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Simple Summary: Simulium qinghaiense, endemic to the Huangshui River, serves as a critical environ-
mental indicator for assessing the ecological health of both the river and its surrounding landscapes.
Notably, the female adults of S. qinghaiense could directly cause severe economic losses for farmers.
Despite its ecological importance, there is currently a gap in research regarding the potential areas of
this species within the region. This study marks the first comprehensive integration of the MaxEnt
model (with parameter optimization), GARP, BIOCLIM, and DOMAIN models. Utilizing actual
survey data on the geographical distribution of S. qinghaiense in the Huangshui River Basin, coupled
with bioclimatic and altitudinal variables, we conduct a comparative prediction of the potential
areas for this species. All four models exhibit excellent predictive accuracy, surpassing random
models, with MaxEnt showcasing superior performance. The primary concentration of suitable areas
is observed in the central and southern regions of the Huangshui River Basin. The MaxEnt model is
then employed to simulate predictions of distribution and changes across different periods, revealing
that the Qilian Mountains may provide a potentially favorable refuge for this species during the ice
age. In conclusion, the findings of this study offer a scientific foundation for ecosystem conservation
in the Huangshui River Basin, as well as monitoring and early warning for threshold densities
of S. qinghaiense.

Abstract: The Huangshui River, a vital tributary in the upper reaches of the Yellow River within
the eastern Qinghai–Tibet Plateau, is home to the endemic black fly species S. qinghaiense. In this
study, we conducted a systematic survey of the distribution of the species in the Huangshui River
basin, revealing its predominant presence along the river’s main stem. Based on four ecological niche
models—MaxEnt with parameter optimization; GARP; BIOCLIM; and DOMAIN—we conduct a
comparative analysis; evaluating the accuracy of AUC and Kappa values. Our findings indicate that
optimizing parameters significantly improves the MaxEnt model’s predictive accuracy by reducing
complexity and overfitting. Furthermore, all four models exhibit higher accuracy compared to a
random model, with MaxEnt demonstrating the highest AUC and Kappa values (0.9756 and 0.8118,
respectively), showcasing significant superiority over the other models (p < 0.05). Evaluation of
predictions from the four models elucidates that potential areas of S. qinghaiense in the Huangshui
River basin are primarily concentrated in the central and southern areas, with precipitation exerting a
predominant influence. Building upon these results, we utilized the MaxEnt model to forecast changes
in suitable areas and distribution centers during the Last Interglacial (LIG), Mid-Holocene (MH), and
future periods under three climate scenarios. The results indicate significantly smaller suitable areas
during LIG and MH compared to the present, with the center of distribution shifting southeastward
from the Qilian Mountains to the central part of the basin. In the future, suitable areas under different
climate scenarios are expected to contract, with the center of distribution shifting southeastward.
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These findings provide important theoretical references for monitoring, early warning, and control
measures for S. qinghaiense in the region, contributing to ecological health assessment.

Keywords: Qinghai-Tibet Plateau; indicator insects for environmental assessment; ecological niche
model; climatic factor; potential area

1. Introduction

Global climate change has exerted a profound influence on biodiversity and the
patterns of biological distribution [1]. Many species, subject to the pressures of natural
selection, have evolved adaptive strategies to cope with environmental changes [2], thereby
emphasizing the pronounced complexity and dynamism of both biodiversity and the global
environment [3]. Through adjustments to the adaptability and distribution patterns of
species within ecosystems, biodiversity can continually respond to the shifts brought about
by global climate change [1]. Freshwater ecosystems play a pivotal role in upholding the
stability of the natural world [4,5]. Climate change has significantly impacted freshwater
ecosystems [6], with alterations in precipitation patterns and temperature reshaping the
structure and functionality of these ecosystems in various regions. Consequently, this has
implications for the biodiversity and distribution patterns of species within these envi-
ronments [7]. Understanding how freshwater ecosystems and their biodiversity respond
to climate change and the subsequent impact on global biodiversity conservation holds
particular significance. Insects, serving as a microcosm of Earth’s biodiversity, possess a
rich history intricately linked with paleoecology, particularly during periods of climatic
upheaval such as the ice ages. These events have not only molded the current global
distribution patterns of species but have also profoundly shaped the evolution and distri-
bution of insects [8]. The expansion and contraction of glaciers have given rise to biological
refuges, guiding species migration and propelling distinct patterns of biodiversity [9]. A
thorough comprehension of these historical events is indispensable for uncovering existing
patterns of insect dispersal and diversity, thus laying the groundwork for predicting the
ecological impacts of future environmental changes [8–10].

The Huangshui River, situated in the eastern part of the Qinghai–Tibet Plateau, stands
as a critical freshwater ecosystem in the upper reaches of the Yellow River, supporting
around 60% of Qinghai Province’s population [11]. Preserving the ecological environment,
managing water resources, and fostering high-quality development in eco-livestock rep-
resent major strategic objectives for the region’s future [11]. Extensive research on the
assessment of environmental quality utilizes the abundance of environmental indicator
insects in freshwater ecosystems. The quantity and quality (i.e., environmentally sensitive
vs. tolerant) of these insects not only vividly reflect the health of ecosystems but also
aid researchers in predicting and addressing a series of impacts resulting from global
climate change, providing vital information for addressing this global challenge [12–14].
Black flies (Diptera: Nematocera: Simuliidae) are distributed in the Huangshui River basin
and have been identified as environmental indicator species crucial for evaluating the
ecological health of rivers and surrounding landscapes [15]. They play a pivotal role in
river ecosystems [15]. This group undergoes complete metamorphosis, with larvae and
pupae residing in water, feeding on organic particles in the water flow, and attaching
to various substrates. Their high population densities make them a key element in the
energy transfer of river food chains, serving as a food source for many vertebrates and
invertebrates [16]. After eclosion, these insects leave the water and adapt to terrestrial
life [17,18]. Globally, the black flies are diverse, with over 2200 known species [19] and
distributed worldwide except Antarctica [20–25]. In China, there are 209 known species
of Simuliidae, primarily distributed in the Northeast, South China, North China, Central
China, Southwest, Mongolia-Xinjiang, and Qinghai–Tibet, indicating a relatively broad
distribution [26]. In Qinghai Province, there are approximately 20 species of Simuliidae,
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with S. qinghaiense being the predominant species and endemic to the Huangshui River
basin [27].

