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Simple Summary: Apriona rugicollis Chevrolat, 1852 is an important phytophagous pest that mainly
affects plants of the Moraceae, Salicaceae, and Ulmaceae families. In this study, an ensemble model
was used to predict the potential habitats of A. rugicollis and their areas of change under current and
future climate change conditions. The results show that the habitat of A. rugicollis will gradually
expand to northern China and Hokkaido, Japan, in the future with global climate change, suggesting
that it is necessary to establish an early warning and monitoring network in these regions to prevent
its further spread and thus potential damage to host plants. This study provides a theoretical and
scientific basis for the prevention and control of the spread of A. rugicollis.

Abstract: Effective use of species distribution models can assess the risk of spreading forest pests. In
this study, based on 434 occurrence records and eight environmental variables, an ensemble model
was applied to identify key environmental factors affecting the distribution of Apriona rugicollis
Chevrolat, 1852 and predict its potential habitat and its relative areas of change under current and
future climatic conditions. The results indicate that humidity, solar radiation, topography, and human
activities were the main factors influencing the distribution of A. rugicollis. Under the current climate
scenario, suitable habitats are mainly concentrated in East Asia, including North Korea, South Korea,
Japan, Myanmar, Vietnam, and China. Under future climate scenarios, the area of suitable habitat for
A. rugicollis gradually increases, especially in China and Japan, which are at high risk of spreading.
In addition, the suitable habitat of A. rugicollis will expand northeastward to higher latitudes. The
results of this study provide an important scientific basis for policymakers to formulate strategies for
monitoring and controlling A. rugicollis in response to climate change.

Keywords: Apriona rugicollis; species distribution model; ensemble model; climate change;
human activities

1. Introduction

Increased greenhouse gas emissions resulting from intensified human activities have
significantly altered the global climate [1]. Global warming events not only affect global
temperatures and precipitation patterns but also have a profound impact on the ranges and
habitats of species in ecosystems, with a particularly pronounced effect on insects [2]. As
important components of ecosystems, insects play an integral role in maintaining ecological
balance, promoting biodiversity, and facilitating ecological processes [3]. As climate change
intensifies, the habitats of many insects are changing, posing a potential threat to ecological
balance [4]. Global warming has led to an increase in the frequency of extreme weather,
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accelerating the movement and expansion of insect habitats, and some insects have begun to
migrate to higher latitudes or higher altitudes in search of suitable living environments [5].
This migration not only affects the survival and reproduction of the insects themselves but
may also disrupt their interrelationships with host plants, which in turn affects the health
of the entire forest ecosystem [6,7]. In addition, although relatively few studies have been
conducted on the effects of human activities on the distribution ranges of insects, it has
been shown that human activities, especially deforestation, urbanization, and agricultural
development, indirectly affect the distribution patterns of insect populations through a
variety of ways, including changes in habitat structure, food resource availability, and
habitat connectivity [8–10]. In order to effectively address these challenges, it is important
to enhance the prediction of potential distribution areas of pests and develop adaptation
and mitigation strategies based on the prediction results. These strategies will provide
scientific support for ecosystem management and sustainable development and help to
better protect and utilize forest resources.

Species distribution models (SDMs), as an important modeling tool in ecology and
biogeography, are effective in predicting the potential distribution of species under different
environmental conditions [11]. Correlative species distribution models (SDMs) simulate
suitable habitats for species by combining statistical and machine learning algorithms
using their occurrence records and environmental variables and are irreplaceable in as-
sessing the potential impacts of climate change on species distribution [12,13]. SDMs
help ecologists and policymakers gain a deeper understanding of species’ responses to
climate change, thus providing a scientific basis for developing effective conservation
measures [14]. Ensemble models (EM) are considered to be more reliable and powerful for
predicting species distribution in SDMs. Compared with a single model, EM can predict
results more accurately by integrating the outputs of multiple models [15]. EM is widely
used in biodiversity conservation planning, invasive species management, assessing the
impacts of climate change, and pest monitoring [16]. Especially in pest management, it can
provide a scientific basis for managers to carry out monitoring and control by predicting the
potential distribution areas of pests, which not only helps to formulate targeted monitoring
and management strategies but also significantly improves preventive measures [17,18].
By applying EM, we can more effectively protect ecosystems and forest production and
reduce the negative impacts of pests.

