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Simple Summary: Bactrocera tsuneonis (Miyake) is a significant pest of commercial citrus crops. It
is a univoltine and oligophagous species widely distributed in Japan and China. In this study, the
potential distribution of the B. tsuneonis population under current and different future climate change
scenarios was modeled using MaxEnt software (v. 3.4.1) and optimized using R software (v. 4.3.2).
Under current climate conditions, the potentially suitable areas were mainly concentrated in Central,
South, and East China. The total area of habitats suitable for this pest was predicted to increase
in the future climate scenarios. The centroid of the total suitable habitat for this pest gradually
shifted westward and northward. Our findings provide new insights that could aid the monitoring
of B. tsuneonis in China.

Abstract: The invasive pest, Bactrocera tsuneonis (Miyake), has become a significant threat to China’s
citrus industry. Predicting the area of potentially suitable habitats for B. tsuneonis is essential for
optimizing pest control strategies that mitigate its impact on the citrus industry. Here, existing
distribution data for B. tsuneonis, as well as current climate data and projections for four future
periods (2021–2040, 2041–2060, 2061–2080, and 2081–2100) from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) were obtained. The distribution of B. tsuneonis under current and different
climate change scenarios in China was predicted using the optimized MaxEnt model, ArcGIS, and
the ENMeval data package. Model accuracy was assessed using ROC curves, and the primary
environmental factors influencing the distribution of the pest were identified based on the percent
contribution. When the regularization multiplier (RM) was set to 1.5 and the feature combination
(FC) was set to LQH, a model with lower complexity was obtained. Under these parameter settings,
the mean training AUC was 0.9916, and the mean testing AUC was 0.9854, indicating high predictive
performance. The most influential environmental variables limiting the distribution of B. tsuneonis
were the Precipitation of Warmest Quarter (Bio18) and Temperature Seasonality (standard deviation
×100) (Bio4). Under current climatic conditions, potentially suitable habitat for B. tsuneonis in China
covered an area of 215.9 × 104 km2, accounting for 22.49% of the country’s land area. Potentially
suitable habitat was primarily concentrated in Central China, South China, and East China. However,
under future climatic projections, the area of suitable habitat for B. tsuneonis exhibited varying
degrees of expansion. Furthermore, the centroid of the total suitable habitat for this pest gradually
shifted westward and northward. These findings suggest that B. tsuneonis will spread to northern
and western regions of China under future climate changes. The results of our study indicate that
climate change will have a major effect on the invasion of B. tsuneonis and have implications for the
development of strategies to control the spread of B. tsuneonis in China.
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1. Introduction

Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) is a significant pest that exclu-
sively infests citrus crops [1,2]. Previous economic loss assessments indicate that this pest
typically leads to 10% to 20% reductions in citrus yields. However, if control measures
are inadequate, the losses induced by this pest may exceed 50% [3]. Originally native to
Japan, B. tsuneonis has been reported to occur in Sichuan [4], Guangxi [5], Guizhou [6],
and Yunnan [7] Provinces in China. Larvae appear around the beginning of October, and
each maggot devours between two to ten carpels. By early November, the mature larvae
cause the infested fruit to drop to the ground, and they pupate in the top two inches of soil.
Occasionally, larvae may pupate on the ground while the fruit remains on the tree [8].

The impact of B. tsuneonis on the citrus industry is progressively increasing due to
climate change and increased international trade. This pest was first recorded in China
in 1959 in the Ningming and Pingxiang regions of Guangxi Province. However, in 2016,
B. tsuneonis was captured for the first time in Huaiji County, Guangdong Province, indi-
cating that it could potentially spread to other regions [9]. Several studies have examined
the adaptability of B. tsuneonis and methods to control its spread. Some approaches that
have been examined include (1) fruit bagging [10], (2) the release of natural enemies [11],
(3) traps [12], (4) the application of biopesticides [2], and (5) rapid molecular identification
using microsatellite markers [13]. In a previous investigation by Wang et al. [14], the adapt-
ability of B. tsuneonis in China was examined using CLIMEX and ArcGIS. Using climate
data and data on the biological characteristics of the pest, they showed that B. tsuneonis
is capable of adapting to 33 provinces in China, and the southern regions, which produce
large amounts of citrus, were identified as highly suitable areas for this pest.

Knowledge of the potential distribution of invasive species is crucial for the develop-
ment of effective policies and decision-making [15]. To this end, various algorithms have
been developed for ecological niche modeling, which generally involve the use of presence
and absence data in conjunction with environmental variables within a specific area. Some
examples of these algorithms include MaxEnt, CLIMEX, GARP, and BIOCLIM [16–21].
The MaxEnt algorithm is widely used for modeling species distributions [16,22,23]. The
MaxEnt algorithm estimates a target probability distribution by finding the distribution
of maximum entropy, which approximates a uniform distribution, while adhering to a set
of constraints that represent the incomplete information available about the target distri-
bution [16]. This information typically includes a set of environmental variables, which
are referred to as characteristics. Moreover, the expected constraints for each characteristic
should correspond to the sample mean values obtained from the target distribution [16,24].