European researchers have investigated the distribution of black flies (Simuliidae) in
Mediterranean rivers, noting their high susceptibility to river pollution and their distri-
bution along a gradient of pollution [15,28]. In China, research on Simuliidae is relatively
limited, focusing primarily on describing the taxonomic characteristics of new species,
conducting geographical distribution surveys, and investigating their life history and bi-
ological characteristics [26,29,30]. Moreover, black flies have gained notoriety due to the
hematophagous tendencies exhibited by adult females across a multitude of species [31].
Beyond merely posing a nuisance to humans as well as domestic and wild animals, these
flies are recognized as vectors for diseases, including bovine onchocerciasis and vesicular
stomatitis virus in livestock [32,33]. In tropical regions, anthropophilic species are involved
in the transmission of mansonelliasis, a filarial infection, as well as onchocerciasis, colloqui-
ally known as ‘river blindness’—ranking as the world’s second-leading infectious cause
of blindness [31–33]. Although no studies have documented the transmission of zoonotic
diseases of S. qinghaiense to date in China, great attention should be paid to these black flies
as potential vectors.

In recent years, ecological niche models (ENMs) and species distribution models
(SDMs) have been widely applied to predict species responses to climate change, analyze
species distribution, and understand variations therein [34]. These models significantly
enhance our capacity to comprehend patterns of species distribution, making them critical
in studying the crucial implications of climate change on biodiversity. Consequently, they
have emerged as focal points in research across fields such as ecology, evolutionary biology,
and biogeography [35]. While there are plenty of commonly used ENMs, each capable of
independently forecasting potentially suitable areas, it is important to note that each model
exhibits specific biases or preferences [36]. The application of these models is instrumental
in devising effective conservation strategies and management approaches, thereby offering
a more nuanced understanding of the intricate interplay between biodiversity and climate
change [37]. Currently, research utilizing ENMs to predict the potential distribution of
environmental indicator insects is widespread [38,39]. However, a notable research gap
exists concerning the potential areas for environmental indicator insects in the Huangshui
River basin. Existing studies are confined to exploring the community structure of benthic
insects [40].

Given that projections by alternative models can deliver variable results [36], this study
embraced the concept of an ensemble prediction system incorporating field survey data. It
employs a comprehensive approach by integrating the forecasting of four models—MaxEnt
(optimized using the Kuenm package); GARP; BIOCLIM; and DOMAIN—to assess the
potentially suitable areas for the endemic species S. qinghaiense in the Huangshui River
basin. A thorough comparative analysis is conducted to scrutinize the predictions derived
from each of these models. Special care is taken to minimize the potential impact of false
negatives or positives that might arise from the empirical selection of a single model. This
study also identifies that the limitations of one model could be complemented by another,
thereby enhancing the scientific robustness of the predictions. The primary objective is
to provide a more accurate forecast of the potential areas for S. qinghaiense in the region,
coupled with a quantification of the risk level associated with this species in the basin.
Moreover, employing the MaxEnt model, this research forecasts and analyzes the potential
shifts in suitable areas and distribution center migrations for S. qinghaiense under historical
climatic conditions (LIG and MH) and future climate scenarios (2041–2060 and 2081–2100).
This analysis aims to shed light on the impact of paleoecology and historical climates
on the existing distribution pattern of the species. By clarifying the potential areas of S.
qinghaiense in the Huangshui River basin, this study provides crucial theoretical insights.
It also contributes to the development of monitoring and control strategies for black flies
in the region, offering a scientific foundation for the prevention of the potential vectors of
zoonotic diseases.
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2. Materials and Methods
2.1. Sample Collection and Acquisition of Geographic Distribution Data

The Huangshui River spans a length of 374 km with a basin area of approximately
33,000 km2 [41,42]. From May to September during the years 2021 to 2023, this study
conducts field surveys and collections of S. qinghaiense along the Huangshui River basin
(covering approximately 300 km along the river) and surrounding areas (Qinghai Province:
Haibei (HB) Tibetan Autonomous Prefecture (Gangcha county (GC), Haiyan county (HYA),
Menyuan county (MY)), sections of the Qilian Mountains (QLM: Qilian county (QL), Tianjun
county (TJ)), Datong county (DT), Xining city (XN), Huangyuan county (HY), Huzhu
county (HZ), Huangzhong county (HZA), Pingan district (PA), Ledu district (LD), Minhe
county (MH) and Gansu Province: Honggu district (HG), Yongjing county (YJ), Yongdeng
county (YD), Tianzhu county (TZ)) (Figure 1; Table S1). A GPS (Garmin ETREX221x,
Garmin, Shanghai, China) device is used to record the latitude and longitude information
of the areas where S. qinghaiense is identified within the basin, thereby acquiring the
current geographic distribution data (Table S1). To address potential issues related to data
overfitting, ENMTools is employed to filter the distribution data, resulting in a total of
30 S. qinghaiense data points (Table S1; Figure 1). The data are then input into Excel and
saved in .csv format. Elevation data are sourced from the Geographic Spatial Data Cloud
(http://www.gscloud.cn, accessed on 2 March 2023), and map information is retrieved
from the National Basic Geographic Information Database (https://www.ngcc.cn/ngcc/,
accessed on 2 March 2023).
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Figure 1. Geographic location of the Huangshui River Basin and distribution points of S. qinghaiense.

2.2. Software for ENMs and Related Tools

The four ENM software utilized in this study are MaxEnt (v3.4.4) (https://biodiv
ersityinformatics.amnh.org/open_source/maxent/, accessed on 5 March 2023), Desktop
GARP (v1.1.6) (http://www.nhm.ku.edu/desktopgarp/, accessed on 6 March 2023), and
the BIOCLIM and DOMAIN modules within DIVA-GIS (v7.5) (http://www.diva-gis.org,

http://www.gscloud.cn
https://www.ngcc.cn/ngcc/
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
http://www.nhm.ku.edu/desktopgarp/
http://www.diva-gis.org
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accessed on 8 March 2023). ArcGIS (v10.4) (https://www.esri.com/en-us/home, accessed
on 5 March 2023) and SPSS are employed for data processing.

