dorsalis. Additionally, we conducted a
genomic analysis of Sulcia and Nasuia using high-throughput sequencing to examine their
cooperative mechanism in providing essential amino acids to the host leafhopper.

2. Materials and Methods
2.1. Insect Rearing

Adult leafhoppers M. dorsalis were collected from a rice field in Jiaxing, Zhejiang
Province, China, in September 2020. The leafhoppers were then reared in an insect-proof
greenhouse for over two years under controlled conditions: 26 ± 1 ◦C temperature, a 16:8 h
light-to-dark cycle, and 50 ± 5% relative humidity. TaiChung Native 1 (TN1) rice was
cultivated in the same conditions for feeding the leafhoppers.

2.2. Tissue Sample Collection and Sequencing

To obtain bacteriocyte tissues for genomic DNA (gDNA) sequencing and investigate
the genomic information of the two primary symbiotic bacteria, Sulcia and Nasuia. Approx-
imately 500 adult leafhoppers of M. dorsalis were collected, and their bacteriomes were
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dissected in 95% ethanol. Total gDNA was extracted using the Qiagen DNeasy Extraction
Kit according to the manufacturer’s instructions. For Illumina sequencing, three genomic
DNA libraries were prepared with 500-bp, 5-kb, and 10-kb insertions using the Illumina
Nextera XT DNA Sample Prep Kit. The gDNA samples were then sequenced on the Il-
lumina MiSeq platform using the MiSeq Reagent Kit v3 by Novogene Corporation Inc
(Novogene, Beijing, China).

2.3. Genome Assembly and Annotation

Quality checks of the raw reads were performed using FastQC [29], followed by
adapter trimming with Trimmomatic [30]. The genome was de novo assembled with Velvet
1.2.10 [31], and putative contigs were identified by tblastx alignments to proteins from the
published Sulcia and Nasuia genomes. To fill gaps, we utilized paired-end long insert reads
and mate-pair reads with SSPACE [32]. Further enhancement of the genome assembly
was conducted using Pilon [33]. Genome completeness was evaluated with BUSCO v2,
which utilizes predefined lineage-specific sets of benchmarking universal single-copy
orthologs (BUSCOs) as a reference for gene content expectations. However, considering
the well-documented natural process of genome reduction in both Sulcia and Nasuia [17],
we included four representative species of Sulcia and two representative species of Nasuia
for comparison (Supplementary Table S1). Gene prediction for the assembled genomes of
Sulcia and Nasuia utilized prodigal, RNAmmer, RNAscan-SE, Rfam, and RepeatMasker
software. The predicted amino acid sequences were compared to various databases (COG,
GO, KEGG, NR, and Swiss-Prot) using NCBI BLAST. Annotations of genes and their
functions were combined to generate the annotation for Sulcia and Nasuia. Circos software
was used to display the genome, analyze noncoding RNA, and provide gene function
annotations, constructing a genome-wide map of the strain.

2.4. Phylogenetic Analysis

To investigate the phylogenetic relationship between Sulcia and its proteobacterial
partner and other Auchenorrhyncha, maximum likelihood (ML) and Bayesian inference (BI)
tree reconstructions were performed. A total of 52 16S rRNA sequences of Sulcia and Nasuia
from other Auchenorrhyncha insects were downloaded from the NCBI database. The 16S
gene sequences were aligned using MAFFT with default parameters [34]. ModelFinder
was used to determine the best-fit model using the Bayesian Information Criterion (BIC).
The GTR + F + I + G4 model was chosen for Bayesian analysis, while the GTR + I + G
model was selected for IQ-TREE. In the BI analysis, the settings included 2,000,000 Markov
chain Monte Carlo (MCMC) generations, sampling frequency of 100, and a burn-in of
25%. Maximum likelihood (ML) analyses were conducted using a heuristic search method
(10,000 random addition replicates tree-bisection-reconnection, TBR, branch swapping)
with 1000 bootstrap replications. PhyloSuite was used for MAFFT, ModelFinder, IQ-TREE,
Ultrafast bootstrap, and MrBayes [35–38].