The MaxEnt model has been successfully used to predict the area of potentially
suitable habitat for various invasive pests and economically significant insect pests, such
as Ceroplastes rusci (Linnaeus, 1758) (Hemiptera: Coccidae), Aleurodicus rugioperculatus
Martin, 2004 (Hemiptera: Aleyrodidae), Riptortus pedestris (Fabricius, 1775) (Hemiptera:
Alydidae), Daktulosphaira vitifoliae (Fitch, 1855) (Hemiptera: Phylloxeridae), and Spodoptera
littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae) [25–29]. This model demonstrates
high accuracy even when species distribution points are limited, which indicates that its
predictive capability is superior to that of other models [30]. One common objective of
these studies was to generate scenarios that could aid the planning and design of more
efficient strategies for managing these pests at varying spatial scales. However, previous
studies suggest that using default parameters in the MaxEnt model simulation can lead to
overfitting, which reduces the transferability and accuracy of predictions [30]. To address
this issue, Muscarella et al. [31] developed an R program package (ENMeval data package)
to adjust the feature combination (FC) and regularization multiplier (RM) of the MaxEnt
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model. This can help identify model parameters with lower complexity and enhance
prediction accuracy and stability [31]. For example, the FC and RM were optimized using
the ENMeval data package in a study of Linepithema humile (Meyrick, 1868) (Lepidoptera:
Tortricidae). Setting the FC to LQHPT (L = linear, Q = quadratic, H = hinge, P = product,
and T = threshold) and the RM to 0.5 resulted in a highly accurate and stable model [32].

China ranks first among all countries in citrus planting area and second in citrus
production. Citrus is an economically important fruit in the southern regions of China, and
the prevalence of B. tsuneonis poses a major threat to citrus production in this region. The
infestation rate of citrus fruits can reach 25% and even 100% under favorable environmen-
tal conditions [14]. Recognizing the severe threat posed by B. tsuneonis to China’s citrus
industry, the Ministry of Agriculture included it in the national list of harmful quarantine
organisms in 2009 [33]. Hence, there is a pressing need to predict the effect of climatic con-
ditions on the potential distribution of B. tsuneonis in China. In this study, we developed an
optimized MaxEnt model using B. tsuneonis distribution data, key environmental variables
that limit its distribution, and the ENMeval data package. This model was used to predict
the distribution of potentially suitable habitat for B. tsuneonis in China for different periods,
including current and future periods (2021–2040, 2041–2060, 2061–2080, and 2081–2100),
and under various future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The aim of
this study was to provide important information for citrus growers, local organizations,
and governments that could facilitate the development of strategies to control the spread
of B. tsuneonis in China.

2. Materials and Methods
2.1. Collection and Screening of Species Occurrence Data

A total of 85 occurrence records of B. tsuneonis (Figure 1) were obtained from various
sources, including the GBIF Biodiversity Database (http://www.gbif.org/, accessed on
23 September 2023), the “National Directory of Agricultural Plant Quarantine Harmful
Organisms Distribution by Administrative Region” (https://www.moa.gov.cn/nybgb/,
accessed on 23 September 2023), Bold Systems v4 (http://www.boldsystems.org/, ac-
cessed on 25 September 2023), and the CABI International Centre for Applied Biologi-
cal Sciences PlantwisePlus (https://plantwiseplusknowledgebank.org/, accessed on 28
September 2023), as well as previously published sources. The geographic coordinates
for each distribution site were extracted from the literature or obtained using Google
Earth Pro v7.3.4 (https://earth.google.com/web/, accessed on 28 September 2023). It
is important to note that distribution site data are often biased toward easily accessible
regions for humans or areas close to cities and other human settlements [34,35]. This bias
can introduce spatial autocorrelation, which can significantly affect model results [36,37].
To address this issue and reduce sample bias, ENMTools 1.4 [38] was used to remove
duplicate occurrences, which resulted in one distribution point per grid cell with a spa-
tial resolution of 2.5 arc-minutes (approximately 4.5 km). After filtering, 69 occurrence
points remained for model construction. For a detailed list of distribution points and
corresponding maps, refer to Figure S1 in the Supplementary Materials. The workflow
was implemented using ArcGIS 10.4 (ESRI, Redlands, CA, USA) (http://www.esri.com/,
accessed on 3 October 2023).

http://www.gbif.org/
https://www.moa.gov.cn/nybgb/
http://www.boldsystems.org/
https://plantwiseplusknowledgebank.org/
https://earth.google.com/web/
http://www.esri.com/
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Figure 1. Global distribution of B. tsuneonis occurrence points.