2.3. Selection and Filtering of Environmental Variables

Data were acquired for 19 bioclimatic variables and one altitude variable at 30 s pre-
cision for five periods (Last Interglacial (LIG: 130,000–115,000 years ago), Mid-Holocen
(MH: 6000 years ago), current, 2041–2060, 2081–2100) from the World Climate Database
(https://www.worldclim.org, accessed on 10 April 2023) (Table S2). However, the Last
Glacial Maximum (LGM) data has a resolution of only 2.5 min, which is considered inade-
quate. Simulations for the LGM period are excluded for reliability, ensuring that all climate
variable data for all periods maintain a 30 s precision. For LIG and MH, the Community Cli-
mate System Model Version 4 (CCSM4) atmospheric circulation model is chosen. For future
climate variables, this study adapts the Shared Socioeconomic Pathways (SSP) from the
Sixth Coupled Model Intercomparison Project (CMIP6). The simulation is conducted using
the second-generation climate system model (BCC-CSM2-MR), an enhanced and upgraded
version of the first-generation model (BCC-CSM1-1) developed by the Beijing Climate Cen-
ter [43,44]. BCC-CSM2-MR exhibited significantly improved resolution both horizontally
and vertically, making it more suitable for handling high-resolution simulation results
and simulating smaller-scale physical processes. Additionally, it provides more accurate
simulation results for meteorological and climate variables, with the added capability to
comprehensively simulate internal interactions and feedback within the climate system [45].
Building upon CMIP5, CMIP6 incorporates shared socioeconomic and land-use scenarios.
Compared to CMIP5, it provides more comprehensive information on CO2 concentrations
and radiative forcing, thereby enhancing the accuracy and scientific validity of future
climate change predictions [46]. In this study, three scenarios from CMIP6 are utilized,
representing low, medium, and high forcing scenarios: SSP126, SSP370, and SSP585.

The inclusion of an excessive number of environmental variables in ENMs may give
rise to overfitting. This is because an abundance of variables increases the model’s complex-
ity, leading it to overfit the existing data and, consequently, perform less effectively when
generalized to new data, thereby reducing the model’s accuracy [46]. The potential issues of
autocorrelation arising from environmental variables are negligible because autocorrelation
has low effects on correlation analysis. Therefore, in this study, the Jackknife method
within the MaxEnt model is initially employed to assess the contribution of all climate
variables. Subsequently, a Pearson correlation analysis is conducted on the environmental
variables using SPSS (Figure S1), and variables with |r| > 0.8 and low contribution rates
are excluded [47]. Ultimately, eight key environmental variables are selected for subsequent
model analyses (Table S3).

2.4. Optimizing the MaxEnt Model

The MaxEnt model has found widespread application across various fields. Optimiz-
ing the model by selecting the best parameters is crucial for improving prediction accuracy,
reducing overfitting, and enhancing model reliability [48]. Among the most important pa-
rameters are feature combination (FC) and regularization multiplier (RM). FC provides five
selectable options: Linear features (L), Quadratic features (Q), Product features (P), Thresh-
old features (T), and Hinge features (H). The RM parameter is typically set below 4 [49]. In
this study, the Kuenm package in R is utilized (https://github.com/marlonecobos/kuenm,
accessed on 5 March 2023) [50], incorporating 29 combinations from FC, ranging from 0.1
to 4 at intervals of 0.1. This resulted in a total of 40 RM settings. A thorough screening
involves a total of 1160 combinations, and the optimal parameters are chosen based on
three criteria: statistical significance, omission rate ≤5%, and delta AICc values ≤ 2 [50].

2.5. Constructing the Four Models: MaxEnt, GARP, BIOCLIM, and DOMAIN

Based on the selected environmental variables and distribution data, the construction
of the four models are outlined below:

https://www.esri.com/en-us/home
https://www.worldclim.org
https://github.com/marlonecobos/kuenm
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MaxEnt Model: The distribution data in .csv format and environmental variables
in .asc format are imported into the software. The optimal combination of FC and RM
is selected. Seventy-five percent of the data are assigned as the training dataset, with
the remaining 25% as the testing dataset. The Jackknife test is employed to assess the
importance of environmental variables and calculate the response curves of dominant
environmental factors. This process is repeated ten times.

GARP Model: The .asc format environmental variables are converted to .raw format,
generating an environmental variable dataset in .dxl format. This dataset, along with the
distribution data, are imported into GARP. Seventy-five percent of the data are designated
as the training dataset and 25% as the testing dataset. The process is repeated 20 times.

BIOCLIM and DOMAIN Models: In ArcGIS, the distribution data in .csv format is
converted to .shp format and then imported into DIVA-GIS. The .asc format environmental
variables are transformed into .grd format within DIVA-GIS, and a stacked environmental
variable dataset is created. In Modeling-Bioclim/Domain, the stacked environmental
dataset is loaded, and both models are run sequentially.

2.6. Accuracy Evaluation of the Four Models

The Receiver Operating Characteristic (ROC) Curve is employed to depict the pre-
dictive capability of the models, and the Area Under the Curve (AUC) of the ROC curve
is commonly used as a measure of model accuracy. The AUC value ranges from 0 to 1,
with a higher value indicating more precise model predictions. Kappa value is another
metric used to assess the classification performance of the models, mainly focusing on
the consistency between predicted and observed results. The Kappa value ranges from
−1 to 1, where negative values suggest that the model predictions are inferior to random,
0 indicates consistency between the model and random predictions, and positive values
imply that the model predictions outperform random classification. A value closer to
1 signifies higher prediction accuracy. While AUC quantifies the model’s performance
across various classification thresholds independently of specific thresholds, Kappa values
often exhibit bias due to the influence of species distribution and diagnostic thresholds.
Therefore, in this study, AUC is considered the primary evaluation metric, with Kappa
serving as a supplementary metric for the comparative assessment of the accuracy of the
four models [51,52]. The predictive results obtained from the four models are compiled
into a stacked dataset, which is then imported into DIVA-GIS along with the distribution
data. The Show ROC/Kappa module is used to output both evaluation metrics [53,54].