Apriona rugicollis Chevrolat, 1852 (Coleoptera, Cerambycidae, Lamiinae) is an impor-
tant polyphagous longhorn beetle, widely distributed in North Korea, South Korea, Japan,
and China in East Asia and mainly infesting Moraceae, Salicaceae, and Ulmaceae, including
economically important species grown for fruit, timber, bonsai cultivation, and silkworm
cultivation (mulberry) [19]. Larval feeding activity may hollow out smaller branches,
causing die-back and collapse, and attack by multiple larvae can weaken and kill entire
trees and increase their susceptibility to windbreak [20]. Attacked mulberry trees become
stunted, and fig trees die-back and fail to fruit [21]. Adults feeding on the bark or leaves of
shoots can cause the lower sapwood to die or even trigger the drying out of the entire plant,
producing an infestation that may be localized over a large area, seriously affecting the
health and growth of the tree [22]. A. rugicollis not only has a severe impact on tree growth
but also causes significant economic and ecological losses. Although no specific economic
losses have been explicitly reported in the literature, the area of forest damaged by the feed-
ing behavior of A. rugicollis continues to expand [23]. Its spread not only exacerbates local
ecological degradation but also poses a serious challenge to the sustainable management
of forest resources [24]. Therefore, understanding the potential habitat and distribution of
A. rugicollis under future climate scenarios will help decision-makers conduct monitoring,
prevention, and management programs within forest production areas to safeguard the
health of forest production.

Understanding the habitat suitability of pests under future climate scenarios is essen-
tial for ensemble pest management. In this study, we used an optimized ensemble model
to analyze potential areas of relative change in the geographic distribution of A. rugicollis
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under different current and future climate conditions. The main objectives of the study
included the following: (1) identifying key environmental variables affecting the distribu-
tion of A. rugicollis; (2) comparing differences in the extent and area of the distribution of
A. rugicollis habitat in the current period under scenarios with and without anthropogenic
activities; (3) predicting future changes in the potential geographic distribution area of
A. rugicollis and its area under different climate change scenarios; and (4) analyzing the
spatial distribution dynamics of A. rugicollis and its future development trend. The results
of the study reveal the far-reaching impacts of climate change on the distribution of A.
rugicollis and provide theoretical support and a practical basis for the scientific formulation
of management strategies and countermeasures.

2. Materials and Methods
2.1. Species Occurrence Data

To construct A. rugicollis occurrence data for use in Biomod2 modeling, we collected
data from multiple reliable sources. These sources include (1) literature and online refer-
ences (CNKI, https://www.cnki.net, accessed on 1 October 2024; WOS, and https://www.
webofscience.com/wos; NACRC, http://museum.ioz.ac.cn, accessed on 1 October 2024;
(2) Global Biodiversity Information Facility (GBIF) (https://doi.org/10.15468/dl.kb7hbz,
accessed on 2 October 2024); (3) iNaturalist (https://www.inaturalist.org, accessed on
1 October 2024); (4) European and Mediterranean Plant Protection Organization (EPPO)
Database (https://gd.eppo.int/taxon/APRIJA/distribution, accessed on 30 September
2024); and (5) data from field surveys conducted by researchers from 2013 to the present
in various provinces in China. For records lacking specific latitude and longitude infor-
mation, we used Google Earth software (http://ditu.google.cn, accessed on 8 October
2024) to obtain the geographic centroid of the corresponding administrative division as the
approximate latitude and longitude coordinates based on its geographic description. With
these diverse data sources, we collected a total of 1017 distribution points (Figure 1), which
provided sufficient data support for the construction of the ensemble model.
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the quality of the dataset and minimize potential bias caused by spatial clustering, which
improves the prediction accuracy and robustness of the model [25]. The sparsification
distance was aligned with the size of the environmental factor grid cells, which was
used to eliminate redundant data recorded multiple times in the same grid, thus further
optimizing model performance. Ultimately, we retained 434 occurrences of A. rugicollis for
the construction of the ensemble model.

2.2. Environmental Variables Data

In this study, in order to analyze and predict the potential current and future distri-
bution areas of A. rugicollis, we downloaded 19 bioclimatic variables at a resolution of
2.5 arc-minutes (4.6 km) from the WorldClim climate database (https://www.worldclim.
org, accessed on 20 December 2023). Among them, current climate conditions were based
on observational records from 1970–2000, while future climate data were adopted from
the Beijing Climate Center Climate System Model (BCC-CSM2-MR) of the Sixth Inter-
national Coupled Model Intercomparison Project (CMIP6) [26]. For future climate data
from 2041–2060 (2050s) and 2061–2080 (2070s), four shared socioeconomic pathway (SSP)
scenarios were selected for the future scenario simulations, namely the low forcing scenario
(SSP1-2.6), the medium forcing scenario (SSP2-4.5), the medium-high forcing scenario
(SSP3-7.0), and the high forcing scenario (SSP5-8.5). These scenarios are based on different
socio-economic development paths and reflect the future socioeconomic development plans
of each country [27]. Meanwhile, elevation data for 2.5 arc-minutes were downloaded
from WorldClim, and slope and aspect data were extracted using ArcGIS Map (version
10.8.1) software (WGS 1984). We also downloaded solar radiation data from the Helmholtz
Center for Environmental Research (https://www.ufz.de/gluv, accessed on 20 January
2024). In addition, we downloaded human activity data from the Socioeconomic Data and
Applications Center (https://sedac.ciesin.columbia.edu, accessed on 15 January 2024), in-
cluding the global human impact index, the global human footprint, and global population
density. World and administrative division maps were obtained from the standard map
service website of the National Bureau of Surveying, Mapping and Geographic Informa-
tion (http://bzdt.ch.mnr.gov.cn/index.html, accessed on 9 December 2023). Finally, we
used the “Resample” and “Extract” tools in the ArcGIS Map software to normalize the
31 environmental variables into a uniform format for subsequent analysis and modeling.