2.2. Collection and Screening of Bioclimatic Variables

A total of 19 bioclimatic variables were obtained from the World Climate Database
(https://www.worldclim.org/) at a resolution of 2.5 arc-minutes for both current and
projected future climatic scenarios (Table 1). The bioclimatic variables were assessed using
four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), covering
the current periods (1970–2000) and four future periods, including the 2030s (average
for 2021–2040), 2050s (average for 2041–2060), 2070s (average for 2061–2080), and 2090s
(average for 2081–2100). These scenarios were developed using the BCC-CSM2-MR global
climate model from the National Climate Center. Each SSP represents a different level of
radiative forcing: SSP1-2.6 corresponds to a low-forcing scenario, SSP2-4.5 corresponds to
a medium-forcing scenario, SSP3-7.0 corresponds to a medium-to-high-forcing scenario,
and SSP5-8.5 corresponds to a high-forcing scenario. The SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 scenarios assume that radiative forcing will stabilize at approximately 2.6, 4.5, 7.0,
and 8.5 W/m2 by the year 2100, respectively.

To ensure the accuracy of our predictions and prevent potential correlations among
climatic variables, we utilized the procedure outlined by Cai et al. [39]. First, the occur-
rence points of B. tsuneonis and the 19 bioclimatic variables were imported into MaxEnt
software to create an initial model, with the random test percentage set to 25%. Subse-
quently, a jackknife test was performed to assess the percent contribution and permutation
contribution of each variable to the initial simulation results. Next, to remove spatial
autocorrelation among variables, the collected distribution data were used to extract values
for 19 environmental variable layers in ArcGIS 10.4.1; the extracted values were then used
to perform Pearson correlation analysis on the filtered variables using R software (Figure 2).
Variables with correlation coefficients greater than |0.8| (indicating high correlations) were
removed. From each pair of highly correlated variables, one was retained based on the
percent contribution and permutation importance for modeling the potential distribution
of B. tsuneonis [40], which facilitated the identification of the main environmental factors
for modeling. Six bioclimatic variables were used in the final MaxEnt model (Table 1).

https://www.worldclim.org/
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Table 1. Bioclimatic variables used to model the potentially suitable habitat of B. tsuneonis in China.
The six bioclimatic variables used for model development are indicated in bold.

Variables Description Unit

Bio1 Annual Mean Temperature ◦C
Bio2 Mean Diurnal Temperature Range ◦C
Bio3 Isothermality (Bio2/Bio7) (×100) /
Bio4 Temperature Seasonality (standard deviation ×100) /
Bio5 Maximum Temperature of Warmest Month ◦C
Bio6 Minimum Temperature of Coldest Month ◦C
Bio7 Temperature Annual Range (Bio5-Bio6) ◦C
Bio8 Mean Temperature of Wettest Quarter ◦C
Bio9 Mean Temperature of Driest Quarter ◦C

Bio10 Mean Temperature of Warmest Quarter ◦C
Bio11 Mean Temperature of Coldest Quarter ◦C
Bio12 Annual Precipitation mm
Bio13 Precipitation of Wettest Month mm
Bio14 Precipitation of Driest Month mm
Bio15 Precipitation Seasonality (Coefficient of Variation) /
Bio16 Precipitation of Wettest Quarter mm
Bio17 Precipitation of Driest Quarter mm
Bio18 Precipitation of Warmest Quarter mm
Bio19 Precipitation of Coldest Quarter mm
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2.3. Model Optimization

In this study, the ENMeval package in R 4.3.2 was used to optimize the Maxent
model [41]. The block method was used to partition the 69 B. tsuneonis records into
four approximately equal parts, with three parts used for training and one part used for
testing [31]. The RM parameter was set from 0.5 to 4 with an interval of 0.5; there was
thus a total of 8 RM parameters [36,42]. For the FC parameters, the Maxent model had
five features, linear (L), quadratic (Q), hinge (H), product (P), and threshold (T), from
which eight feature combinations were derived (L, LQ, LQP, QHP, LQH, LQHP, QHPT,
and LQHPT) [16]. A total of 64 parameter combinations were selected and tested using
the ENMeval package. The model’s fit and complexity were assessed using the Akaike
information criterion correction (AICc) [43,44], and the extent of overfitting was evaluated
using a 10% training omission rate (OR10) [18,45]. The parameter combination with the
smallest delta.AICc value was used in the final model.