2.7. Prediction of Potential Distribution and Identification of Suitable Habitat

In the results obtained from the MaxEnt model, the average of 10 runs is selected as
the final outcome. For the GARP model, the 20 results are overlaid in ArcGIS and averaged
to obtain continuous probability values ranging from 0 to 1, which are considered the
definitive result. The outcome with the highest AUC value is chosen as the final result
for both the BIOCLIM and DOMAIN models. The result files from the four models are
converted into raster data using ArcGIS for visualization. The Natural Breaks method,
a commonly employed data classification technique particularly suitable for handling
continuous numerical data with distinct clustering characteristics, is utilized. This method
aims to determine optimal division points for the data by maximizing the similarity of
data values within each category while minimizing the similarity between categories.
Given the diverse algorithms used in different models, there are currently no standardized
methods for classification. Therefore, this study employs Natural Breaks to reclassify the
prediction results. The potential distribution of S. qinghaiense in the Huangshui River Basin
is categorized into four classes: unsuitable area, low suitable area, medium suitable area,
and high suitable area [55,56]. Following reclassification, a floating-point field is added to
the attribute table of the result file, and different suitable areas are calculated using pixel
size and VB script in the field calculator.
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2.8. Changes in Suitable Habitats and Centroid Migration in Different Periods

The MaxEnt model is widely recognized for its proficiency in predicting past and
future periods, as well as assessing alterations in suitable areas and centroid migration.
To facilitate these analyses, we employed an open-source toolkit known as SDMtoolbox
(Species Distribution Model Toolbox) (http://www.sdmtoolbox.org, accessed on 12 April
2023). Specifically designed for handling spatial data in biogeography and landscape mobil-
ity studies, SDMtoolbox proves invaluable for creating and analyzing distribution models
tailored to specific biological populations [57]. In this study, we employed the MaxEnt
model to project predictions from the current period to different timeframes and climate
scenarios. The SDMtoolbox was integrated into ArcGIS for data visualization [46,58,59].

3. Results
3.1. Optimization Results of the MaxEnt Model

The execution of the Kuenm package generates a total of 1,160 candidate models
(Figure 2A). Assessing these models based on three criteria—statistical significance; omis-
sion rate; and AIC—reveals only one candidate model that satisfied all selection criteria.
This specific model incorporates Linear features (L) and Quadratic features (Q), with an
RM set at 0.6. Under these parameters, the model demonstrates no omission rate and
a Delta AICc of 0 (Table 1). In contrast, the default parameters of the MaxEnt model,
featuring the combination of LQHPT variables and an RM of 1, result in an omission
rate of 0.375 and a Delta AICc of 64.74020, both higher than the optimized parameters.
Running the MaxEnt model with the optimized parameters produces an average AUC
value of 0.976 (Figure 2B). The optimization of parameters effectively mitigates the com-
plexity and overfitting associated with the MaxEnt model, thereby significantly improving
prediction accuracy.
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3.2. Evaluation of Model Accuracy

A one-way analysis of variance (ANOVA) is conducted to compare the AUC and
Kappa values among the four models (MaxEnt, GARP, BIOCLIM, and DOMAIN) (Table 2;
Figure 3). The results indicate that both p (AUC) = 0.199 and p (Kappa) = 0.995 exhibit
significance greater than 0.05, meeting the assumption of homogeneity of variance. Among
the four models, the MaxEnt model exhibits the highest mean AUC and Kappa values, with
0.9756 and 0.8118, respectively. In contrast, the DOMAIN model demonstrates the lowest
values, with 0.8909 for AUC and 0.6780 for Kappa (Table 2). The standard deviations of

http://www.sdmtoolbox.org
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AUC values follow the order MaxEnt < DOMAIN < BIOCLIM < GARP, while the standard
deviations of Kappa values follow MaxEnt < BIOCLIM < GARP < DOMAIN (Table 2). LSD
multiple comparisons reveal significant differences between the AUC and Kappa values of
the MaxEnt model and the other three models (p < 0.05) (Figure 3A). However, there are
no significant differences in AUC values among GARP, BIOCLIM, and DOMAIN models
and no significant differences in Kappa values between GARP and BIOCLIM (p = 0.72)
(Figure 3A). Furthermore, both the AUC and Kappa values of the four models exhibit
a normal distribution (Table S4; Figure 3B). The AUC values of the MaxEnt model are
concentrated around 0.98, while the Kappa values of the MaxEnt, GARP, BIOCLIM, and
DOMAIN models are more dispersed (Figure 3B). In summary, all four models demonstrate
predictive accuracy surpassing that of random models, with the MaxEnt model exhibiting
superior performance, followed by GARP and BIOCLIM, while the DOMAIN model
showed slightly inferior performance.

Table 1. Results of model optimization and selection with corresponding parameters.

Criteria Number of Models

All candidate models 1160
Statistically significant models 1156

Models meeting omission rate criteria 150
Models meeting AICc criteria 1

Statistically significant models meeting omission rate criteria 146
Statistically significant models meeting AICc criteria 1

Selected model

RM(0.6) FC(LQ)
Mean AUC ratio 1.9267

Omission rate 0
AICc 708.0172

Delta AICc 0

Table 2. AUC and Kappa values for four different models.

Group MaxEnt GARP BIOCLIM DOMAIN
AUC Kappa AUC Kappa AUC Kappa AUC Kappa

1 0.9054 0.7735 0.8996 0.6877 0.9425 0.7625 0.8667 0.6426
2 0.9830 0.8314 0.8775 0.6938 0.8845 0.6933 0.8613 0.6536
3 0.9911 0.8532 0.9210 0.7324 0.8678 0.6867 0.9325 0.7352
4 0.9878 0.8325 0.9168 0.7417 0.9311 0.7236 0.9434 0.7124
5 0.9768 0.7843 0.9567 0.7359 0.9242 0.7124 0.9145 0.7243
6 0.9811 0.7893 0.8439 0.6426 0.9432 0.7686 0.8750 0.6207
7 0.9841 0.8424 0.9519 0.7512 0.8767 0.6893 0.8857 0.6550
8 0.9830 0.7982 0.9479 0.7627 0.8582 0.6521 0.8929 0.6750
9 0.9888 0.8423 0.9433 0.7310 0.9314 0.7333 0.8932 0.6883

10 0.9753 0.7711 0.8950 0.6988 0.8894 0.6993 0.8438 0.6723
Average 0.9756 0.8118 0.9154 0.7178 0.9049 0.7121 0.8909 0.6780
Standard
deviation 0.0252 0.0316 0.0367 0.0364 0.0327 0.0359 0.0317 0.0371