2.5. Fluorescence In Situ Hybridization (FISH)

To investigate the distribution of Sulcia and Nasuia within the body of M. dorsalis,
30 ovaries and bacteriomes from adult female M. dorsalis at different days post-emergence
were dissected. The dissected samples were fixed overnight in 4 ◦C paraformaldehyde.
After fixation, the samples underwent pre-treatment in hybridization buffer (20 mM Tris-
HCl, 180 mM NaCl, 10% v/v SDS, 30% v/v formamide) for 15 min. Subsequently, the
samples were incubated in hybridization buffer containing 10 nM oligonucleotide DNA
probes targeting the 16S rRNA sequences of Sulcia-cy3 (5′-CTG AAT TAC AACGTA CAA
AAC CC-3′-Cy3) and Nasuia-FITC (5′-GTA CTA ATT CTT TTA CAA GCA CTT-3′-FITC)
(Sanggong, Shanghai, China) as previously mentioned, with minor adjustments. The
incubation took place at 50 ◦C for 4 h, followed by thorough washing with wash buffer
(0.15 M NaCl, 0.015 M sodium citrate). The samples were examined using a Leica TCS SP8
confocal microscope (Leica Microsystems, Wetzlar, Germany).
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2.6. Transmission Electron Microscopy

To investigate the subcellular distribution of Sulcia and Nasuia within the ovaries and
bacteriomes of M. dorsalis, 40 ovaries and bacteriomes from adult female M. dorsalis at
different days post-emergence were dissected. The samples were initially fixed with a
solution of 2% paraformaldehyde and 2.5% glutaraldehyde in PBS buffer at 4 ◦C overnight.
After several washes with PBS buffer, they were further fixed with 2% osmium tetroxide in
PBS buffer at 4 ◦C overnight. Following additional washes in PBS buffer, the fixed tissues
underwent dehydration using a series of ethanol concentrations (30%, 50%, 70%, 80%, 90%,
95%, and 100%) for 20 min each. The samples were then transferred to absolute acetone
for an additional 20 min. Subsequently, the samples were immersed in a 1:1 mixture of
Spurr resin and absolute acetone at room temperature for 1 h, followed by a transfer to a
3:1 mixture of Spurr resin and absolute acetone at room temperature for 3 h. Finally, the
samples were placed with absolute Spurr resin overnight. The prepared samples were
embedded in capsules containing an embedding medium and heated at 70 ◦C overnight.
For visualization of the specimen sections, they were stained with uranyl acetate and
alkaline lead citrate for 5–10 min each. The resulting images were obtained using a Hitachi
electron microscope HT7800.

3. Results

Distribution of Sulcia-Md and Nasuia-Md in the bacteriome of the leafhopper M. dorsalis:
Microscopic examination revealed the presence of a pair of oval or kidney-shaped

bacteriomes on both sides of the anterior abdomen segments 1–3 of M. dorsalis, ranging from
approximately 0.2 to 0.4 mm in length. The bacteriomes had a white, opaque appearance
(Figure 1A,B). The FISH results demonstrated distinct spatial distributions of the co-obligate
symbiotic bacteria within the bacteriomes. Sulcia-Md was predominantly localized in
the outer region of the bacteriome, while Nasuia-Md was restricted to the inner region
(Figure 1C–E). This distribution pattern was further confirmed through three-dimensional
reconstruction using confocal microscopy, where Nasuia-Md occupied the central region
of the bacteriomes and was enveloped by Sulcia-Md in the outer region (Figure 1F and
Supplementary Video S1). Electron microscopy observations also supported these findings,
showing a predominant distribution of darker-colored Sulcia-Md in the periphery of the
lighter-colored Nasuia-Md within the bacteriome.

3.1. Vertical Transmission Pathway of Sulcia-Md and Nasuia-Md in M. dorsalis

The female reproductive system of M. dorsalis consists of a pair of ovaries, each
containing multiple ovarian tubules. These tubules can be distinguished from top to bottom
as the terminal filament, germarium, ovarian tubules, and pedicel. The ovarian tubules
contain oocytes at different stages of development and are surrounded by a layer of follicle
cells. Between the primary oocytes and the pedicel, there is a specialized type of follicle
cells known as the epithelial plug (Figure 2A). The FISH results revealed a gradual invasion
of Nasuia-Md and Sulcia-Md into the ovaries of adult female M. dorsalis. At the early stages
of ovarian development, no discernible distribution of the symbiotic bacteria was observed.
As the ovary matured, both Sulcia-Md and Nasuia-Md progressively infiltrated the ovary
through the epithelial plug, ultimately reaching the developing primary oocyte located at
the base of the ovarian tube (Figure 2B,D). Finally, a “symbiont ball” was formed at the
posterior end of the primary oocyte (Figure 2C,E). Electron microscopy also confirmed the
entry of Sulcia-Md and Nasuia-Md into the ovary through the epithelial plug, ultimately
forming a “symbiont ball” at the posterior pole of the terminal oocyte (Figure 2F–I).