2.4. Model Evaluation and Distribution of Potentially Suitable Habitat

The 69 B. tsuneonis occurrence records and six bioclimatic variables were input into
Maxent 3.4.1 (Maxent (amnh.org, accessed on 12 December 2023)). The FC and RM were
established according to the optimal model.c For simulation training, 75% of the occurrence
records were selected, and the remaining 25% were used for model testing. In the MaxEnt
model, the maximum number of iterations was set to 5000, with 10,000 as the maximum
number of background points, and the logistic output format was used. The model was
cross-validated by running 10 replicates. The jackknife method was used to test and create
response curves, which was used to assess the effects of bioclimatic variables on the area
of potentially suitable habitat of B. tsuneonis in China, and the accuracy of the model was
examined using the area enclosed by the receiver operating characteristic (ROC) curve
(AUC) [46]. The model prediction accuracy was categorized as excellent for AUC values
between 0.9 and 1, good for values between 0.8 and 0.9, usable for values between 0.7 and
0.8, poor for values between 0.6 and 0.7, and failure for values between 0 and 0.5 [47].

In this study, the final results comprised average values from 10 repetitions in the
MaxEnt model. The area of potentially suitable habitat for B. tsuneonis in China was
delineated using a map of China. The results were obtained by assessing the presence
probability of B. tsuneonis, with values ranging from 0 to 1, where higher values indicated
a greater likelihood of species presence. The reclassify tool in ArcGIS software was used
to categorize habitats with different levels of suitability using the natural breaks (Jenks)
method. This resulted in the classification of areas into four levels: ‘highly suitable area’
(0.54 ≤ probability of occurrence ≤ 1), ‘moderately suitable area’ (0.33 ≤ probability of
occurrence < 0.54), ‘marginally suitable area’ (0.11 ≤ probability of occurrence < 0.33), and
‘unsuitable area’ (0 ≤ probability of occurrence < 0.11).

The centroid is a useful measure for describing the spatial distribution of geographical
objects and can also be used to track the displacement of these objects over time. In this
study, we investigated the centroid shifts of B. tsuneonis within nationally suitable habitats
under projected future climatic conditions. To do this, we first converted the habitat raster
map into a vector map using ArcGIS software. Next, we analyzed it by inputting the
folder containing current and future binary SDMs (species distribution models) into the
SDMtoolboxw2.4 tool [48].

3. Results
3.1. Model Evaluation and Area of Potentially Suitable Habitat

The default parameters of the Maxent model were RM = 1 and FC = LQPHT. The
ENMeval package was used to optimize the Maxent parameter settings. Figure S2 demon-
strates that the model’s AICc value was the lowest (Delta.AICc = 0) when RM = 1.5 and
FC = LQH. Model complexity was the lowest for this particular parameter combination
based on the Akaike information criterion. The mean OR10 value was 30.64% lower with
this particular parameter combination compared with the default parameter combination.
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The degree of overfitting was lowest with these parameter settings; thus, RM = 1.5 and
FC = LQH were considered the optimal model parameters.

The performance of the MaxEnt model for B. tsuneonis outperformed the model under
default settings, with an average test AUC value of 0.985 ± 0.007 (Figure S3). When the
optimal parameter settings were used, the mean AUC values of the B. tsuneonis MaxEnt
model exceeded 0.98 under different climate scenarios, which indicated that the model had
high prediction accuracy and stability (Table 2).

Table 2. Mean AUC values of the MaxEnt model for B. tsuneonis across different climate scenarios.

Climate Scenario Year AUC Value

- Current 0.985

Lowly compulsive scenario SSP1-2.6

2021–2040 0.988
2041–2060 0.986
2061–2080 0.981
2081–2100 0.992

Moderately compulsive scenario SSP2-4.5

2021–2040 0.986
2041–2060 0.990
2061–2080 0.985
2081–2100 0.989

Moderately to highly compulsive scenario SSP3-7.0

2021–2040 0.981
2041–2060 0.989
2061–2080 0.985
2081–2100 0.984

Highly compulsive scenario SSP5-8.5

2021–2040 0.987
2041–2060 0.989
2061–2080 0.986
2081–2100 0.987

3.2. Evaluation of Important Bioclimatic Variables

Table 3 shows the percentage contribution and permutation importance values for
the six bioclimatic variables. Precipitation of Warmest Quarter (Bio18) was the most im-
portant bioclimatic variable, and its contribution rate and permutation importance were
67.5% and 7.9%, respectively. This suggested that Bio18 was the primary determinant of
rainfall, which affected the distribution of B. tsuneonis. Additionally, the percent contri-
bution of Temperature Seasonality (standard deviation ×100) (Bio4) and Mean Diurnal
Temperature Range (Bio2) was 20.5% and 6.1%, respectively.