3.3. Analysis of Dominant Environmental Factors

Through an assessment of the contribution rates and permutation importance of en-
vironmental variables obtained by the MaxEnt model, it is identified that the cumulative
contribution of four key variables—precipitation of the warmest quarter; precipitation of
the driest month; altitude; and annual precipitation—reaches 91.8%; with an overall per-
mutation importance of 88.7% (Table S5). Taking into account the results from the Jackknife
test (Figure S2), it is observed that, when using individual variables, the most significant
impact on normalized training gain comes from annual precipitation and precipitation
of the warmest quarter, followed by altitude and annual precipitation. The absence of
annual precipitation and precipitation in the warmest quarter leads to a notable reduction
in normalized training gain, indicating the provision of unique information not covered by
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other environmental variables (Figure S2). Consequently, the key environmental factors
influencing S. qinghaiense in the Huangshui River basin are determined to be precipitation
of the warmest quarter, precipitation of the driest month, altitude, and annual precipitation
(Table S5; Figure S2). When these factors fall within the favorable range, exceeding a
probability of 0.5, it enhances the suitability for the survival of S. qinghaiense in the Huang-
shui River basin. Analyzing the response curves of these dominant environmental factors
(Figure 4): Precipitation in the warmest quarter is conducive to survival in the range of
192–280 mm, with the optimum value at 236 mm; Altitude in the range of 1780–3192 m
is favorable for survival, with the optimum value at 2480 m; and Annual precipitation in
the range of 348–475 mm is favorable for survival, with the optimum value at 412 mm.
Precipitation in the driest month is beneficial for survival in the range of −0.9–0.774 mm.
Given that negative precipitation values do not exist in reality, considering the model’s
limitations, the suitable range for precipitation in the driest month is between 0 and 0.774
mm, with the optimum value at 0 mm (Figure 4).
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3.4. Predicted Potential Distribution of S. qinghaiense by Four Models

The potential areas for S. qinghaiense, as predicted by the four models in the Huangshui
River basin, are summarized below (Table 3; Figures 5 and 6). MaxEnt Model: The predic-
tion indicates that high suitable areas are mainly distributed in the central (XN, HZ, DT,
and HZA) and southern (HZA, PA, and LD) regions of the Huangshui River basin, while
unsuitable areas are concentrated in the northern (HB and QLM) and western (QLM and
HYA) regions (Figures 1 and 5). The proportions of unsuitable, low suitable, medium suit-
able, and high suitable areas are 32.94%, 26.32%, 20.83%, and 19.90%, respectively (Figure 6).
GARP Model: The prediction results show that the unsuitable area and the high suitable
area are the largest among the four models, covering 15,990.95 km2 and 10,327.08 km2,
respectively (Table 3; Figure 5). High suitable areas are mainly distributed in the central
(XN, HZ, DT, and HZA), southern (HZA, PA, and LD), and eastern (MH, YJ, YD, and HG)
parts of the Huangshui River basin, while unsuitable areas are concentrated in the northern
(HB and QLM) and western (HYA and QLM) regions. The proportions of unsuitable, low
suitable, medium suitable, and high suitable areas are 48.01%, 13.53%, 7.44%, and 31.01%,
respectively (Figure 6). BIOCLIM Model: The predicted high suitable areas are mainly
concentrated in the local regions of MY, HZ, HZA, and HY, while unsuitable areas are
prevalent in most parts (QLM, XN, DT, PA, LD, TZ, MH, YJ, YD, and HG) of the Huangshui
River basin (Figures 1 and 5). Notably, the high suitable area is the smallest among the four
models, covering only 1896.55 km2 (Figure 5).
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Figure 5. Predicted potential distribution of S. qinghaiense in the Huangshui River Basin using four
models: (A) Predictive results of the MaxEnt model; (B) Predictive results of the GARP model;
(C) Predictive results of the BIOCLIM model; (D) Predictive results of the DOMAIN model. Light
green indicates unsuitable area, dark green denotes low suitable area, yellow signifies medium
suitable area, and orange represents high suitable area.
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Table 3. Predicted suitable areas under different models.

Different Models
Area of Different Suitable Habitats (km2)

Unsuitable Area Low Suitable Area Medium Suitable Area High Suitable Area

MaxEnt 10,972.2 8766.67 6938.19 6627.83
GARP 15,990.95 4507.69 2479.17 10,327.08

BIOCLIM 13,571.53 11,615.28 6221.53 1896.55
DOMAIN 6023.23 5494.42 13,778.23 8009.01
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The proportions of unsuitable, low suitable, medium suitable, and high suitable areas
are 40.75%, 34.88%, 18.68%, and 5.69%, respectively (Figure 6). DOMAIN Model: The
prediction results show that the medium suitable area is the largest among the four models,
reaching 13,778.23 km2 (Table 3; Figure 5). The predicted suitable areas cover various
parts of the Huangshui River basin. The proportions of unsuitable, low suitable, medium
suitable, and high suitable areas are 18.09%, 16.50%, 41.37%, and 24.05%, respectively
(Figure 6). Based on these results, the MaxEnt model provides a more balanced prediction
with smaller differences in the areas of the four types of suitable areas. The GARP model
mainly focuses on high suitable and unsuitable areas, with a relatively smaller square
measure for medium suitable and low suitable areas (20.98%). The BIOCLIM model
predicts the smallest suitable range, with more dispersed results and a lower proportion of
high suitable areas. The DOMAIN model predicts the widest suitable range, with medium
suitable and high suitable areas accounting for 65.42% (Figure 6). The predictions of high
suitable areas using MaxEnt, GARP, and DOMAIN models are similar, and MaxEnt and
GARP models exhibit similar predictions for unsuitable areas.