The selection and treatment of environmental variables are extremely critical when
constructing species distribution models because high correlations between variables may
trigger autocorrelation and multicollinearity problems, which can have an impact on the
accuracy of model predictions [28,29]. To address these issues, we assessed the correlations
among 31 environmental variables and used the variance inflation factor (VIF) to check
for multicollinearity. Following Mulatu et al. [30] approach, we first performed a Pearson
correlation analysis (Figure 2) on the 31 bioclimatic variables using the “car” package
(version 3.1.2) in the R (version 4.4.1) software and selected the variables with correlation
coefficients |r| ≤ 0.7 for modeling. When the correlation coefficient |r| > 0.7 between
two variables, the “usdm” package (version 2.1.7) was used to exclude variables with high
VIF value (VIF > 10) to avoid multicollinearity problems. Finally, eight environmental
factors (Table 1) were selected that were relatively independent and had a large impact on
model predictions, and these variables ensured the accuracy and reliability of the model.

https://www.worldclim.org
https://www.worldclim.org
https://www.ufz.de/gluv
https://sedac.ciesin.columbia.edu
http://bzdt.ch.mnr.gov.cn/index.html
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Figure 2. Correlation among the 31 environmental variables.

Table 1. Environmental variables and screening results based on Pearson’s correlation of |r| > 0.7
and VIF > 10.

Abbreviation Environmental Variables Operation (|r| > 0.7)

Bio1 Annual mean temperature (◦C) Eliminate
Bio2 Mean diurnal range (◦C) Eliminate
Bio3 Isothermality (BIO2/BIO7) (×100) Eliminate

Bio4 Temperature seasonality (standard
deviation ×100) Eliminate

Bio5 Maximum temp of warmest month (◦C) Eliminate
Bio6 Minimum temp of coldest month (◦C) Eliminate
Bio7 Temperature annual range (◦C) Eliminate
Bio8 Mean temp of wettest quarter (◦C) Eliminate
Bio9 Mean temp of driest quarter (◦C) Eliminate

Bio10 Mean temp of warmest quarter (◦C) Eliminate
Bio11 Mean temp of coldest quarter (◦C) Eliminate
Bio12 Annual precipitation (mm) Eliminate
Bio13 Precipitation of wettest month (mm) Eliminate
Bio14 Precipitation of driest month (mm) Eliminate

Bio15 Precipitation seasonality (mm)
(Coefficient of Variation) Retain

Bio16 Precipitation of wettest quarter (mm) Eliminate
Bio17 Precipitation of driest quarter (mm) Eliminate
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Table 1. Cont.

Abbreviation Environmental Variables Operation (|r| > 0.7)

Bio18 Precipitation of warmest quarter (mm) Eliminate
Bio19 Precipitation of coldest quarter (mm) Retain
Bio20 Elevation (m) Retain
Bio21 Slope Retain
Bio22 Aspect Retain
Bio23 Annual_mean_UV-B Eliminate
Bio24 UV-B_seasonality Retain
Bio25 Mean_UV-B_of_highest_month Eliminate
Bio26 Mean_UV-B_of_lowest_month Eliminate

Bio27 Sum_of_UV-
B_radiation_of_highest_quarter Eliminate

Bio28 Sum_of_UV-
B_radiation_of_lowest_quarter Eliminate

Bio29 Global human footprint Retain
Bio30 Global human influence index Eliminate
Bio31 Population density Retain

2.3. Algorithms, Construction, and Validation of Ensemble Models

We conducted a habitat suitability analysis of A. rugicollis using the “Biomod2” pack-
age (version 4.2.5), combining the predictions of 11 different models through an ensemble
modeling approach to improve the predictive accuracy of the models in a weighted average
manner (Wmean) [31]. Models provided by Biomod2 include the Generalized Linear Model
(GLM), the Generalized Additive Model (GAM), Multivariate Adaptive Regression Spline
(MARS), Flexible Discriminant Analysis (FDA), Random Forest (RF), Maximum Entropy
Model (MAXENT), Generalized Boosting Model (GBM), Classification Tree Analysis (CTA),
Artificial Neural Networks (ANNs), Surface Range Envelope of the Profile Model (SRE)
and Extreme Gradient Boosting (XGBOOST) [32].