The relationship between the presence probability of B. tsuneonis and bioclimatic variables
is shown in Figure 3. Within a specific range, the probability of the occurrence of B. tsuneonis
increased as Bio2, Bio3, Bio4, Bio6, Bio8, and Bio18 increased. After peaking, the probability
of occurrence of B. tsuneonis decreased with further increases in environmental factors. The
average ranges of suitable values for these bioclimatic variables (probability ≥ 0.33) were as
follows: 4.61–9.76 ◦C for Bio2, 24.67–38.93 for Bio3, 441.60–867.63 for Bio4, −7.23–10.81 ◦C for
Bio6, 18.87–28.38 ◦C for Bio8, and 450.22–2735.93 mm for Bio18.

Table 3. Percent contribution and permutation importance of the six main bioclimatic variables.

Variables Percent Contribution (%) Permutation Importance (%)

Bio18 67.5 7.9
Bio4 20.5 21.5
Bio2 6.1 0.2
Bio6 2.4 0.2
Bio8 2.3 36.6
Bio3 1.3 33.7
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3.3. Potentially Suitable Habitat for B. tsuneonis under Current Climate Conditions

The current potential distribution map for B. tsuneonis in China is shown in Figure 4.
The suitable areas for B. tsuneonis were primarily located in central China, East China,
South China, and the eastern region of Southwest China. Under current climate condi-
tions, the area of potentially suitable habitat for B. tsuneonis in China was approximately
215.9 × 104 km2, which accounted for 22.49% of China’s area.

The highly suitable, moderately suitable, and marginally suitable areas comprised
82.6 × 104 km2, 82.05 × 104 km2, and 51.26 × 104 km2, which accounted for 8.60%, 8.55%,
and 5.34% of the total area of China, respectively. These areas were primarily distributed in
southern regions below 40 ◦N, including Chongqing, Guizhou, Guangxi, Hubei, Hunan,
Guangdong, Jiangxi, Fujian, Anhui, Zhejiang, Jiangsu, Shandong, Hainan, and Taiwan,
as well as parts of Yunnan, Gansu, Shaanxi, and Henan. Highly suitable areas were
particularly prevalent in various parts of Guangzhou, Guangxi, Guizhou, Chongqing, and
eastern Sichuan.
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3.4. Changes in the Area of Potentially Suitable Habitat for B. tsuneonis under Future Climatic
Scenarios

The potential distribution of B. tsuneonis based on four emission scenarios (SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5) across four future periods (2030s, 2050s, 2070s, and
2090s) is shown in Figures 5 and 6, and Table 4. The total suitable area for B. tsuneonis
was projected to increase to varying degrees under future climate scenarios compared
with current climate conditions. The largest areas of suitable habitat were observed in
Chongqing, Guizhou, Guangxi, and Guangdong.

Table 4. Changes in the area of suitable habitats for B. tsuneonis under different climate scenarios.

Scenario Decade

Total Suitable
Regions

Regions of Marginally
Suitable Habitat

Regions of Moderately
Suitable Habitat

Regions of Highly
Suitable Habitat

Area
(×104 km2)

Area
Change (%)

Area
(×104 km2)

Area
Change (%)

Area
(×104 km2)

Area
Change (%)

Area
(×104 km2)

Area
Change (%)

- Current 215.90 - 51.26 - 82.05 - 82.60 -

SSP1-2.6

2030s 228.15 5.67% 63.26 23.43% 80.22 −2.23% 84.67 2.51%
2050s 232.42 7.65% 74.03 44.44% 75.64 −7.81% 82.75 0.19%
2070s 222.05 2.85% 85.97 67.72% 58.59 −28.59% 77.50 −6.17%
2090s 220.35 2.06% 75.18 46.68% 60.55 −26.21% 84.62 2.46%

SSP2-4.5

2030s 225.75 4.56% 63.41 23.71% 78.12 −4.79% 84.22 1.97%
2050s 236.30 9.45% 75.29 46.89% 71.28 −13.13% 89.73 8.64%
2070s 236.36 9.47% 74.17 44.70% 81.82 −0.29% 80.38 −2.69%
2090s 233.31 8.06% 62.32 21.58% 79.55 −3.05% 91.44 10.71%

SSP3-7.0

2030s 226.64 4.97% 87.05 69.84% 62.30 −24.08% 77.29 −6.42%
2050s 223.19 3.38% 57.23 11.66% 81.30 −0.92% 84.67 2.51%
2070s 219.60 1.71% 71.63 39.74% 81.72 −0.40% 66.25 −19.79%
2090s 228.38 5.78% 81.73 59.46% 75.55 −7.93% 71.11 −13.91%