3.5. Predicted Suitable Areas and Their Changes over Different Periods and Climate Scenarios

During the LIG period, the predicted suitable areas for S. qinghaiense in the Huangshui
River basin are primarily situated in the Qilian Mountains (QLM). The unsuitable areas
cover 24,245.1 km2, constituting 72.8% of the total area, marking a 54.74% increase com-
pared to the current conditions (Table 4; Figure 7). The combined square measure of low
suitable, medium suitable, and high suitable areas is only 9059.79 km2, with a significant
decrease observed in the high suitable area of 694.64% (Table 4). Notably, there is an
expansion of the suitable area near the eastern edge of the Qilian Mountains (MY), with an
increase of approximately 315.15 km2 (Table 4; Figure 7). Despite this local expansion, the
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overall suitable areas exhibit a substantial contraction of about 23,011.56 km2 compared
to the current conditions (Table 4). Transitioning to the MH period, the predicted suitable
areas for the species are mainly concentrated in the current regions of DT, XN, and HZA
(Figures 1 and 7). In comparison to the LIG period, the unsuitable area decreased, covering
57.31% of the total area, representing a 42.51% increase compared to current conditions
(Table 4). Concurrently, the total area of low suitable, medium suitable, and high suitable
increases to 14,219.49 km2 (Table 4). The suitable area near the eastern edge (MY, DT, and
HYA) of the Qilian Mountains expands by a total of 187.7 km2. Although a considerable
contraction still occurred compared to the current situation, the degree of contraction
significantly decreased compared to the LIG period, reaching 15,902.86 km2 (Table 4).

Table 4. Suitable areas and variations under different time periods and climate scenarios.

Different
Periods and

Climate
Scenarios

Unsuitable
Area
(km2)

Change
(%)

Low
Suitable

Area
(km2)

Change
(%)

Medium
Suitable

Area
(km2)

Change
(%)

High
Suitable

Area
(km2)

Change
(%)

Expansion
(km2)

Stabilize
(km2)

Contraction
(km2)

Current 10,972.2 - 8766.67 - 6938.19 - 6627.83 - - - -
Last Inter

Glacial 24,245.1 −54.74% 5362.53 63.48% 2863.19 142.32% 834.07 694.64% 315.15 8529.21 23,011.56

Mid Holocene 19,085.4 −42.51% 7984.03 9.80% 3622.27 91.54% 2613.19 153.63% 187.7 6180.24 15,902.86
SSP126

(2041–2060) 13,628.5 24.21% 9582.64 9.31% 7015.28 1.11% 3078.47 −53.55% 0 16,144.63 5938.47

SSP370
(2041–2060) 12,807.6 16.73% 9856.29 12.43% 6612.51 −4.69% 4028.49 −39.22% 9.27 19,832.23 2250.87

SSP585
(2041–2060) 12,602.8 14.86% 10,666.7 21.67% 6696.53 −3.48% 3338.86 −49.62% 454.19 20,133.48 1949.62

SSP126
(2081–2100) 13,704.9 24.91% 9475.69 8.09% 7148.61 3.03% 2975.69 −55.10% 0 17,294.01 4789.09

SSP370
(2081–2100) 18,834 71.65% 5488.19 −37.40% 5035.45 −27.42% 3947.25 −40.44% 624.13 14,028.94 8054.16

SSP585
(2081–2100) 22,191.7 102.25% 5801.39 −33.82% 3856.25 −44.42% 1455.55 −78.04% 0 10,266.41 11,816.69
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During the period of 2041–2060, under three climate scenarios (SSP126, SSP370, and
SSP585), the most suitable areas for the species are primarily concentrated in the cen-
tral (XN, HZ, DT, and HZA) and southern (HZA, PA, and LD) regions of the basin.
In comparison to current conditions, HG no longer falls within the high suitable area
(Figures 1 and 8A). Unsuitable areas, mainly HB and QLM, have increased in size, with
increments of 24.21%, 16.73%, and 14.86% compared to the present state. In the medium
suitable and low-suitable areas, there is an overall increasing trend in square measure,
except for a decrease of 4.69% and 3.48% under SSP370 and SSP585, respectively (Table 4).
Regardless of the climate scenario, the highly suitable area exhibits a significant reduction
in square measure compared to current conditions, with the reduction sequence being
SSP126 (53.55%) > SSP585 (49.62%) > SSP370 (39.22%). The respective areas are 3078.47 km2,
4028.49 km2, and 3338.86 km2 (Table 4). It is noteworthy that under the SSP370 and SSP585
scenarios in the future, the suitable areas will slightly increase compared to current condi-
tions, with increments of 9.27 km2 and 454.19 km2, respectively (Table 4; Figure 8B). Regard-
ing stable suitable areas, the order of the three scenarios is SSP585 > SSP370 > SSP126, and
in terms of contraction areas, SSP126 is the largest, followed by SSP370, and SSP585 is the
smallest, with specific values of 5938.47 km2, 2250.87 km2, and 1949.62 km2, respectively
(Table 4).

In the period from 2081 to 2100, under three climate scenarios (SSP126, SSP370 and
SSP585), the suitable areas for S. qinghaiense in SSP126 and SSP370 remain largely con-
sistent with those of 2041–2060 (Table 4; Figure 8A). However, under SSP585, the high-
suitable area is predominantly concentrated in the central part (XN, HZ, DT, and HZA)
of the basin. In comparison to SSP126 and SSP370, there is a significant reduction in
area, with the most substantial decrease reaching 78.04%. The highly suitable area is
diminished to only 1455.55 km2 (Table 4; Figure 8A). The unsuitable area maintains a
similar distribution in QLM during the current period, 2041–2060, and 2081–2100. Never-
theless, the increase in the unsuitable area is significantly higher in 2081–2100, showing
increments of 24.91%, 71.65%, and 102.25% compared to the current period (Table 4).
Concerning the medium suitable and low suitable areas, except for a minor increase
under SSP126, both SSP370 and SSP585 exhibit varying degrees of reduction. The re-
duction is particularly severe under SSP585 (Table 4). In 2081–2100, the suitable area for
this species only expands under SSP370, primarily concentrated in some areas of QLM
(TJ and MY), with a total expansion area of 624.13 km2 (Table 4; Figure 8B). The stable
suitable area is ranked as SSP126 > SSP370 > SSP585, while the contraction area is ranked
as SSP585 > SSP370 > SSP126 (Table 4). Based on these results, in comparison to current
conditions, the suitable area of S. qinghaiense significantly decreases during LIG and par-
tially recovers in MH (Figure 8), indicating a substantial impact of glacial activities on
the suitable area of this species during ancient times. In future periods, the suitable area
will continue to decrease, especially under SSP585. Meanwhile, there is a slight trend of
expansion in the suitable area, particularly under SSP370 and SSP585. The prediction for
2081–2100 indicates a continuous contraction of the suitable area, with localized expansion
under SSP370 (Figure 8). This suggests that climate change has a significant impact on the
suitable area of this species and will continue to undergo changes in the future.