In this study, we used AUC (Area Under the Receiver Operating Characteristic Curve)
and TSS values (True Skill Statistic) as the core metrics for assessing and validating the
accuracy of the model [33,34]. The AUC value is one of the most important measures of
model accuracy and predictive performance and is used to assess the overall performance
of a model by quantifying its classification ability [35]. The value of AUC ranges from 0
to 1, and the larger the AUC value, the better the prediction performance of the model,
indicating that the model is more effective in distinguishing between the actual distribution
and non-distribution areas of the species. Although AUC values are widely used in SDMs,
they are not the only criteria for assessment [36]. The TSS value is a statistic based on
the confusion matrix that combines the sensitivity (quantification of omission error) and
specificity (quantification of commission error) of the model. TSS values range from −1 to
1, with values closer to 1 indicating a better predictive ability of the model, while values
closer to 0 or negative values indicate a poorer predictive effect of the model. By combining
the two complementary metrics, AUC and TSS value, we are able to assess the reliability
and validity of the model in a more comprehensive manner, thus further deepening our
understanding of the model’s predictive performance.

We first performed a preliminary analysis of these 11 models, selecting only those
with AUC values greater than 0.9 and TSS values greater than 0.7 as the base models for
final modeling. The modeling dataset was divided into 80% species occurrence records as a
training set and 20% as a test set, in addition to 1000 randomly generated pseudo-absence
points. In order to enhance the confidence of the models, 10 repetitions of each model were
performed, and a k-fold cross-validation method was used to reduce model variance and
improve consistency across different data subsets. At the same time, the model parameters
were optimized using the auto-tuning strategy (tuned) provided by the Biomod2 package
to obtain better predictive performance. Finally, based on the best-performing models,
we calculated the contribution of each environmental variable in the ensemble model
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and created response curves of species survival probabilities to key variables to gain a
comprehensive understanding of the impact of these variables on A. rugicollis distributions.

2.4. Analyzing the Potential Distribution of A. rugicollis Under Current and Future Scenarios

We investigated the effects of natural environmental variables and human activities on
the geospatial distribution pattern of A. rugicollis by building two different ensemble models:
(1) prediction using only natural environmental factors (including current bioclimate +
topography + solar radiation) for the current period; (2) predictions using current natural
environmental factors and human activity data (including global human footprint, global
human impact index, and population density). In addition, on the basis of model (1),
the area of distribution at a future time is predicted (future extension of model 1) by
combining future natural environmental factors (including future bioclimatic + topographic
+ solar radiation). Models (1) and (2) were based on current climate patterns to assess
anthropogenic impacts on the habitat suitability of A. rugicollis. In contrast, model (1) and its
future extensions explore the potential impacts of climate change on the habitat suitability
of A. rugicollis by comparing current and future climate patterns. These models reveal the
relative importance of natural factors and human activities in species distribution.

The predictions generated by the ensemble models are presented as a continuous
ASCII raster layer, where each pixel represents a probability of presence (P) value for
A. rugicollis, ranging from 0 to 1000. We generate binary maps based on the specificity
threshold of the TSS value by classifying regions with presence probability values below the
threshold as unsuitable and regions above the threshold as suitable [37]. This classification
can visualize the suitable and unsuitable areas for A. rugicollis, which can help to further
analyze the distribution pattern of A. rugicollis and its relationship with environmental
factors.

2.5. Spatial Distribution Dynamics of A. rugicollis and Movement Paths of Potential Geographic
Distribution Centers Under Different Future Climate Scenarios

We used the Biomod2 package to assess changes in the distribution of A. rugicollis
under different future climate change scenarios by analyzing binomial maps under different
future climate change scenarios in comparison with those under current climate scenarios.
The results of the changes were categorized into four groups: “Expansion” (species range
increase), “No occupancy” (no distribution in both current and in the future), “No change”
(species range remains unchanged), and “Shrinking” (species range decreases). We also
used the “Centroid Changes (Lines)” tool in the “SDMToolbox” package (version 2.6) to
identify potential centers of geographic distribution of A. rugicollis at different times in the
current and future [38]. By linking the centers of distribution in different time periods and
under different carbon emission scenarios, the spatial trajectories of suitable habitats for
A. rugicollis under future climate conditions were mapped. This analysis not only reveals
the response patterns of species to climate change but also provides an important spatial
reference for predicting future changes in the spatial distribution of species.

3. Results
3.1. Accuracy of the Ensemble Model

In this study, the accuracy of the ensemble models in predicting the distribution of
A. rugicollis was assessed by AUC values and TSS values. The models were run 10 times,
and we obtained average TSS and AUC values for the 11 models. The results show that
when using only natural environment factors, ANN, GAM, and SRE were excluded from
the ensemble model due to their low TSS and AUC values, and we chose RF, CBM, CTA,
XGBOOST, MAXENT, MARS, FDA, and GLM to construct the ensemble model. When
adding human activity variables, we chose ANN, RF, CBM, CTA, XGBOOST, MAXENT,
MARS, FDA, and GLM to construct the ensemble model (Figure 3).
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Figure 3. Accuracy evaluation of eleven single models: (A) natural environmental; (B) natural
environmental + human activity.