SSP5-8.5

2030s 221.71 2.69% 54.25 5.84% 74.68 −8.98% 92.78 12.33%
2050s 220.94 2.33% 50.71 −1.06% 79.11 −3.58% 91.12 10.32%
2070s 226.93 5.11% 92.18 79.84% 55.92 −31.84% 78.83 −4.56%
2090s 237.77 10.13% 92.41 80.30% 59.24 −27.81% 86.12 4.27%

In conclusion, the area of potentially suitable habitat increased in the western and
northern regions of China in the future periods under the four emission scenarios. Un-
der the SSP5-8.5 emission scenario, the total suitable area reached its maximum value
of 237.77 × 104 km2 in the 2090s, and the area of highly suitable habitat peaked at
92.78 × 104 km2 in the 2030s.
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3.5. Centroid Shifts of Potentially Suitable Areas for B. tsuneonis

The centroids of potentially suitable areas of B. tsuneonis in China under current and
future climate scenarios are shown in Figure 7 and Table 5. Currently, the species’ range
centroid is located in Yiyang City, Hunan Province (28.727 ◦N, 112.317 ◦E). The centroid
of potentially suitable areas for B. tsuneonis is predicted to shift westward and northward
under future climate scenarios.

Table 5. Changes in the geographical center of the area of potentially suitable habitat for B. tsuneonis
under current and future climatic scenarios.

Current Centroid Location Climate Scenario
Future Centroid Location

2030s 2050s 2070s 2090s

Yiyang City,
Hunan Province (112.317 ◦E,

28.727 ◦N)

SSP1-2.6 Yiyang City
(29.087 ◦N, 112.439 ◦E)

Changde City
(29.034 ◦N, 112.157 ◦E)

Yiyang City
(28.942 ◦N, 112.303 ◦E)

Yiyang City
(28.884 ◦N, 112.277 ◦E)

SSP2-4.5 Yiyang City
(28.988 ◦N, 112.400 ◦E)

Changde City
(29.104 ◦N, 112.184 ◦E)

Changde City
(28.723 ◦N, 111.780 ◦E)

Yiyang City
(28.468 ◦N, 111.443 ◦E)

SSP3-7.0 Yiyang City
(29.038 ◦N, 112.426 ◦E)

Changde City
(28.858 ◦N, 112.253 ◦E)

Yiyang City
(28.840 ◦N, 112.506 ◦E)

Yiyang City
(29.024 ◦N, 112.340 ◦E)

SSP5-8.5 Changde City
(28.783 ◦N, 112.167 ◦E)

Yiyang City
(28.468 ◦N, 111.852 ◦E)

Changde City
(28.660 ◦N, 111.858 ◦E)

Changde City
(28.752 ◦N, 111.714 ◦E)
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4. Discussion
4.1. Significance of the Optimal Model Predictions

Insects have caused considerable damage to crops for centuries [49], and they are
generally responsible for the loss of approximately 40% of agricultural production [50].
Insect pests pose a major threat to agricultural production in China [51], especially com-
mercial citrus production. Numerous climatic suitability studies have been conducted on
various citrus insect pests in China including Trioza erytreae (Del Guercio, 1918) (Hemiptera:
Triozidae) [52], Diaphorina citri (Kuwayama, 1908) (Hemiptera: Liviidae) [53,54], Bactrocera
dorsalis (Hendel, 1912) (Diptera: Tephritidae) [55], and Anoplophora chinensis (Forster, 1771)
(Coleoptera: Cerambycidae) [56].

Monitoring the distribution of pests is critically important for determining the areas
where invasive species might potentially colonize as a result of global temperature increases,
which could aid the development of strategies to control these pests [25,26]. We used an
optimized MaxEnt model to predict the potential distribution of B. tsuneonis under climate
change and identify the significant variables affecting the distribution of its potentially
suitable habitat in China. Clarifying the future expansion of B. tsuneonis can aid the
development of strategies to control their spread and mitigate the damage induced by this
pest under future climate change. Therefore, our findings have implications for preventing
the further spread of B. tsuneonis in China.

MaxEnt typically selects a random subset of data for data modeling and evaluates
the model’s prediction ability using the AUC, but the software has certain limitations [57].
First, when both the training data and test data are affected by sampling deviation, the
AUC might overestimate the model’s predictive accuracy [58]. Second, the complexity of
the MaxEnt model, which is a complex machine learning algorithm, can lead to overfitting
when simulating the potential distributions of species, which can affect the transferability
of the model [23]. To address this, adjustments can be made to the RM and the FC using
AICc [45]. We used the ENMeval package to optimize the predictive performance of the
MaxEnt model by integrating multiple parameters, and this package has been shown to
be more effective for model optimization compared with other packages [59]. When the
optimal parameters of the MaxEnt model for predicting the suitable habitat for B. tsuenoenis
were used (RM = 1.5, FC = LQH), the delta.AICc = 0, and the remodeled training AUC
exceeded 0.98. This indicated that the predictive accuracy of the model was enhanced,
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which improved the ability of this model to clarify the relationships between environmental
variables and occurrence data. Wang et al. [14] used CLIMEX to predict the distribution
of suitable habitat for B. tsuneonis under current climatic conditions and found that the
suitable habitat for B. tsuneonis in China was primarily concentrated in the East, Central,
South, and Southwest regions. These findings are consistent with the results of this study
and support the accuracy of our predictions.