3.2. Co-Phylogenetic Analysis of Sulcia and Its Proteobacterial Partners

To investigate the phylogenetic relationship between Sulcia and its proteobacterial
partners in M. dorsalis and other Auchenorrhyncha insects, we conducted maximum like-
lihood (ML) and Bayesian inference (BI) tree reconstructions. We obtained 16S rRNA
sequences of Sulcia and its proteobacterial partners (including Nasuia, Baumannia, Zinde-
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ria, and Hodgkinia) from 52 insects belonging to three superfamilies, seven families, and
45 genera within Auchenorrhyncha (Supplementary Tables S2 and S3). Phylogenetic analy-
sis of Sulcia 16S rRNA revealed a consistent evolutionary relationship between Sulcia and
Auchenorrhyncha, supporting previous findings. Within the superfamily Membracoidea,
two distinct branches were identified, primarily composed of insects from the subfam-
ilies Cicadellinae and Deltocephalinae. Notably, Baumannia and Nasuia were found to
be the respective proteobacterial partners associated with these subfamilies (Figure 3, S1
and S2). The evolution of Sulcia and its proteobacterial partners generally shows consis-
tency, but there are differences observed among insect hosts of different species within
the same subfamily (Figure 3). This suggests a close correlation between the evolution of
Auchenorrhyncha insects and the presence of their obligate symbiotic bacteria. The mutual
replacement of proteobacterial partners may be indicative of variations in the host’s food
sources and nutritional requirements.
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Figure 1. The distribution of Sulcia and Nasuia in the bacteriome of the leafhopper M. dorsalis.
(A) Adult male leafhopper M. dorsalis. Bar, 1 mm. (B) The dissected bacteriome of M. dorsalis. Bar,
100 µm. (C–E) The distribution of Sulcia (green) and Nasuia (red) in the bacteriome of M. dorsalis
detected by FISH. Bar, 100 µm. (F) The distribution of Sulcia and Nasuia in the dissected bacteriome
of M. dorsalis detected by FISH. Bar, 100 µm. (G) The distribution of Sulcia (the region outside the red
dashed lines) and Nasuia (the region within the red dashed lines) in the bacteriome of M. dorsalis was
observed using TEM. Bar, 10 µm. All images are representative of at least three replicates.

3.3. Co-Obligate Symbiont Genome Characteristics for M. dorsalis

The genome sizes of Sulcia-Md and Nasuia-Md were determined to be 205,313 and
121,476 bp, respectively (Figure 4 and Table 1). Both symbionts exhibited low GC content,
which is typical in obligate symbioses: Sulcia-Md had a GC content of 24%, while Nasuia-
Md had a GC content of 16% (Table 1). Sulcia-Md contained 215 predicted protein-coding
sequences (CDS) including 21 encoding hypothetical proteins. It also possessed three
ribosomal cassettes, 31 tRNAs, and 10 CDS that were truncated or pseudogenized with
uncertain function (Figure 4A and Table 1). Nasuia-Md, on the other hand, had 168 CDS,
with 144 encoding hypothetical proteins. It had two ribosomal cassettes, 30 tRNAs, and
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one identifiable pseudogene (Figure 4B and Table 1). Our assembly was complete as the
proportion of missing BUSCO marker genes in the Sulcia-Md draft assembly and Nasuia-Md
draft assembly fell well within the range of the previously completely sequenced Sulcia
and Nasuia genomes, respectively (Supplementary Figure S3).
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Figure 2. The process of Sulcia and Nasuia entering the oocyte in adult female M. dorsalis. (A) The
ovarian structure of the leafhopper M. dorsalis. Bar, 200 µm. (B–E) The distribution of Sulcia and
Nasuia within the ovarian epithelial plug as well as their entry into the posterior pole of mature
oocytes in female ovaries, resulting in the formation of a “symbiont ball”. Scale bars in (B,C): 200 µm;
(D,E): 50 µm. (D,E) are enlargements of the boxed area in (B,C), respectively. (F–I) TEM observations
revealed the distribution of Sulcia and Nasuia within the ovarian epithelial plug and the symbiont
ball inside the primary oocytes. Scale bars in (F,H): 10 µm; (G,I): 5 µm. I is an enlargement of the
boxed area in H. TF, terminal filament; Gr, germarium; O, oocyte; Fc, follicular cell; Ep, epithelial
plug; Pd, pedicel; Sb, symbiont ball; S, Sulcia; N, Nasuia. All images are representative of at least three
replicates.