3.6. Distribution Center Changes over Different Periods

The distribution center of S. qinghaiense in the Huangshui River Basin has undergone
significant changes over various periods and under different climate scenarios. Currently,
this species is located at 36.84◦ N, 101.89◦ E, in the central region (HZ) of the basin (Figure 9;
Table S6). During paleoclimatic period periods (LIG and MH), the distribution center was
situated at 37.73◦ N, 100.71◦ E, and 36.88◦ N, 101.43◦ E, respectively, in the northwest region
of the basin (Qilian Mountains’ foothills (QL)) and the central region of the basin (HZA)
(Figure 9; Table S5). The distribution center gradually shifted southeastward, moving from
QL to HZA and further southeast to its current position (HZ) (Figure 9).
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For future climate scenarios, predictions indicate different characteristics in the location
and migration trends of the distribution center. According to predictions under SSP126
and SSP370, the distribution center consistently remains in HZ (Figure 9). Under SSP126
and SSP370, during the periods of 2041–2060 and 2081–2100, the distribution center shows
a minor degree of migration (Figure 9; Table S6). Under SSP585, during the period of
2041–2060, the distribution center will migrate northwestward by 7.97 km from its original
position to 36.85◦ N, 101.83◦ E. By 2081–2100, the distribution center will significantly
shift southeastward by 28.15 km, ultimately reaching LD (36.57◦ N, 102.31◦ E) (Figure 9;
Table S6). In summary, the distribution center of S. qinghaiense in the Huangshui River
Basin exhibits a clear trend of unidirectional migration during the LIG period, and future
predictions suggest an overall trend of slight southeastward migration.
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4. Discussion

This study reveals significant differences among the models, with the MaxEnt model
exhibiting the highest accuracy. Further optimization of the MaxEnt model using the
Kuenm package emphasized the crucial role of parameter optimization in predictive mod-
eling. It explores the inherent importance of typical complex environmental conditions and
affirms the applicability of machine learning in ecological predictive modeling. The impact
of parameter selection and optimization in the MaxEnt model is highlighted, particularly
in the choice of RM, effectively constraining model complexity, enhancing operational
capabilities, and avoiding overfitting [58]. In this study, when the feature combination is
Linear features (L) and Quadratic features (Q) with an RM of 0.6 (Table 1), the predictive
performance of the model significantly improves. Some scholars underscore the importance
of statistical significance, omission rate indicators, and AICc criteria on model selection.
The model results are considered acceptable only when all these criteria are met [48]. In
evaluating model performance, the inclusion of performance assessment metrics ensures a
comprehensive measurement of prediction results from various perspectives [59]. There-
fore, a comprehensive consideration of three evaluation indicators—statistical significance;
omission rate; and AICc (Table 1)—is undertaken to ensure the obtained conclusions exhibit
high accuracy and reliability. Furthermore, this study draws inspiration from the perspec-
tive of Muscarella et al. [60], emphasizing that candidate models, when predicting species
distribution, can provide a wealth of valuable parameter sets, potentially serving as a pow-
erful tool for model optimization. These studies further validate the accuracy of the results
in this research, elucidating essential principles regarding model selection and parameter
optimization, thus providing robust guidance for future ecological predictive modeling.

The comparison of four different models reveals that the MaxEnt model stands out
significantly in terms of accuracy, with AUC and Kappa values reaching 0.9756 and 0.8118,
respectively (Table 2). This performance is significantly higher compared to the other three
models. These findings are consistent with the studies of Elith et al. [61] and Yang et al. [47].
Furthermore, previous studies suggested that AUC and Kappa, as metrics for accuracy,
typically follow a normal distribution, providing a valuable reference for assessing predic-
tive capabilities and aligning with the results of this study [62]. One possible explanation
for the DOMAIN model’s poor performance is its assumption that each species has a
fixed “domain” of environmental preferences. However, actual biological distribution may
be influenced by multiple environmental factors and may not always fit within a clearly
defined “domain” in the selected parameter space [63]. According to the predictions of the
MaxEnt model, both unsuitable areas and medium suitable or high suitable areas exhibit
a relatively even distribution without a pronounced concentration trend. In contrast, the
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predictions of the GARP model are mainly concentrated in unsuitable and high suitable ar-
eas, with relatively smaller areas for medium or low areas. Overfitting may occur in GARP
predictions, leading to an overly concentrated outcome [64]. The BIOCLIM model predicts
the smallest, most suitable area among the four models, indicating a more conservative
and discrete outcome. BIOCLIM defines the ideal ecological niche based on the currently
observed distribution of species along environmental gradients, potentially resulting in
a smaller predicted potential distribution, thus making its predictions more conservative
and discrete than some modern models [65]. The DOMAIN model’s predictions exhibit the
widest suitable distribution, using a method of weighted overlay for the location of species
to predict the distribution in simulated environmental space, leading to a broad, high
suitable area [63]. Taking various factors into account, the results of this study once again
underscore the superiority of the MaxEnt model in predicting the potential distribution of
organisms. This model is valuable for understanding and predicting species distribution,
aiding in the formulation of targeted conservation strategies to protect biodiversity [47].
Moreover, the effective use of models does not depend on the superiority of a single model
but on selecting the model most suitable for the current environment and species conditions,
often through combining and comparing with other models. Therefore, future research
should continue to explore more excellent models and introduce the fusion and comparison
of different models [66,67].

Based on the analysis of dominant environmental factors, the crucial environmental
factors influencing the survival of S. qinghaiense include precipitation in the warmest
quarter, precipitation in the driest month, altitude, and annual precipitation. Precipitation
significantly impacts both the parasitism and survival of Simuliidae [68]. The study results
reveal that the primary factor affecting the suitable areas of S. qinghaiense is precipitation
(Table S5; Figure S2). This is likely due to the larvae of S. qinghaiense inhabiting swiftly-
flowing water. Increased precipitation typically reduces water temperature and enhances
oxygen supply, creating a more favorable habitat. Previous research has emphasized the
profound influence of altitude on the distribution of Simuliidae, as both geographical and
climatic factors affect the genetic differentiation and spatial distribution of this taxonomic
group [31]. This aligns with our study findings, underscoring the critical role of altitude
in a suitable environment for S. qinghaiense. Previous studies have indicated that the
abundance of blackflies is higher and the young larvae exhibit faster growth rates in fast-
flowing streams [69,70]. It is worth noting the influence of current velocity on S. qinghaiense.
However, data on environmental factors is acquired from WorldClim, where data on the
current velocity of the Huangshui River Basin is lacking. Further study would take all
the environmental factors into consideration. The study provides clear insights into the
significant impact of environmental factors on the distribution pattern of this species in
the Huangshui River Basin. This offers theoretical references for future research on the
ecological processes, climate change adaptation, and interactions with human activities
within this taxonomic group [71–73].