4.2. The Bioclimatic Variables Determining the Distribution of Suitable Habitat for B. tsuneonis

Precipitation has direct and indirect effects on crop insect pests [60]. The results of this
study confirmed that precipitation was a key environmental factor affecting the distribution
of B. tsuneonis. The factor with the greatest effect on the distribution of B. tsuneonis was
Bio18, which was precipitation during the warmest quarter, and the range of suitable values
for this variable was 450.22–2735.93 mm. During its annual life cycle, the citrus fruit fly
overwinters as mature larvae that enter the soil for pupation, and the larvae spend one
stage in the soil. Precipitation directly affects soil moisture and can subsequently affect the
emergence of overwintering pupae [61]. Precipitation also directly affects air humidity, as
the citrus fruit fly tends to emerge after rainfall, and the optimal humidity range for the
growth and development of adults ranges from 50% to 90% [14]. Moreover, precipitation
affects the growth of host plants for the citrus fruit fly, which can have consequences for the
growth and development of the flies. Previous studies have confirmed that annual rainfall
between 1300 and 1500 mm is favorable for the growth of citrus [62], which coincides
with the projected precipitation range required for the suitable habitat of B. tsuneonis. In
Guizhou Province, a significant proportion of highly suitable habitat for B. tsuneonis was
observed, and the average annual rainfall over the past 30 years has ranged from 900 to
1300 mm [63]. This is consistent with the precipitation range predicted to be suitable for
B. tsuneonis in this study.

The results of this study confirmed that temperature was a key environmental variable
affecting the distribution of B. tsuneonis. The results indicated that environmental variables
associated with temperature included Bio2 (Mean Diurnal Temperature Range); Bio3
(Isothermality) (Bio2/Bio7) (×100); Bio4 (Temperature Seasonality) (standard deviation
×100); Bio6 (Minimum Temperature of Coldest Month); and Bio8 (Mean Temperature of
Wettest Quarter). Numerous studies have indicated that temperature is a key climatic
factor affecting the population dynamics of fruit fly pests in the field [64–68]. Ma et al. [69]
conducted experiments in which larvae collected from infested fruits were reared indoors
until emergence, and observations under a temperature gradient ranging from 0 to 24 ◦C
revealed that no adults emerged at temperatures of 9 ◦C and below, indicating that the
minimum developmental temperature for B. tsuneonis pupae is above 9 ◦C. Yasuda et al. [70]
conducted temperature treatments on B. tsuneonis pupae and observed developmental
arrest at 15 ◦C and 25 ◦C. These studies collectively demonstrate that temperature is one of
the key environmental variables affecting the distribution of B. tsuneonis.

Moreover, B. tsuneonis is an oligophagous pest that primarily targets citrus fruits [71].
For example, Yongchun County in Quanzhou City, Fujian Province is known as the “Home
of Chinese citrus.” The results of this study indicated that Yongchun County was highly
suitable for the proliferation of B. tsuneonis, both under current conditions and under
projected future climate scenarios. Over the past 20 years, the lowest recorded temperature
in Yongchun County was −2.1 ◦C, and the highest temperature has ranged between
36.5 and 39 ◦C [72]. The anticipated temperature threshold for the suitability of B. tsuneonis
in our study was consistent with the annual temperature range in this area, which confirms
the robustness of our findings.

4.3. Prospective Changes in the Distribution of Suitable Habitat for B. tsuneonis

Currently, suitable habitat for B. tsuenonis in China under current climatic conditions
is primarily located in provinces such as Chongqing, Guizhou, Guangxi, Hubei, Hunan,
Guangdong, Jiangxi, Fujian, Anhui, Zhejiang, Jiangsu, Shandong, Hainan, and Taiwan. The
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habitats in these regions exhibit varying degrees of suitability, including high, medium, and
marginal suitability. In some areas, high suitability areas cover more than 60% of the total
suitable area. Ten of these regions are also known to have large citrus planting areas and
are the top citrus-producing regions in China [73]. Therefore, caution is needed to prevent
the spread of B. tsuneonis to these regions. Xia et al. [74] conducted a two-year monitoring
study on B. tsuneonis in citrus orchards located in Pinghe County, Zhangzhou City, and
Fujian Province. Although they did not observe B. tsuneonis during the study period, they
emphasized the significance of not ignoring this pest given that Pinghe County is known
for its extensive production of Guanxi honey pomelo, which serves as a preferred host for
B. tsuneonis. Furthermore, our findings revealed that Pinghe County was highly suitable
for the proliferation of B. tsuneonis, both under current conditions and under projected
future climate scenarios. Therefore, the invasion of B. tsuneonis in this region would have a
significant effect on the local citrus industry due to the abundance of food resources and
favorable environmental conditions.