The examination of the gene content in Sulcia-Md and Nasuia-Md revealed a substan-
tial level of gene loss in both bacteria. In Sulcia-Md, only genes associated with fundamental
processes such as replication, transcription, and translation were retained. These included
genes encoding subunits of DNA and RNA polymerases, enzymes involved in RNA modi-
fication, ribosomal proteins, and a limited number of genes involved in energy synthesis
(Figure 5). In contrast, Nasuia-Md exhibited an even greater degree of gene loss. It not only
lacked a significant number of genes related to replication, transcription, and translation,
but also all genes associated with energy synthesis (Figure 5).
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Figure 4. Circular representation of the genomes of co-obligate symbiotic bacteria, Sulcia (A) and
Nasuia (B), in M. dorsalis. In the chromosomal DNA map, from the outermost to inner, the circles
show (1) protein-coding genes on the forward strand and reverse strand; (2) tRNA genes; (3) rRNA
genes; (4) GC content; (5) GC skew; (6) scale marks of the genome.
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Table 1. Genome statistics of Sulcia-Md and Nasuia-Md.

Feature Sulcia-Md Nasuia-Md

Genome size (bp) 205,313 bp 121,476 bp
G + C content (%) 24 16

Protein-coding genes (CDS) 215 168
CDS average length (bp) 842 367

Percent of coding region (%) 88.18 50.8
rRNA (5S, 16S, 23S) 3 2

tRNA 31 30
Genes with function prediction 194 24
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3.4. Analysis of the EEA Synthesis Pathway of the Obligate Symbiotic Bacteria Sulcia-Md and
Nasuia-Md in M. dorsalis

Previous investigations have demonstrated that the obligate symbiotic bacteria Sul-
cia-Md and its proteobacterial partners in Auchenorrhyncha insects primarily play a role
in providing the host insects with ten essential amino acids (EAA) [17]. Therefore, we
conducted an analysis of the amino acid synthesis pathways in Sulcia-Md and Nasuia-Md
of M. dorsalis. Sulcia-Md retained the synthesis pathways for eight essential amino acids:
threonine, isoleucine, lysine, leucine, valine, arginine, phenylalanine, and tryptophan.
However, it lacked two proteins involved in the lysine synthesis pathway, namely, succinyl-
diaminopimelate desuccinylase (DapE) and diaminopimelate decarboxylase (LysA). Addi-
tionally, it exhibited a deficiency in the enzyme argininosuccinate lyase (ArgH), which is
essential for the final step of the arginine synthesis pathway.

Nasuia-Md possessed the ability to synthesize two EAA, histidine, and methionine.
The synthesis of methionine involved cooperative efforts between Nasuia-Md and Sul-
cia-Md, with Nasuia-Md utilizing homoserine, an intermediate product of the threonine
synthesis pathway in Sulcia-Md, as a precursor for methionine synthesis. However, both the
histidine and methionine synthesis pathways in Nasuia-Md were incomplete. The histidine
synthesis pathway lacked two vital proteins, phosphoribosyl-AMP cyclohydrolase (HisL)
and histidinol-phosphate aminotransferase (HisC). Similarly, the methionine synthesis path-
way was deficient in homoserine O-succinyltransferase (MetA) and cysteine-S-conjugate
beta-lyase (MetC).
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4. Discussion