When considering only the natural environment factor, the ensemble model had an
AUC value of 0.99 and a TSS value of 0.89. However, after adding the human activity
variable, the AUC value was 0.98, and the TSS value was 0.87 (Table 2). This demonstrates
the high predictive ability and accuracy of the two ensemble models to effectively pre-
dict and validate the distribution of A. rugicollis and, likewise, further demonstrates the
generalization ability and stability of the models.

Table 2. Accuracy evaluation of ensemble model.

Shared Socioeconomic Pathways Sensitivity Specificity TSS ROC

Natural environmental 0.95 0.94 0.89 0.99
Natural environmental + Human activity 0.94 0.93 0.87 0.98

3.2. Assessment of Environmental Variables

The results of the study show that the weights of the eight environmental variables
varied across SDMs. Specifically, when only natural environmental factors were consid-
ered, precipitation seasonality (Bio15, 8.2%), precipitation of the coldest quarter (Bio19,
48.9%), and UV-B_seasonality (Bio24, 37.0%) had a significant effect on the distribution
of A. rugicollis, with a cumulative contribution of 94.1%. The main variables affecting
the potential geographic distribution of A. rugicollis under the combined effect of natural
environmental factors and human activities were the precipitation of the coldest quarter
(Bio19, 12.8%), UV-B_seasonality (Bio24, 33.1%), global human footprint (Bio29, 16.9%),
and population density (Bio31, 30.4%), with a cumulative contribution of 93.2%. Despite
the variation in the contribution of each environmental factor, Bio19 and Bio24 remained
the most dominant natural environmental factors. It is noteworthy that the addition of
human activities decreased the contributions of Bio15, Bio19, and Bio24 by 7.4%, 36.1%,
and 3.9%, respectively, while the contribution of Bio22 increased by 3.6% (Figure 4). This
variation suggests that bioclimate, solar radiation, and human activities together influence
the suitability of A. rugicollis distribution.
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In addition, Figure 5 illustrates the response curve of the distribution probability of
A. rugicollis, revealing the optimum range of natural environmental factors and human
activities on its distribution. The response curves showed that the distribution proba-
bility of A. rugicollis increased sharply to the highest point with the increase in Bio19
(Bio19 = 264.1818 mm; P = 0.8629) and then gradually and slowly declined after it entered
into the optimum survival range. Bio24 reached its optimum value at 134,541.7 with a
survival probability (P) of 0.8276, indicating that bioclimatic factors and solar radiation are
key factors in maintaining the distribution of A. rugicollis. Similarly, the response curves of
Bio29 and Bio31 showed that the distribution probability of the species gradually increased
as the intensity of human activities increased, indicating that human activities showed
a positive correlation in affecting its geospatial distribution, and these results together
reveal that the natural environment and human activities are key factors influencing the
distribution of A. rugicollis.

3.3. Habitat Suitability for the Current Period

The area and region of distribution of A. rugicollis in the current period were predicted
using an ensemble model (Figure 6). The results show that A. rugicollis was mainly dis-
tributed in East Asia, mainly concentrated in North Korea, South Korea, Japan, Myanmar,
Vietnam, and China. The model prediction results are highly consistent with the actual
observed distribution, which again verified the accuracy and practicality of the model.
The total area of suitable habitat for A. rugicollis was 255.58 × 104 km2 when only natural
environmental factors were considered (Table 3). However, when the effects of human
activities were further included, the total area of suitable habitat was 243.75 × 104 km2,
a decrease of 11.83 × 104 km2, and the areas of decrease were mainly located in Kachin
State, Myanmar, Guangxi, Guangdong, Fujian, Jiangxi, Hunan, Hubei, Shandong, and
Henan, China, which indicating that the increase in human activities not only changed the
distribution pattern of A. rugicollis but also reduced the distribution pattern of A. rugicollis.
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3.4. Habitat Suitability for Different Future Climate Scenarios

Figure 7 shows the potential distribution areas of A. rugicollis under four different
shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) and two
time periods (2050s and 2070s). The results show that the suitable habitat areas for
A. rugicollis under future climate conditions were generally consistent with those pre-
dicted under current climate conditions and remained concentrated in North Korea, South
Korea, Japan, Myanmar, Vietnam, and China. Furthermore, the total suitable habitat area
for A. rugicollis under future climate conditions increased compared with the current period,
which suggests that there may be a tendency to expand its potential range in the future.
Specifically, the total area of suitable habitat for A. rugicollis in the future is predicted to
range from 319.93 to 390.10 × 104 km2 (Table 3). Among these, the largest area of suitable
habitat is predicted for the SSP5-8.5-2070s, followed by SSP3-7.0-2070s, and the smallest
area of suitable habitat for the SSP1-2.6-2050s scenario. It is worth noting that under the
four future climate scenarios, the total suitable habitat area of A. rugicollis showed a positive
trend of increasing over time. This expansion trend reflects that future climate change may
provide more potentially suitable areas for habitat expansion of A. rugicollis, thus affecting
the distribution dynamics and ecological adaptations of the species.
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Table 3. Predicted suitable areas for A. rugicolli under current and future climatic conditions.