Numerous studies have indicated that climate change will modify the potential distri-
bution of insect pests in a species-specific manner [75–77]. Climate change can result in the
expansion of the potential distributions of certain insect pests [78] and cause contractions in
the potential distributions of others [79]. Additionally, climate change can prompt species
to migrate north or toward higher latitudes [80]. These effects are particularly evident in
high-altitude regions, as temperature increases in these areas will be more pronounced
than in lower altitudes [81]. The fate of insect pests is largely determined by their ability to
adapt to rising temperatures and fluctuating rainfall.

Under future climate scenarios, the potential distribution of B. tsuneonis will gradually
expand toward higher latitudes until the 2090s, which is likely attributed to the global
warming trend. These findings are consistent with predicted changes in the potential
distributions of other invasive pests, such as Spodoptera frugiperda [39], Solenopsis invicta [82],
and Culex pipiens pallens [83]. The prediction results generated by the MaxEnt model
suggest that regions such as Guizhou, Sichuan, Yunnan, Zhejiang, and Jiangxi will be
affected under various climate change scenarios, indicating that there will be an increase
in the total suitable habitat area for the citrus fruit fly. Moreover, our findings will aid the
development of strategies to prevent the spread of this pest to areas such as Jiangxi, Hubei,
Chongqing, and Fujian, where the citrus fruit fly has not yet been observed.

4.4. Limitations of This Research

We evaluated the area of suitable habitat for the citrus fruit fly; however, other factors
aside from climate can also affect the fly’s distribution. Biotic interactions, including
variables such as crop yields, natural enemies, pests, weeds, and plant diseases, play a
significant role in determining the distributions of various insects [84,85]. Additionally,
temperature and precipitation, which are the main factors affecting the abundance and
distribution of species, not only affect the physiology of pests but also affect the physiology
of host plants, which can subsequently affect the pests themselves [86]. Furthermore, it
is important to note that studies of spatial distributions have inherent uncertainties that
can be related to various factors, including future greenhouse gas emission levels, the
extent of climate change projections, the parameterization of the model, and the availability
of broad-scale climate data [87–89]. For example, climate change-induced increases in
CO2 levels can increase the carbon/nitrogen ratio in plants, which leads to a decrease in
the protein content. This can result in pests causing more damage as they compensate for
reduced food quality [84].

Furthermore, our study did not account for the effects of evolutionary and adaptive
processes that likely affect insects, including the citrus fruit fly [88,89]. Although projections
of the effects of climate change on insects typically assume that species’ thermal require-
ments remain static and do not evolve, the physiological requirements of species can be
flexible. Insects may respond differently to environmental pressures through processes
such as acclimation and diapause quiescence [88]. Nonetheless, this finding indicates that
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models, such as MaxEnt, provide predictions that are consistent with the realized niche,
which represents the actual environment inhabited by the species [90]. The resulting maps
are indicators of the potential future invasion of B. tsuneonis; additional research on this
economically significant agricultural pest and its socioeconomic impact is urgently needed.

5. Conclusions

Our study is the first to utilize an optimized MaxEnt model to investigate the dis-
tribution of suitable habitat for B. tsuneonis in China and the key bioclimatic variables
determining the habitat suitability of B. tsuneonis. Our findings reveal that the area of
suitable habitat for this fruit fly pest is projected to increase and shift toward higher lat-
itudes under future climate scenarios relative to that under current climate conditions.
Precipitation of Warmest Quarter (Bio18) and Temperature Seasonality (standard deviation
×100) (Bio4) were the key factors determining the distribution of this pest. These findings
emphasize the major role of climate change in affecting the potential distribution of B. tsu-
neonis. Generally, the establishment of a network for monitoring this pest is essential for
preventing its future spread in citrus-planting areas throughout China.
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H = hinge, P = product, and T = threshold). Figure S3: Receiver operating characteristic (ROC) curve
of the MaxEnt model. The plot represents the sensitivity (true positive rate) and the specificity
(false positive rate) of the model. The area under the ROC curve (AUC) represents the entire area
underneath the ROC curve (red); the 95% confidence intervals are indicated in blue.
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