Auchenorrhyncha insects have adapted to a diet of nutrient-deficient plant sap.
Through a lengthy evolutionary process, they have established complex symbiotic re-
lationships with at least two obligate bacterial symbionts to obtain essential amino acids
that are lacking in their diet [9,14,16,17]. Approximately 260 to 280 million years ago, the
ancestors of Auchenorrhyncha formed a symbiotic relationship with a Sulcia and betapro-
teobacterial symbionts [17,20]. As this group diversified, many lineages acquired additional
symbionts from the proteobacterial phylum. Sulcia and its proteobacterial partners reside
in specialized insect-specific tissues known as bacteriomes and are vertically transmitted
through the ovaries to ensure their transmission across generations [17,20,39]. This study
focused on the symbiotic associations in M. dorsalis. Our findings revealed that Sulcia-Md
primarily inhabits the outer region of the bacteriomes, while Nasuia-Md is confined to
the inner region (Figure 1). Both Sulcia-Md and Nasuia-Md follow a previously reported
pathway to enter the ovaries through the epithelial plug and eventually reach the devel-
oping mature oocytes (Figure 2). Interestingly, the bacteriomes of M. dorsalis exhibited a
milky-white color (Figure 1B), which was in contrast to the pale yellow color observed in
the bacteriomes of Nephotettix cincticeps and Dalbulus maidis [39,40].

The primary endosymbiont in Auchenorrhyncha, Sulcia, is believed to have originated
from a single ancient infection event [17,20]. Recent studies have demonstrated a strong cor-
relation between the phylogenies of Sulcia and its host insects, indicating a co-diversification
process that has occurred over millions of years [41]. In ancestral Auchenorrhynchans,
Sulcia co-resided with another symbiont from the class Betaproteobacteria [17,20]. Among
the many phloem-feeding auchenorrhynchans, the presence of ancestral Betaproteobac-
terial symbionts is prevalent. For instance, in most leafhoppers, Sulcia co-occurs with
Nasuia; in most froghoppers with Zinderia; in some planthoppers with Candidatus Vidania
fulgoroidea [10,17–19,39]. However, the scenario changes for xylem-feeding auchenorrhyn-
chans, where a gradual transition to different proteobacterial partners is observed. Cicadas
co-occur with Hodgkinia (Alphaproteobacteria), sharpshooters with Baumannia (Gammapro-
teobacteria), and spittlebugs with Sodalis-like symbiont (Gammaproteobacteria) [42–44].
Notably, certain auchenorrhynchans have a third associate in addition to the bacterium Sul-
cia and its co-symbiont. In leafhopper Ledropsis discolor, Sulcia is accompanied by yeast-like
symbionts. Likewise, in some leafhopper species and Delphacidae planthoppers, ancestral
bacterial symbionts have been replaced by yeast-like symbionts [25,45,46]. This suggests
that the replacement of symbionts was continuous and independent during the evolution
of Auchenorrhynchans. As a result of this dynamic symbiosis, the phylogenies of Sulcia and
its proteobacterial partners show rough correlations. However, there is also some variation
in the phylogeny within the group, likely due to the changing associations between the
auchenorrhynchans and their symbionts over evolutionary time. This complexity under-
scores the intricate relationships between Auchenorrhynchans and their symbiotic partners,
which have shaped their evolutionary history in unique ways (Figure 3, Figures S1 and S2).

In obligate bacterial symbionts, a close and specialized association with their insect
hosts is observed as they reside within specific cells or tissues. These symbionts rely
on crucial cellular functions of the host for their survival and are transmitted vertically
across insect host generations to maintain their presence [1,2,8]. One notable feature of this
symbiotic relationship is the significant genome reduction observed in obligate symbiotic
bacteria. This reduction is a consequence of their long-term residence within specialized
host cells (bacteriomes) and their vertical transmission over millions of years [8–10,17]. In
some extreme cases, obligate symbionts retain only a minimal genetic capacity, sufficient
for essential life processes such as replication, transcription, and translation [17,47–49].
Despite this genomic minimalism, they manage to retain genes associated with the synthesis
pathways of essential nutrients required by the host [17,47,48]. The genomic analysis of
Sulcia-Md and Nasuia-Md supports these characteristics. The Sulcia-Md genome retains
genes related to fundamental processes such as replication, transcription, and translation,
along with a limited number of genes involved in energy synthesis (Figure 5). In contrast,
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Nasuia-Md lacks a significant number of genes related to replication, transcription, and
translation as well as all genes associated with energy synthesis (Figure 5). However,
both Sulcia-Md and Nasuia-Md genomes maintain the majority of genes involved in the
synthesis pathways of the 10 essential amino acids required by the insect host (Figure 6).
In summary, the close association and genome reduction observed in obligate bacterial
symbionts highlight the coevolutionary dynamics between these symbionts and their insect
hosts, ultimately leading to their interdependence and the retention of essential functional
traits.
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Figure 6. The biosynthetic pathways of the 10 EAAs in the co-obligate symbiotic bacteria, Sulcia and
Nasuia, in M. dorsalis. Each circle represents a step in the pathway, with gene abbreviations displayed
on top. Colored circles indicate the presence of the corresponding gene, while white circles represent
the absence of the gene. Green circles and yellow circles represent genes encoded by Sulcia and
Nasuia, respectively.