Shared Socioeconomic Pathways
Predicted Area (×104 km2) Comparison with Current Environmental

Variables Distribution (%)

Unsuitable Area Suitable Area Unsuitable Area Suitable Area

Current natural environment 5138.46 255.58 - -
Current natural environment + human activity 5150.30 243.75 0.23 −4.63

Future-SSP1-2.6 2041–2060 5074.11 319.93 −1.25 25.18
Future-SSP1-2.6 2061–2080 5061.95 332.09 −1.49 29.94
Future-SSP2-4.5 2041–2060 5042.33 351.72 −1.87 37.61
Future-SSP2-4.5 2061–2080 5028.42 365.62 −2.14 43.06
Future-SSP3-7.0 2041–2060 5049.98 344.06 −1.72 34.62
Future-SSP3-7.0 2061–2080 5021.82 372.22 −2.27 45.64
Future-SSP5-8.5 2041–2060 5049.22 344.82 −1.74 34.92
Future-SSP5-8.5 2061–2080 5003.94 390.10 −2.62 52.63
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3.5. Trends in the Development of Suitable Habitat for A. rugicollis Under Future Climate Change
Scenarios

We assessed the relative change in the area and region of suitable habitat for
A. rugicollis based on the differences in potentially suitable areas under future climate
scenarios. The results show that under future climate scenarios, the suitable growing areas
of A. rugicollis are expanding to Hokkaido in Japan, Duanchon and Gangjeok in North
Korea, Pyeongchang and Gangwon-do in South Korea, and Beijing, Hebei, Shandong, Zhe-
jiang, Anhui, Hunan, Gansu, Shaanxi, Henan, Shanxi, Fujian, Liaoning, Jilin, Heilongjiang,
Sichuan, and Yunnan in China (Figure 8), with expansion areas ranging from 71.68 to
140.78 × 104 km2 (Table 4). Among them, the SSP5-8.5-2070s scenario had the largest ex-
pansion area, followed by SSP3-7.0-2070s, while SSP1-2.6-2050s had the smallest expansion
area. Meanwhile, the contraction areas of suitable habitats were mainly located in Jiangxi,
Taiwan, Hainan, Henan, Anhui, and Xizang in China, Kachin State in Myanmar, and Nghe
An and Ha Tinh in Vietnam, with contraction areas ranging from 3.33 to 9.75 × 104 km2.
Among them, the SSP3-7.0-2070s scenario has the largest contraction area, followed by the
1-2.6-2050s, while the SSP3-7.0-2050s has the smallest contraction area.
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Table 4. Relative area of change in A. rugicollis under different future climate scenarios.

Shared Socioeconomic Pathways
Predicted Area (×104 km2)

Contraction Unchanged No Occupancy Expansion

Future-SSP1.0-2.6 2041–2060 7.33 5066.78 248.25 71.68
Future-SSP1.0-2.6 2061–2080 4.79 5057.16 250.79 81.31
Future-SSP2.0-4.5 2041–2060 4.30 5038.03 251.28 100.43
Future-SSP2.0-4.5 2061–2080 4.39 5024.03 251.19 114.43
Future-SSP3.0-7.0 2041–2060 3.33 5046.65 252.25 91.82
Future-SSP3.0-7.0 2061–2080 9.75 5012.08 245.83 126.39
Future-SSP5.0-8.5 2041–2060 3.15 5046.07 252.43 92.39
Future-SSP5.0-8.5 2061–2080 6.26 4997.69 249.32 140.78

3.6. Changes in Potential Distribution Centers of A. rugicollis Under Future Climate Change
Scenarios

The shift in the potential distribution center of A. rugicollis reveals a tendency to
migrate to higher latitudes under different climate scenarios in the future, with an overall
shift to the northeast (Figure 9). In the current period, the distribution center of A. rugicollis
was located in Shiyan City, Hubei Province, China (32.43◦ N, 110.06◦ E). In the SSP1-2.6
scenario, the center of distribution in the 2050s was located in Binzhou City, Shandong
Province, China (38.16◦ N, 118.11◦ E), and moved to Jinghai District, Tianjin City, China
(117.04◦ N, 38.77◦ E), in the 2070s. In the SSP2-4.5 scenario, the potential distribution center
was located in Jinnan District, Tianjin City (117.28◦ N, 38.94◦ E), in the 2050s and then
moved northeastward by about 114.96 km to reach Qinhuangdao City, Hebei Province
(119.15◦ N, 40.09◦ E), in the 2070s. Under the SSP3-7.0 scenario, the distribution centers
were located in Jinnan District, Tianjin City (117.23◦ N, 38.94◦ E), and Tangshan City, Hebei
Province (119.28◦ N, 40.31◦ E), in the 2050s and 2070s, respectively. Under the SSP5-8.5
scenario, the distribution center of A. rugicollis was located in Xiqing District, Tianjin City
(117.05◦ N, 39.04◦ E), in the 2050s, and then moved to Chengde City, Hebei Province
(117.79◦ N, 40.80◦ E), in the 2070s (Table 5). This change in movement suggests that, over
time, A. rugicollis has migrated to higher latitudes in response to climate change in order to
secure suitable environments for its survival and reproduction. This behavior also reflects
an adaptive response of A. rugicollis to environmental change, aiming to find more suitable
habitats and thus improve its survival.