Insects have a profound connection with climate, influencing both historical and
current distributions [74]. The interplay of climate oscillations with geological events serves
as a critical diversifying force, deeply shaping the structure of biological communities [75].
Climate fluctuations during the LIG period created conditions for population isolation in
various refugee camps [76,77]. These refuges provide stable microclimates that facilitate
species survival during the extreme climate changes of the Ice Age. This allows species to
shift to more favorable habitats or undergo adaptive evolution [78]. The findings of this
study reveal that during the LIG period, the suitable areas of S. qinghaiense significantly
decreased, particularly in high suitable areas (Table 4; Figure 7). This reduction is likely
attributed to intense climate fluctuations during the LIG period, leading to alterations in
the geographical distribution and suitable environmental conditions for the species. The
drastic climate changes impede the evolutionary processes of species, exerting a substantial
impact on species development and potentially resulting in a significant reduction in
species abundance [79,80]. The predictions of suitable areas under paleoclimate and the
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changing trend of distribution centers suggest that during the LIG period, the suitable areas
and distribution centers of S. qinghaiense were primarily located in the hinterland of the
Qilian Mountains (QLM: QL) (Figures 7 and 9). Due to the harsh climate conditions during
the ice age [81], this region likely serves as a favorable refuge for the species [76,77]. The
diverse topography of the Qilian Mountains, with peaks and valleys, provided superior
microclimatic conditions, effectively mitigating the impact of the ice age climate on the
distribution of this insect. The predicted range shift of S. qinghaiense from the LGM period
to the current climate conditions indicates that the warming temperatures post-ice age led
to the gradual expansion of the species’ distribution pattern towards warmer and lower-
altitude areas, particularly in the southern part of the Huangshui River Basin (Figure 9).

The results of future climate predictions (2041–2060 and 2081–2100) indicate a signifi-
cant reduction in the square measure of a highly suitable area (Figure 8). This reduction is
attributed to the anticipated impacts of future climate change, particularly global warming,
which is expected to profoundly influence the distribution patterns of S. qinghaiense. This
aligns with the findings of Urban et al. [81]. In addition, significant alterations in local
water quality caused by anthropogenic activities of humans, such as expanding human
populations, intensive agricultural practices, and releases from industrial wastewater and
domestic sewage, greatly affect the distribution patterns of immature stages of black flies in
the water, whose habitats typically require clean, unpolluted water [14,82]. Water quality
might be another important driver of the distribution patterns of S. qinghaiense. The pre-
dicted shift in the distribution center under future climate conditions reveals an overall
southeastward migration. This shift may have far-reaching effects on the ecological niche of
this taxon in the Huangshui River Basin. Alterations in species distribution could modify in-
teractions between predators and prey, as well as competition dynamics with other species,
thereby influencing the overall stability of the ecosystem [83,84]. It is crucial to note that
predictions inherently carry uncertainties, and model results require on-site validation and
support from field investigations [85]. Additionally, the models employed in this study did
not account for species adaptability and inter-species interactions, factors that can impact
the accuracy of predictions [86]. The study focuses solely on the influences of climate and
altitude changes, omitting human activities as influencing factors. Future research under
different climate scenarios should consider improvements in this regard [87,88].

Landis’s study underscores the importance of monitoring environmental indicator
species at different scales, both spatial and temporal [89]. Future research should analyze
data at various scales to gain a better understanding of the dynamic changes in S. qing-
haiense within the Huangshui River Basin and their correlation with environmental factors.
This focus on the ecosystem is essential for effective management and conservation mea-
sures, ensuring the sustainability of the entire ecosystem. Predictive analyses of indicator
species can integrate diverse data sources such as remote sensing, land use, and biodi-
versity [90,91]. Therefore, using high-resolution ecological surveys, including the use of
drones [92], will enable more precise predictions of Simuliidae distribution and associated
ecological information in the Huangshui River Basin. Moreover, black flies play a crucial
role as indicators of the transmission of various pathogens between humans, animals, and
livestock, holding significant importance in the fields of ecological conservation and public
health [32]. Changes in their abundance can reflect variations in the environmental quality
of the basin, potentially leading to adjustments in the distribution and habitats of other
species within the ecosystem, thereby affecting the overall ecological balance. The results
of this study are expected to offer a scientific foundation for the prevention and control of
the potential vectors of zoonotic diseases.

5. Conclusions

Through parameter optimization, the MaxEnt model’s complexity and overfitting are
effectively reduced, leading to enhanced prediction accuracy. All four models exhibit excel-
lent predictive accuracy, surpassing random models, with MaxEnt showcasing superior
performance. The primary concentration of suitable areas of S. qinghaiense is observed in
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the central and southern regions of the Huangshui River Basin, while unsuitable areas
are concentrated in the northwest, primarily influenced by precipitation. The MaxEnt
model is then employed to simulate predictions of distribution and changes across different
periods, revealing that the Qilian Mountains potentially provided a favorable refuge for this
species during the ice age. In comparison to paleoclimate (LIG and MH), the current range
of potential distribution is more extensive. This study not only contributes to a clearer
understanding of the potential areas of S. qinghaiense in the Huangshui River basin but also
sheds light on the influence of paleoecology and paleoclimate on its current distribution.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/insects15020081/s1. Table S1. Field survey sampling site information;
Table S2. Environment variable; Table S3. Selected environmental variables post-filtering; Table S4.
Single-sample Kolmogorov–Sminov test; Table S5. Contribution of environmental variables and
permutation importance; Table S6. Centroid coordinates of distribution and migration distance;
Figure S1. Correlation heatmap of environmental variables; Figure S2. Results of the Jackknife test
for primary environmental factors.
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