In Auchenorrhyncha insects, Sulcia and its proteobacterial partners collaborate to
provide the insect host with 10 essential amino acids [42,50]. Typically, Sulcia is responsible
for synthesizing eight essential amino acids (leucine, isoleucine, threonine, lysine, arginine,
tryptophan, phenylalanine, and valine), while the proteobacterial partners (such as Nasuia,
Baumannia, and Hodgkinia) are responsible for synthesizing the remaining two essential
amino acids (histidine and methionine) and riboflavin (vitamin B2) [17,50–52]. In the
spittlebug, Zinderia can synthesize three essential amino acids (methionine, histidine, and
tryptophan) and riboflavin (vitamin B2), while Sulcia synthesizes the remaining seven
essential amino acids [53]. In the planthoppers Purcelliella pentastirinorum and Oliarus
filicicola, Sulcia is only responsible for synthesizing leucine, isoleucine, and valine, while the
remaining seven amino acids are synthesized by Vidania fulgoroidea [51,52]. These variations
in amino acid synthesis combinations may result from adaptive changes that have occurred
during the coevolution of different host insects and their symbiotic bacteria to meet the
specific nutritional requirements of the host.

In M. dorsalis, the obligate symbiont Sulcia-Md retains most of the genes necessary
for synthesizing eight EAAs. However, it lacks some key genes, specifically DapE and
LysA in the lysine synthesis pathway as well as ArgH in the arginine synthesis pathway.
Similarly, Nasuia-Md is responsible for synthesizing two essential amino acids, histidine
and methionine. Nevertheless, both the histidine and methionine synthesis pathways are
incomplete due to the absence of crucial proteins HisL and HisC in the histidine pathway
as well as MetA and MetC in the methionine pathway. It is not uncommon for insect
symbiotic genomes to lose essential genes involved in critical initiation, intermediate, and
final catabolic steps in nutritional synthesis [54]. Recent research has provided insights into
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a possible mechanism that compensates for the missing genes in the essential amino acid
synthesis pathways of symbiotic bacteria. Studies on the primary symbiont Buchnera of
aphids have revealed that it lacks a critical gene, aspartate aminotransferase (aspC), in the
phenylalanine synthesis pathway [7,54]. Interestingly, transcriptomic data from the pea
aphid-Buchnera symbiosis indicate that insect-encoded genes for aspartate aminotransferase
are upregulated in the bacterial symbiont [7,54]. This upregulation suggests that the insect-
encoded proteins may complement the incomplete phenylalanine biosynthetic pathway
in Buchnera. Moreover, in other leafhoppers belonging to the Cicadellidae family, Nasuia
is known to contribute to the synthesis of riboflavin (vitamin B2). However, our analysis
did not reveal the presence of the riboflavin synthesis pathway in Nasuia-Md of M. dorsalis.
This discrepancy in riboflavin synthesis could potentially explain the variation in color
between the bacteriome of M. dorsalis and other leafhoppers, as riboflavin is recognized for
its orange-yellow pigmentation [14]. In summary, this study provides a detailed description
of the distribution of two obligate symbiotic bacteria, Sulcia-Md and Nasuia-Md, within
the leafhopper M. dorsalis as well as their vertical transmission process within the insect.
Additionally, the study investigated their nutritional symbiotic relationship with the host
insect. These findings contribute to a deeper understanding of the coevolutionary processes
and nutritional interactions in Auchenorrhyncha, contributing to our knowledge of the
intricate symbiotic relationships in nature.
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16S rRNA genes; Figure S3: Assessment of genome completeness for Sulcia (A) and Nasuia (B); Table
S1: Genomes used in genome completeness comparisons; Table S2: Sulcia 16S rRNA sequences for
Phylogenetic Analysis; Table S3: Proteobacterial partners 16S rRNA sequences for Phylogenetic
Analysis; Video S1: The distribution of Sulcia and Nasuia in the bacteriome of M. dorsalis.
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