Table 5. Latitude, longitude, and distance of migratory changes in potential distribution centers of
A. rugicollis under different future climate scenarios.

Shared Socioeconomic Pathways Longitude (◦E) Latitude (◦N) Center Migration Distance (km)

Current 110.06 32.43 -
Future-SSP1.0-2.6 2041–2060 118.11 38.16 968.50
Future-SSP1.0-2.6 2061–2080 117.04 38.77 944.87
Future-SSP2.0-4.5 2041–2060 117.28 38.94 972.89
Future-SSP2.0-4.5 2061–2080 119.15 40.09 1176.82
Future-SSP3.0-7.0 2041–2060 117.23 38.94 969.59
Future-SSP3.0-7.0 2061–2080 119.28 40.31 1201.98
Future-SSP5.0-8.5 2041–2060 117.05 39.04 967.33
Future-SSP5.0-8.5 2061–2080 117.79 40.80 1156.48
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4. Discussion

Understanding the environmental variables that affect suitable habitats for pests is crit-
ical to developing effective monitoring and control programs [39]. By identifying these key
environmental factors using species distribution models, we can more accurately predict
the potential range of pests and thus develop targeted control measures to prevent their
spread and invasion [40,41]. This will not only help protect ecosystems and agroforestry
resources but is also critical for maintaining biodiversity [24,42]. Based on the above, this
study used an ensemble model to predict the potential geographic distribution of A. rugi-
collis and its areas of change under current and future climate change. The results of this
study provide an important reference for the global forestry economy and phytosanitary
work, and not only provide a scientific basis for governments to formulate scientific pest
control and management measures and carry out ecological protection work but also effec-
tively respond to the potential threat of climate change to forestry production, which is of
great economic and ecological significance, and contributes to the realization of the goal of
sustainable development.

4.1. Reliability and Accuracy of Ensemble Model

Compared with a single SDM, the ensemble modeling approach effectively reduces
the limitations of a single model and results in more robust and accurate predictions [43,44].
Especially in complex ecosystems or where data are unevenly distributed, the ensemble
approach demonstrates greater adaptive capacity [17,45,46]. In this study, we used multiple
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models for modeling and significantly improved the accuracy of the ensemble models by
optimizing the model parameters. The accuracy evaluation metrics of our two created
models (including the model of anthropogenic factors and the model of non-anthropogenic
factors) reached a high standard. The TSS value of the model exceeds 0.87, indicating
that the model can accurately distinguish between suitable and unsuitable areas while
maintaining a low misclassification rate [33,35]. Meanwhile, the AUC value is greater than
0.98, which further proves the accuracy of the model, reflecting a high true positive rate
and a low false positive rate. These results indicate that the ensemble model we created
has strong reliability and accuracy in predicting the potential distribution of A. rugicollis,
which provides scientific support and a basis for developing effective monitoring, control,
and management strategies.

4.2. Analysis of Environmental Variables

Insect survival probabilities are closely linked to environmental variables, and precipi-
tation, solar radiation, and human activities especially have become important drivers of
insect distribution and survival [47]. These variables not only have an impact on the life
cycle and reproduction rate of insects but also influence their habitat selection, which in
turn directly or indirectly determines their distributional range [48].

The response curve showed that the survival probability of A. rugicollis gradually
increased with the increase in precipitation of the coldest quarter (Bio19). However, when
precipitation exceeds its tolerance limit (264.1818 mm), it may adversely affect its physio-
logical activities and thus threaten its survival. In order to respond to excess precipitation,
A. rugicollis may tend to seek drier habitats, which could affect its choice of mating and
egg-laying sites and further alter the range of the population [49,50].

Solar radiation, as an important source of energy, also has a significant effect on the
development and reproduction of A. rugicollis, which in turn alters its activity rhythms [51].
Low-intensity UV-B_seasonality (Bio24) may stimulate the initiation of physiological mecha-
nisms in A. rugicollis, thereby increasing the probability of insect survival. At the same time,
low-intensity radiation may also serve as an environmental signal that prompts A. rugicollis
to adjust its physiological and behavioral states to better adapt to environmental changes,
further improving its ability to survive in the environment. However, high-intensity UV-
B_seasonal (Bio24) may cause serious harm to insects [52]. Additionally, excessive radiation
generates too many reactive oxygen radicals, which exceed the scavenging capacity of
the antioxidant defense system in insects, leading to severe oxidative damage to cells [53].
Furthermore, high-intensity radiation may directly damage the insect’s nervous system and
endocrine system, interfering with its physiological regulation and hindering life activities
such as metabolism and reproduction, leading to a decrease in the probability of survival.

In addition, with the increase in human afforestation activities, especially the creation
of plantation forests of mulberry plants, more habitats are provided for A. rugicollis [54]. At
the same time, human activities may lead to a decrease in the number of natural enemies
of A. rugicollis, which, in a way, also creates favorable conditions for the survival of A.
rugicollis [1,55].

4.3. Potential Distribution Areas and Displacement

The Sixth Assessment Report (AR6) of the United Nations Intergovernmental Panel
on Climate Change (IPCC) states that there is a greater than 50% chance that global temper-
atures will increase by 1.5 ◦C between 2021 and 2040, and that by 2100, global temperatures
could rise by 3.3 ◦C to 5.7 ◦C [56]. It is worth noting that the last time global temperatures
exceeded pre-industrial levels was more than 3 million years ago [4,57]. Global warming
may be one of the key drivers of changes in suitable habitats for A. rugicollis. According
to the simulation results of the ensemble model, under the future climate scenarios, the
suitable habitat of A. rugicollis shows significant spatial variation, and its suitable growing
area is expanding to Hokkaido, Japan, Duanchon and Gangjae, North Korea, Pyeongchang-
gun, South Korea, and northern China. Although the expansion trend varied in different
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future scenarios, the area of expanding areas was always larger than that of contracting
areas. This change reveals the far-reaching impact of climate change on insect distribution
and also provides an important reference for decision-makers in ecological management
and pest monitoring.

In recent years, many insects have gradually migrated to higher latitudes, a phe-
nomenon closely linked to climate change [58]. Increased temperatures lead to changes in
the habitat of insects, thus affecting their survival and distribution [59]. The present study
also proves this conclusion again: the center of mass of A. rugicollis was shifted to higher
latitudes, and the overall trend was to the northeast. The migration of A. rugicollis not only
affects its survival and dispersal but also has significant impacts on ecosystems, forestry
production, and biodiversity conservation of the new distribution area. As A. rugicollis
expands into new suitable habitats, ecosystem composition and functioning may change,
leading to changes in the underlying structure of the food chain and ecological balance.
Therefore, management strategies for A. rugicollis need to take into account potential future
distributional changes in order to meet the challenges posed by the new distributional
patterns of the species and to ensure ecological and economic security in the new range.

4.4. Limitations of This Study and Future Research Directions

In this study, we used ensemble modeling to reveal the potential effects of climate
change on the distribution of A. rugicollis. Although we obtained some important findings,
there are still several limitations in this study. (1) The unicity of climate models is an
important limitation of this study. Although the BCC-CSM2-MR model provides valuable
predictions of future climate change, the use of a single climate model may lead to biased
predictions [60]. Future studies should consider the use of different global climate models
(GCMs) that can contribute to a more comprehensive understanding of the potential
impacts of climate change on A. rugicollis. (2) The environmental factors in this study relied
heavily on modeling of bioclimate, topography, solar radiation, and human activities and
failed to adequately consider the important impacts of other environmental factors (e.g.,
soil and vegetation type) on species distribution [61]. Future studies should integrate more
ecological and environmental factors to improve the accuracy and usefulness of the model.
(3) The present study considered the pest (A. rugicollis) singularly and neglected the complex
interactions with its host plants and natural enemies. Future studies should include host
plants and natural enemies in the same framework to explore their interrelationships and
mechanisms of influence. (4) As A. rugicollis expands into new suitable habitats, it may have
significant impacts on ecosystems, forestry production, and biodiversity conservation in its
new range [62]. Therefore, ecological risk assessment and management recommendations
for organisms in the predicted potential distribution areas are important components of
future research.

In conclusion, this study provides a preliminary understanding of the changes in
suitable habitats for A. rugicollis in East Asia. Despite some limitations, future studies
can build on this foundation and further explore the relationship between climate change
and ecological management. This will help to develop more effective monitoring and
management strategies to address the potential impacts of climate change on ecosystems.

5. Conclusions

In this study, an ensemble model was applied for the first time to identify the key
environmental factors affecting the distribution of A. rugicollis and to predict its potential
habitat and relative change areas under current and future climatic conditions. The results
show that humidity, solar radiation, topography, and human activities were the main factors
affecting the distribution of A. rugicollis. Under current climate scenarios, suitable habitats
are concentrated in East Asia, including North Korea, South Korea, Japan, Myanmar,
Vietnam, and China. Under different future climate scenarios, the area of suitable habitats
for A. rugicollis gradually increases in China and Japan, suggesting that these regions
will be at higher risk of dispersal. In addition, the ensemble model predicts that suitable
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habitats for A. rugicollis will expand northeastward to higher latitudes. Therefore, future
work should strengthen preventive and control measures in northern China and Hokkaido,
Japan, and an early warning and monitoring network needs to be established in advance to
prevent the potential damage to host plants caused by the further spread of A. rugicollis. The
results of this study provide an important scientific basis for decision-makers to develop
monitoring and control measures for A. rugicollis under future climatic conditions.
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